organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o370-o371

(Z)-N-[2-(N′-Hy­dr­oxy­carbamimido­yl)phen­yl]acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and cDepartment of Chemistry, Mangalore University, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 2 February 2013; accepted 2 February 2013; online 9 February 2013)

The asymmetric unit of the title compound, C9H11N3O2, contains two mol­ecules (A and B), which exist in Z conformations with respect to their C=N double bond. The dihedral angles between the benzene ring and the pendant hy­droxy­carbamimidoyl and acetamide groups are 28.58 (7) and 1.30 (5)°, respectively, in mol­ecule A and 25.04 (7) and 27.85 (9)°, respectively, in mol­ecule B. An intra­molecular N—H⋯N hydrogen bond generates an S(6) ring in both mol­ecules. Mol­ecule A also features an intra­molecular C—H⋯O inter­action, which closes an S(6) ring. In the crystal, the mol­ecules are linked by N—H⋯O, N—H⋯N, O—H⋯O, O—H⋯N, C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π inter­actions, generating a three-dimensional network.

Related literature

For background and applications of amidoximes, see: Clapp (1976[Clapp, L. B. (1976). In Advances in Heterocyclic Chemistry, Vol. 20, edited by A. R. Katritzky & A. J. Boulton, pp. 65-116. New York: Academic Press.], 1984[Clapp, L. B. (1984). In Comprehensive Heterocyclic Chemistry, Vol. 6, edited by K. T. Potts, pp. 365-392. Oxford: Pergamon Press.]); Jochims (1996[Jochims, J. C. (1996). In Comprehensive Heterocyclic Chemistry II, Vol. 52, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, pp. 179-228. Oxford: Pergamon Press.]); Fylaktakidou et al. (2008[Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E., Varella, E. & Nicolaides, D. N. (2008). Curr. Pharm. Des. 14, 1001-1047.]); Mansuy & Boucher (2004[Mansuy, D. & Boucher, J. L. (2004). Free Radic. Biol. Med. 37, 1105-1121.]); Kontogiorgis & Hadjipavlou-Litina (2002[Kontogiorgis, C. A. & Hadjipavlou-Litina, D. J. (2002). Arzneim. Forsch. Drug. Res. 52, 205-210.]); Wang et al. (2002[Wang, P. G., Xian, M., Tang, X., Wu, X., Wen, Z., Cai, T. & Janczuk, A. J. (2002). Chem. Rev. 102, 1091-1134.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O2

  • Mr = 193.21

  • Triclinic, [P \overline 1]

  • a = 8.7813 (12) Å

  • b = 9.5432 (13) Å

  • c = 11.9770 (15) Å

  • α = 80.722 (2)°

  • β = 78.531 (2)°

  • γ = 70.181 (2)°

  • V = 920.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.35 × 0.20 × 0.05 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.995

