organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­benzyl­hydrazin-1-ium chloride

aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 February 2013; accepted 8 February 2013; online 16 February 2013)

In the title salt, C14H17N2+·Cl, the central N atom is pyramidal (sum of bond angles = 330.9°) and there is a near orthogonal relationship between the benzene rings [dihedral angle = 89.95 (10)°]. The crystal packing features N—H⋯Cl hydrogen bonds, which lead to a supra­molecular undulating ribbon along the a axis comprising edge-shared eight-membered {⋯HNH⋯Cl}2 synthons. The chains are connected into layers in the ab plane by C—H⋯π inter­actions.

Related literature

For background to the synthesis of S-substituted dithio­carbaza­tes and their metal complexes, see: Ravoof et al. (2010[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkin, D. J. (2010). Transition Met. Chem. 35, 871-876.]); Tayamon et al. (2012[Tayamon, S., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1640-o1641.]). For the synthesis, see: Tarafder et al. (2000[Tarafder, M. T. A., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456-460.]). For the structure of the diphenyl analogue of the cation, see: Stender et al. (2003[Stender, M., Olmstead, M. M., Balch, A. L., Rios, D. & Attar, S. (2003). Dalton Trans. pp. 4282-4287.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17N2+·Cl

  • Mr = 248.75

  • Triclinic, [P \overline 1]

  • a = 5.6155 (4) Å

  • b = 9.9804 (7) Å

  • c = 11.7302 (9) Å

  • α = 79.532 (6)°

  • β = 78.508 (6)°

  • γ = 83.550 (6)°

  • V = 631.54 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.49 mm−1

  • T = 100 K

  • 0.14 × 0.09 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.72, Tmax = 0.95

  • 6961 measured reflections

  • 2407 independent reflections

  • 2076 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.129

  • S = 1.07

  • 2407 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯Cl1 0.94 (3) 2.30 (3) 3.2130 (18) 163 (2)
N2—H2N⋯Cl1i 0.97 (2) 2.21 (2) 3.1287 (19) 158 (2)
N2—H3N⋯Cl1ii 0.93 (3) 2.20 (3) 3.1235 (18) 172 (2)
C8—H8ACg1iii 0.99 2.64 3.542 (2) 152
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of efforts to explore the structure-activity relationships of new S-substituted dithiocarbazates and their metal complexes (Ravoof et al., 2010; Tayamon et al., 2012), the title salt (I) was obtained during an attempt to prepare the benzylhydrazine analogue of S-benzyldithiocarbazate.

The asymmetric unit of salt (I) comprises a 2,2-dibenzylhydrazinium cation and a chloride anion, Fig. 1. The sum of the angles about the N1 atom approximates 331° confirming its pyramidal nature. The dihedral angle between the phenyl rings is 89.95 (10)°, thereby displaying an orthogonal relationship. Hydrazinium cations are comparatively rare in the crystallographic literature with the most closely related structure being that of the diphenyl analogue, isolated as its [Au(CN)2-] salt monohydrate (Stender et al., 2003). The N—N distance in this structure of 1.453 (5) Å is indistinguishable from that in (I) of 1.453 (2) Å.

The crystal packing is dominated by N—H···Cl hydrogen bonds, Table 1. Each ammonium—H atom forms a hydrogen atom with a chloride to generate an undulating ribbon along the a axis comprising edge-shared eight-membered {···HNH···Cl}2 synthons, Fig. 2. These are connected into layers in the ab plane by C—H···π interactions, Fig. 3 and Table 2. Layers stack along the c axis with no specific interactions between them.

Related literature top

For background to the synthesis of S-substituted dithiocarbazates and their metal complexes, see: Ravoof et al. (2010); Tayamon et al. (2012). For the synthesis, see: Tarafder et al. (2000). For the structure of the diphenyl analogue of the cation, see: Stender et al. (2003).