  • 12849 measured reflections

  • 4680 independent reflections

  • 3815 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.07

  • 4680 reflections

  • 287 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3NA⋯N1A 0.883 (19) 2.048 (19) 2.7463 (18) 135.2 (15)
N3B—H3NB⋯N1B 0.86 (2) 1.963 (19) 2.6798 (17) 139.7 (17)
N2B—H1NB⋯O2Bi 0.88 (2) 2.10 (2) 2.9725 (17) 173.0 (17)
N2A—H2NA⋯O2Aii 0.87 (3) 2.53 (2) 3.3004 (17) 149.0 (17)
N2A—H2NA⋯N2Biii 0.87 (3) 2.54 (2) 3.2522 (18) 139.6 (17)
N2B—H2NB⋯O2Aiv 0.903 (19) 2.12 (2) 2.8900 (17) 142.1 (16)
O1A—H1OA⋯O1B 0.933 (19) 1.844 (19) 2.7733 (15) 173.9 (18)
O1B—H1OB⋯N1Av 0.951 (18) 1.809 (18) 2.7597 (15) 177.0 (17)
C2A—H2AA⋯O2A 0.95 2.22 2.8556 (17) 123
C5A—H5AA⋯O2Bvi 0.95 2.55 3.2773 (17) 133
C9A—H9AC⋯N1B 0.98 2.56 3.499 (2) 160
C4A—H4AACg2ii 0.95 2.95 3.7524 (16) 143
C3B—H3BACg1vii 0.95 2.88 3.6645 (17) 141
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+1; (iv) x+1, y, z; (v) -x+2, -y, -z+1; (vi) x, y+1, z-1; (vii) x, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Amidoximes are bi-functional molecules exhibiting a rich and diverse chemistry and provides the shortest way to reach certain heterocycles, such as 1,2,4-oxadiazoles (Clapp, 1976, 1984; Jochims, 1996). They are also considered interesting molecules in view of their biological applications (Fylaktakidou et al., 2008). Their ability to release NO or nitrites in vitro and in vivo experiments has recently attracted attention (Mansuy et al., 2004; Kontogiorgis et al., 2002). The discovery that nitric oxide (NO) acts as an important mediator of smooth muscle relaxation has led us to the preparation and testing of a wide variety of compounds with the aim of finding suitable new NO-donors. In the process, the title compound, (Z)-N-(2-(N'-hydroxycarbamimidoyl) phenyl)acetamide (Wang et al., 2002) was prepared.

The title compound consist of two crystallographically independent molecules (A and B) as shown in Fig. 1. The molecules exist in Z configuration with respect to the C7A N1A and C7B N1B double bonds. The intramolecular N3—H3···N1 hydrogen bonds (Table 1) form S(6) ring motifs (Bernstein et al., 1995) in both molecules. Molecule A is stabilized by an additional intramolecular C2A—H2AA···O2A hydrogen bond (Table 1) which also generates an S(6) ring motif (Bernstein et al., 1995). The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal structure (Fig. 2), the molecules are linked via N2B—H1NB···O2B, N2A—H2NA···O2A, N2A—H2NA···N2B, N2B—H2NB···O2A, O1A—H1OA···O1B, O1B—H1OB···N1A, C5A—H5AA···O2B and C9A—H9AC···N1B hydrogen bonds (Table 1) into a three dimensional network The crystal is further consolidated by C4A—H4A···Cg2 and C3B—H3BA···Cg1 interactions (Table 1), where Cg1 and Cg2 are the centroids of benzene rings (C1A–C6A and C1B–C6B), respectively.

Related literature top

For background and applications of amidoximes, see: Clapp (1976, 1984); Jochims (1996); Fylaktakidou et al. (2008); Mansuy & Boucher (2004); Kontogiorgis & Hadjipavlou-Litina (2002); Wang et al. (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Equimolar amount of N-(2-cyanophenyl)acetamide (10 mmol) and NH2OH.HCl (10 mmol) were dissolved in a minimum amount of methanol(10 ml)-water (5 ml) and followed by the addition of Na2CO3 (5 mmol). The solution was refluxed for 2 h. The solid product formed was collected through filtration and then evaporated to dryness. The product was redissolved in MeOH for recrystalliziation as colourless plates. M. P.: 145°C.

Refinement top

All N and O bound H atoms were located from the difference map and were refined freely [N–H = 0.857 (19)–0.90 (2) Å and O–H = 0.93 (2) and 0.95 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C) (C–H = 0.9500 and 0.9800 Å). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Dashed lines indicate the intramolecular hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
(Z)-N-[2-(N'-Hydroxycarbamimidoyl)phenyl]acetamide top
Crystal data top
C9H11N3O2Z = 4
Mr = 193.21F(000) = 408
Triclinic, P1Dx = 1.394 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7813 (12) ÅCell parameters from 3493 reflections
b = 9.5432 (13) Åθ = 2.3–28.5°
c = 11.9770 (15) ŵ = 0.10 mm1
α = 80.722 (2)°T = 100 K
β = 78.531 (2)°Plate, colourless
γ = 70.181 (2)°0.35 × 0.20 × 0.05 mm
V = 920.6 (2) Å3
Data collection top
Bruker APEX DUO CCD
diffractometer
4680 independent reflections
Radiation source: fine-focus sealed tube3815 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28.6°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 117
Tmin = 0.965, Tmax = 0.995k = 1212
12849 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.261P]
where P = (Fo2 + 2Fc2)/3
4680 reflections(Δ/σ)max < 0.001
287 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C9H11N3O2γ = 70.181 (2)°
Mr = 193.21V = 920.6 (2) Å3
Triclinic, P1Z = 4
a = 8.7813 (12) ÅMo Kα radiation
b = 9.5432 (13) ŵ = 0.10 mm1
c = 11.9770 (15) ÅT = 100 K
α = 80.722 (2)°0.35 × 0.20 × 0.05 mm
β = 78.531 (2)°
Data collection top
Bruker APEX DUO CCD
diffractometer
4680 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3815 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.995Rint = 0.031
12849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.34 e Å3
4680 reflectionsΔρmin = 0.26 e Å3
287 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A1.06478 (11)0.25713 (11)0.46170 (9)0.0183 (2)
O2A0.37005 (11)0.17841 (12)0.55131 (8)0.0200 (2)
N1A0.91075 (13)0.26562 (12)0.43516 (9)0.0136 (2)
N2A0.91118 (15)0.50889 (14)0.36926 (11)0.0188 (3)
N3A0.59696 (13)0.25477 (13)0.50343 (9)0.0132 (2)
C1A0.55777 (15)0.36511 (14)0.41114 (11)0.0125 (2)
C2A0.40471 (16)0.41035 (15)0.37477 (11)0.0149 (3)
H2AA0.32470.36460.41180.018*
C3A0.36921 (16)0.52204 (15)0.28463 (12)0.0168 (3)
H3AA0.26450.55250.26130.020*
C4A0.48421 (17)0.58940 (15)0.22839 (11)0.0167 (3)
H4AA0.45960.66440.16610.020*
C5A0.63585 (16)0.54578 (15)0.26423 (11)0.0146 (3)
H5AA0.71460.59240.22610.018*
C6A0.67591 (15)0.43462 (14)0.35539 (11)0.0121 (2)
C7A0.83924 (15)0.39970 (14)0.39030 (11)0.0125 (2)
C8A0.50778 (15)0.16825 (14)0.56596 (11)0.0134 (3)
C9A0.59175 (17)0.05670 (16)0.65623 (12)0.0185 (3)
H9AA0.60190.04460.64200.028*
H9AB0.52710.07790.73180.028*
H9AC0.70100.06410.65370.028*
O1B1.10383 (11)0.00132 (11)0.61515 (8)0.0152 (2)
O2B0.71673 (13)0.21124 (12)1.05408 (8)0.0231 (2)
N1B0.97720 (13)0.02967 (12)0.71262 (9)0.0141 (2)