Experimental top

The title compound was isolated as a side-product during the synthesis of a benzylhydrazine analogue of S-benzyldithiocarbazate using a procedure adapted from Tarafder et al. (2000). Potassium hydroxide (0.02 mol, 1.12 g) and benzylhydrazine (0.02 mol, 3.9 g) were each completely dissolved in chloroform (20 ml). The benzylhydrazine solution was added to the cooled mixture of potassium hydroxide. The combined solution was kept in an ice-salt bath while carbon disulfide (0.02 mol, 1.52 g) was added with constant stirring over one hour. Benzylchloride (0.02 mol, 2.3 ml) was added drop-wise to the above mixture with vigorous stirring. The initial precipitate was removed by filtration and then diethyl ether was added to the solution. A precipitate (0.63 g) was filtered from the solution after one day. Pale-yellow crystals of the title salt (M.pt > 583 K) were harvested from the filtrate on the second day (0.30 g).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Uequiv(C). The nitrogen-bound H-atoms were refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of salt (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the undulating supramolecular chain in (I) mediated by N—H···Cl hydrogen bonds (blue dashed lines) along the a axis.
[Figure 3] Fig. 3. A view of the crystal packing in projection down the a axis. The N—H···Cl and C—H···π interactions are shown as blue and purple dashed lines, respectively.
2,2-Dibenzylhydrazin-1-ium chloride top
Crystal data top
C14H17N2+·ClZ = 2
Mr = 248.75F(000) = 264
Triclinic, P1Dx = 1.308 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 5.6155 (4) ÅCell parameters from 3230 reflections
b = 9.9804 (7) Åθ = 4–71°
c = 11.7302 (9) ŵ = 2.49 mm1
α = 79.532 (6)°T = 100 K
β = 78.508 (6)°Plate, colourless
γ = 83.550 (6)°0.14 × 0.09 × 0.02 mm
V = 631.54 (8) Å3
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2407 independent reflections
Radiation source: fine-focus sealed tube2076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.1952 pixels mm-1θmax = 71.5°, θmin = 3.9°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1211
Tmin = 0.72, Tmax = 0.95l = 1414
6961 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.079P)2 + 0.1383P]
where P = (Fo2 + 2Fc2)/3
2407 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H17N2+·Clγ = 83.550 (6)°
Mr = 248.75V = 631.54 (8) Å3
Triclinic, P1Z = 2
a = 5.6155 (4) ÅCu Kα radiation
b = 9.9804 (7) ŵ = 2.49 mm1
c = 11.7302 (9) ÅT = 100 K
α = 79.532 (6)°0.14 × 0.09 × 0.02 mm
β = 78.508 (6)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2407 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2076 reflections with I > 2σ(I)
Tmin = 0.72, Tmax = 0.95Rint = 0.034
6961 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.45 e Å3
2407 reflectionsΔρmin = 0.24 e Å3
166 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.84514 (8)0.01710 (5)0.33994 (4)0.02664 (19)
N10.2435 (3)0.28342 (17)0.37150 (14)0.0250 (4)
N20.2870 (3)0.13600 (18)0.40100 (16)0.0248 (4)
H1n0.444 (5)0.104 (3)0.367 (2)0.033 (6)*
H2n0.264 (4)0.109 (3)0.486 (2)0.034 (6)*
H3n0.167 (5)0.095 (3)0.379 (2)0.041 (7)*
C10.2203 (4)0.3190 (2)0.24543 (18)0.0279 (5)
H1A0.18430.41910.22710.033*
H1B0.07820.27540.23460.033*