N2B1.14247 (14)0.15404 (13)0.75828 (11)0.0161 (2)
N3B0.79291 (14)0.06646 (13)0.89487 (10)0.0159 (2)
C1B0.78846 (16)0.06046 (15)0.94314 (11)0.0149 (3)
C2B0.68093 (17)0.10631 (16)1.04286 (12)0.0197 (3)
H2BA0.60930.05131.07930.024*
C3B0.67802 (19)0.23181 (17)1.08911 (13)0.0234 (3)
H3BA0.60630.26081.15800.028*
C4B0.77935 (18)0.31493 (17)1.03513 (13)0.0223 (3)
H4BA0.77680.40111.06650.027*
C5B0.88416 (17)0.27147 (15)0.93527 (12)0.0180 (3)
H5BA0.95240.32950.89830.022*
C6B0.89229 (15)0.14440 (14)0.88740 (11)0.0139 (3)
C7B1.01102 (15)0.10389 (14)0.78082 (11)0.0126 (2)
C8B0.76306 (17)0.19266 (16)0.95037 (12)0.0179 (3)
C9B0.7947 (2)0.31289 (18)0.87350 (13)0.0274 (3)
H9BA0.71220.36410.89810.041*
H9BB0.90410.38530.87800.041*
H9BC0.78860.26760.79440.041*
H3NA0.696 (2)0.235 (2)0.5204 (15)0.030 (5)*
H3NB0.840 (2)0.069 (2)0.8244 (17)0.028 (5)*
H1NA0.998 (2)0.488 (2)0.3996 (15)0.024 (5)*
H1NB1.181 (2)0.165 (2)0.8176 (18)0.036 (5)*
H2NA0.851 (2)0.602 (3)0.3617 (17)0.038 (5)*
H2NB1.218 (2)0.116 (2)0.6985 (17)0.030 (5)*
H1OA1.085 (2)0.168 (2)0.5101 (17)0.038 (5)*
H1OB1.095 (2)0.089 (2)0.5974 (17)0.037 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0131 (5)0.0187 (5)0.0250 (5)0.0069 (4)0.0079 (4)0.0030 (4)
O2A0.0145 (5)0.0259 (5)0.0208 (5)0.0105 (4)0.0049 (4)0.0061 (4)
N1A0.0104 (5)0.0155 (5)0.0161 (5)0.0054 (4)0.0037 (4)0.0003 (4)
N2A0.0166 (6)0.0137 (6)0.0280 (7)0.0070 (5)0.0077 (5)0.0023 (5)
N3A0.0103 (5)0.0165 (5)0.0125 (5)0.0049 (4)0.0020 (4)0.0010 (4)
C1A0.0138 (6)0.0125 (6)0.0101 (6)0.0029 (5)0.0008 (5)0.0017 (5)
C2A0.0137 (6)0.0172 (6)0.0133 (6)0.0044 (5)0.0015 (5)0.0019 (5)
C3A0.0141 (6)0.0188 (7)0.0164 (7)0.0019 (5)0.0056 (5)0.0023 (5)
C4A0.0204 (7)0.0149 (6)0.0127 (6)0.0030 (5)0.0047 (5)0.0011 (5)
C5A0.0171 (6)0.0141 (6)0.0121 (6)0.0054 (5)0.0004 (5)0.0011 (5)
C6A0.0128 (6)0.0105 (6)0.0123 (6)0.0020 (5)0.0015 (5)0.0031 (5)
C7A0.0135 (6)0.0137 (6)0.0104 (6)0.0051 (5)0.0007 (5)0.0033 (5)
C8A0.0125 (6)0.0145 (6)0.0123 (6)0.0043 (5)0.0002 (5)0.0013 (5)
C9A0.0165 (6)0.0201 (7)0.0183 (7)0.0079 (5)0.0039 (5)0.0057 (5)
O1B0.0169 (5)0.0158 (5)0.0129 (5)0.0068 (4)0.0026 (4)0.0036 (4)
O2B0.0321 (6)0.0288 (6)0.0148 (5)0.0197 (5)0.0053 (4)0.0044 (4)
N1B0.0142 (5)0.0161 (5)0.0112 (5)0.0051 (4)0.0010 (4)0.0019 (4)
N2B0.0182 (6)0.0189 (6)0.0138 (6)0.0093 (5)0.0020 (5)0.0020 (5)
N3B0.0194 (6)0.0171 (6)0.0122 (6)0.0087 (5)0.0010 (4)0.0008 (4)
C1B0.0162 (6)0.0146 (6)0.0126 (6)0.0029 (5)0.0047 (5)0.0015 (5)
C2B0.0181 (7)0.0214 (7)0.0164 (7)0.0045 (5)0.0007 (5)0.0013 (5)
C3B0.0248 (7)0.0228 (7)0.0157 (7)0.0004 (6)0.0016 (6)0.0039 (6)
C4B0.0268 (7)0.0184 (7)0.0193 (7)0.0031 (6)0.0018 (6)0.0067 (6)
C5B0.0199 (7)0.0160 (6)0.0175 (7)0.0047 (5)0.0034 (5)0.0012 (5)
C6B0.0142 (6)0.0139 (6)0.0121 (6)0.0019 (5)0.0043 (5)0.0001 (5)
C7B0.0139 (6)0.0102 (6)0.0124 (6)0.0032 (5)0.0028 (5)0.0020 (4)
C8B0.0188 (6)0.0210 (7)0.0172 (7)0.0110 (5)0.0055 (5)0.0030 (5)
C9B0.0428 (9)0.0228 (8)0.0219 (8)0.0187 (7)0.0041 (7)0.0002 (6)
Geometric parameters (Å, º) top
O1A—N1A1.4232 (13)O1B—N1B1.4333 (14)
O1A—H1OA0.93 (2)O1B—H1OB0.95 (2)
O2A—C8A1.2257 (16)O2B—C8B1.2315 (17)
N1A—C7A1.2992 (17)N1B—C7B1.2972 (17)
N2A—C7A1.3590 (16)N2B—C7B1.3577 (16)
N2A—H1NA0.857 (19)N2B—H1NB0.88 (2)
N2A—H2NA0.87 (2)N2B—H2NB0.90 (2)
N3A—C8A1.3644 (16)N3B—C8B1.3593 (17)
N3A—C1A1.4069 (16)N3B—C1B1.4098 (17)
N3A—H3NA0.885 (19)N3B—H3NB0.863 (19)
C1A—C2A1.4005 (18)C1B—C2B1.3962 (19)
C1A—C6A1.4179 (17)C1B—C6B1.4140 (18)
C2A—C3A1.3915 (18)C2B—C3B1.389 (2)
C2A—H2AA0.9500C2B—H2BA0.9500
C3A—C4A1.3845 (19)C3B—C4B1.387 (2)
C3A—H3AA0.9500C3B—H3BA0.9500
C4A—C5A1.3873 (19)C4B—C5B1.383 (2)
C4A—H4AA0.9500C4B—H4BA0.9500
C5A—C6A1.4027 (17)C5B—C6B1.3977 (19)
C5A—H5AA0.9500C5B—H5BA0.9500
C6A—C7A1.4874 (17)C6B—C7B1.4907 (18)
C8A—C9A1.5031 (18)C8B—C9B1.505 (2)
C9A—H9AA0.9800C9B—H9BA0.9800
C9A—H9AB0.9800C9B—H9BB0.9800
C9A—H9AC0.9800C9B—H9BC0.9800
N1A—O1A—H1OA99.4 (12)N1B—O1B—H1OB99.3 (12)
C7A—N1A—O1A109.97 (10)C7B—N1B—O1B109.89 (10)
C7A—N2A—H1NA114.6 (12)C7B—N2B—H1NB116.8 (13)
C7A—N2A—H2NA119.9 (13)C7B—N2B—H2NB114.9 (12)
H1NA—N2A—H2NA117.3 (18)H1NB—N2B—H2NB115.9 (17)
C8A—N3A—C1A129.30 (11)C8B—N3B—C1B127.77 (12)
C8A—N3A—H3NA115.5 (12)C8B—N3B—H3NB117.8 (12)
C1A—N3A—H3NA115.1 (12)C1B—N3B—H3NB113.0 (12)
C2A—C1A—N3A121.95 (11)C2B—C1B—N3B121.21 (12)
C2A—C1A—C6A119.31 (12)C2B—C1B—C6B119.76 (12)
N3A—C1A—C6A118.72 (11)N3B—C1B—C6B119.01 (12)
C3A—C2A—C1A120.31 (12)C3B—C2B—C1B120.43 (13)
C3A—C2A—H2AA119.8C3B—C2B—H2BA119.8
C1A—C2A—H2AA119.8C1B—C2B—H2BA119.8
C4A—C3A—C2A120.99 (12)C4B—C3B—C2B120.26 (13)
C4A—C3A—H3AA119.5C4B—C3B—H3BA119.9
C2A—C3A—H3AA119.5C2B—C3B—H3BA119.9
C3A—C4A—C5A119.06 (12)C5B—C4B—C3B119.55 (13)
C3A—C4A—H4AA120.5C5B—C4B—H4BA120.2
C5A—C4A—H4AA120.5C3B—C4B—H4BA120.2
C4A—C5A—C6A121.70 (12)C4B—C5B—C6B121.71 (13)
C4A—C5A—H5AA119.1C4B—C5B—H5BA119.1
C6A—C5A—H5AA119.1C6B—C5B—H5BA119.1
C5A—C6A—C1A118.61 (11)C5B—C6B—C1B118.27 (12)
C5A—C6A—C7A117.69 (11)C5B—C6B—C7B118.22 (12)
C1A—C6A—C7A123.68 (11)C1B—C6B—C7B123.51 (12)
N1A—C7A—N2A122.40 (12)N1B—C7B—N2B124.22 (12)
N1A—C7A—C6A119.40 (11)N1B—C7B—C6B117.67 (11)
N2A—C7A—C6A118.14 (12)N2B—C7B—C6B118.01 (11)
O2A—C8A—N3A123.82 (12)O2B—C8B—N3B124.54 (13)
O2A—C8A—C9A121.50 (11)O2B—C8B—C9B121.64 (13)
N3A—C8A—C9A114.68 (11)N3B—C8B—C9B113.82 (12)
C8A—C9A—H9AA109.5C8B—C9B—H9BA109.5
C8A—C9A—H9AB109.5C8B—C9B—H9BB109.5
H9AA—C9A—H9AB109.5H9BA—C9B—H9BB109.5
C8A—C9A—H9AC109.5C8B—C9B—H9BC109.5
H9AA—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BB—C9B—H9BC109.5
C8A—N3A—C1A—C2A5.0 (2)C8B—N3B—C1B—C2B31.7 (2)
C8A—N3A—C1A—C6A176.47 (12)C8B—N3B—C1B—C6B149.88 (14)
N3A—C1A—C2A—C3A178.69 (12)N3B—C1B—C2B—C3B179.89 (13)
C6A—C1A—C2A—C3A0.20 (19)C6B—C1B—C2B—C3B1.5 (2)
C1A—C2A—C3A—C4A0.7 (2)C1B—C2B—C3B—C4B1.5 (2)
C2A—C3A—C4A—C5A1.0 (2)C2B—C3B—C4B—C5B0.4 (2)
C3A—C4A—C5A—C6A0.4 (2)C3B—C4B—C5B—C6B0.7 (2)
C4A—C5A—C6A—C1A0.45 (19)C4B—C5B—C6B—C1B0.7 (2)