C20.4393 (4)0.2781 (2)0.15639 (17)0.0250 (4)
C30.6219 (4)0.3662 (2)0.10779 (19)0.0309 (5)
H30.60660.45510.12800.037*
C40.8266 (4)0.3253 (2)0.02986 (19)0.0340 (5)
H40.95000.38630.00290.041*
C50.8508 (4)0.1958 (2)0.00005 (19)0.0313 (5)
H50.99080.16760.05290.038*
C60.6703 (4)0.1077 (2)0.04771 (18)0.0301 (5)
H60.68710.01850.02790.036*
C70.4638 (4)0.1489 (2)0.12462 (18)0.0281 (5)
H70.33890.08840.15560.034*
C80.4435 (4)0.3486 (2)0.40018 (18)0.0269 (5)
H8A0.42790.44810.37090.032*
H8B0.60210.31070.36010.032*
C90.4366 (4)0.3245 (2)0.53131 (18)0.0244 (4)
C100.6359 (4)0.2601 (2)0.57891 (19)0.0282 (5)
H100.77790.23020.52810.034*
C110.6301 (4)0.2389 (2)0.70000 (19)0.0285 (5)
H110.76730.19440.73130.034*
C120.4247 (4)0.2827 (2)0.77478 (18)0.0269 (5)
H120.42070.26930.85740.032*
C130.2239 (4)0.3465 (2)0.72795 (18)0.0275 (5)
H130.08170.37590.77900.033*
C140.2303 (4)0.3675 (2)0.60783 (18)0.0259 (4)
H140.09250.41170.57690.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0242 (3)0.0312 (3)0.0251 (3)0.00283 (19)0.00452 (19)0.0057 (2)
N10.0277 (9)0.0256 (9)0.0217 (9)0.0021 (7)0.0038 (7)0.0047 (7)
N20.0237 (10)0.0277 (10)0.0233 (9)0.0037 (7)0.0040 (7)0.0041 (7)
C10.0296 (11)0.0293 (11)0.0236 (10)0.0006 (9)0.0047 (8)0.0032 (8)
C20.0274 (11)0.0294 (11)0.0186 (9)0.0006 (8)0.0065 (8)0.0035 (8)
C30.0404 (13)0.0289 (11)0.0240 (10)0.0048 (9)0.0060 (9)0.0048 (9)
C40.0356 (12)0.0416 (14)0.0242 (11)0.0113 (10)0.0013 (9)0.0035 (9)
C50.0276 (11)0.0420 (13)0.0237 (10)0.0012 (9)0.0037 (8)0.0072 (9)
C60.0356 (12)0.0308 (12)0.0247 (10)0.0016 (9)0.0072 (9)0.0073 (9)
C70.0299 (11)0.0313 (11)0.0236 (10)0.0043 (9)0.0058 (8)0.0037 (9)
C80.0278 (11)0.0293 (11)0.0234 (10)0.0066 (8)0.0010 (8)0.0054 (8)
C90.0249 (10)0.0247 (10)0.0243 (10)0.0071 (8)0.0016 (8)0.0057 (8)
C100.0245 (11)0.0316 (11)0.0279 (11)0.0033 (8)0.0013 (8)0.0092 (9)
C110.0266 (11)0.0279 (11)0.0320 (11)0.0023 (8)0.0076 (9)0.0052 (9)
C120.0310 (11)0.0291 (11)0.0215 (10)0.0068 (9)0.0045 (8)0.0039 (8)
C130.0268 (11)0.0280 (11)0.0264 (11)0.0020 (8)0.0001 (8)0.0062 (8)
C140.0250 (10)0.0256 (11)0.0268 (10)0.0017 (8)0.0047 (8)0.0039 (8)
Geometric parameters (Å, º) top
N1—N21.453 (2)C6—C71.392 (3)
N1—C81.481 (3)C6—H60.9500
N1—C11.485 (3)C7—H70.9500
N2—H1n0.94 (3)C8—C91.506 (3)
N2—H2n0.97 (3)C8—H8A0.9900
N2—H3n0.93 (3)C8—H8B0.9900
C1—C21.516 (3)C9—C101.391 (3)
C1—H1A0.9900C9—C141.395 (3)
C1—H1B0.9900C10—C111.392 (3)
C2—C71.391 (3)C10—H100.9500
C2—C31.391 (3)C11—C121.383 (3)
C3—C41.391 (3)C11—H110.9500
C3—H30.9500C12—C131.392 (3)
C4—C51.385 (3)C12—H120.9500
C4—H40.9500C13—C141.380 (3)
C5—C61.381 (3)C13—H130.9500
C5—H50.9500C14—H140.9500
N2—N1—C8108.71 (15)C7—C6—H6119.8
N2—N1—C1108.85 (15)C2—C7—C6120.4 (2)
C8—N1—C1113.32 (16)C2—C7—H7119.8
N1—N2—H1n112.5 (16)C6—C7—H7119.8
N1—N2—H2n110.1 (14)N1—C8—C9110.82 (17)
H1n—N2—H2n109 (2)N1—C8—H8A109.5
N1—N2—H3n108.9 (16)C9—C8—H8A109.5
H1n—N2—H3n112 (2)N1—C8—H8B109.5
H2n—N2—H3n104 (2)C9—C8—H8B109.5
N1—C1—C2116.42 (16)H8A—C8—H8B108.1
N1—C1—H1A108.2C10—C9—C14118.43 (19)
C2—C1—H1A108.2C10—C9—C8120.94 (18)
N1—C1—H1B108.2C14—C9—C8120.63 (18)
C2—C1—H1B108.2C11—C10—C9120.91 (19)
H1A—C1—H1B107.3C11—C10—H10119.5
C7—C2—C3118.77 (19)C9—C10—H10119.5
C7—C2—C1119.93 (19)C12—C11—C10120.03 (19)
C3—C2—C1121.27 (18)C12—C11—H11120.0
C4—C3—C