C4A—C5A—C6A—C7A177.74 (12)C4B—C5B—C6B—C7B178.83 (12)
C2A—C1A—C6A—C5A0.76 (18)C2B—C1B—C6B—C5B0.42 (19)
N3A—C1A—C6A—C5A179.30 (12)N3B—C1B—C6B—C5B178.85 (12)
C2A—C1A—C6A—C7A177.32 (12)C2B—C1B—C6B—C7B179.89 (12)
N3A—C1A—C6A—C7A1.22 (18)N3B—C1B—C6B—C7B1.69 (19)
O1A—N1A—C7A—N2A2.73 (17)O1B—N1B—C7B—N2B3.63 (17)
O1A—N1A—C7A—C6A179.87 (10)O1B—N1B—C7B—C6B179.80 (10)
C5A—C6A—C7A—N1A150.83 (12)C5B—C6B—C7B—N1B152.96 (12)
C1A—C6A—C7A—N1A31.08 (18)C1B—C6B—C7B—N1B27.57 (18)
C5A—C6A—C7A—N2A26.43 (17)C5B—C6B—C7B—N2B23.45 (18)
C1A—C6A—C7A—N2A151.66 (13)C1B—C6B—C7B—N2B156.02 (12)
C1A—N3A—C8A—O2A2.2 (2)C1B—N3B—C8B—O2B4.6 (2)
C1A—N3A—C8A—C9A177.71 (13)C1B—N3B—C8B—C9B174.30 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3A—H3NA···N1A0.883 (19)2.048 (19)2.7463 (18)135.2 (15)
N3B—H3NB···N1B0.86 (2)1.963 (19)2.6798 (17)139.7 (17)
N2B—H1NB···O2Bi0.88 (2)2.10 (2)2.9725 (17)173.0 (17)
N2A—H2NA···O2Aii0.87 (3)2.53 (2)3.3004 (17)149.0 (17)
N2A—H2NA···N2Biii0.87 (3)2.54 (2)3.2522 (18)139.6 (17)
N2B—H2NB···O2Aiv0.903 (19)2.12 (2)2.8900 (17)142.1 (16)
O1A—H1OA···O1B0.933 (19)1.844 (19)2.7733 (15)173.9 (18)
O1B—H1OB···N1Av0.951 (18)1.809 (18)2.7597 (15)177.0 (17)
C2A—H2AA···O2A0.952.222.8556 (17)123
C5A—H5AA···O2Bvi0.952.553.2773 (17)133
C9A—H9AC···N1B0.982.563.499 (2)160
C4A—H4AA···Cg2ii0.952.953.7524 (16)143
C3B—H3BA···Cg1vii0.952.883.6645 (17)141
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y, z; (v) x+2, y, z+1; (vi) x, y+1, z1; (vii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H11N3O2
Mr193.21
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.7813 (12), 9.5432 (13), 11.9770 (15)
α, β, γ (°)80.722 (2), 78.531 (2), 70.181 (2)
V3)920.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.20 × 0.05
Data collection
DiffractometerBruker APEX DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.965, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
12849, 4680, 3815
Rint0.031
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.07
No. of reflections4680
No. of parameters287
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3A—H3NA···N1A0.883 (19)2.048 (19)2.7463 (18)135.2 (15)
N3B—H3NB···N1B0.86 (2)1.963 (19)2.6798 (17)139.7 (17)
N2B—H1NB···O2Bi0.88 (2)2.10 (2)2.9725 (17)173.0 (17)
N2A—H2NA···O2Aii0.87 (3)2.53 (2)3.3004 (17)149.0 (17)
N2A—H2NA···N2Biii0.87 (3)2.54 (2)3.2522 (18)139.6 (17)
N2B—H2NB···O2Aiv0.903 (19)2.12 (2)2.8900 (17)142.1 (16)
O1A—H1OA···O1B0.933 (19)1.844 (19)2.7733 (15)173.9 (18)
O1B—H1OB···N1Av0.951 (18)1.809 (18)2.7597 (15)177.0 (17)
C2A—H2AA···O2A0.952.222.8556 (17)123
C5A—H5AA···O2Bvi0.952.553.2773 (17)133
C9A—H9AC···N1B0.982.563.499 (2)160
C4A—H4AA···Cg2ii0.952.953.7524 (16)143
C3B—H3BA···Cg1vii0.952.883.6645 (17)141
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y, z; (v) x+2, y, z+1; (vi) x, y+1, z1; (vii) x, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: F-8809-2012.

Acknowledgements

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/CIPPM813040). CWO also thanks the Malaysian Goverment and USM for the award of the post of Research Officer under Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClapp, L. B. (1976). In Advances in Heterocyclic Chemistry, Vol. 20, edited by A. R. Katritzky & A. J. Boulton, pp. 65–116. New York: Academic Press.  Google Scholar
First citationClapp, L. B. (1984). In Comprehensive Heterocyclic Chemistry, Vol. 6, edited by K. T. Potts, pp. 365–392. Oxford: Pergamon Press.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E., Varella, E. & Nicolaides, D. N. (2008). Curr. Pharm. Des. 14, 1001–1047.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJochims, J. C. (1996). In Comprehensive Heterocyclic Chemistry II, Vol. 52, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, pp. 179–228. Oxford: Pergamon Press.  Google Scholar
First citationKontogiorgis, C. A. & Hadjipavlou-Litina, D. J. (2002). Arzneim. Forsch. Drug. Res. 52, 205–210.  CAS Google Scholar
First citationMansuy, D. & Boucher, J. L. (2004). Free Radic. Biol. Med. 37, 1105–1121.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, P. G., Xian, M., Tang, X., Wu, X., Wen, Z., Cai, T. & Janczuk, A. J. (2002). Chem. Rev. 102, 1091–1134.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o370-o371
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds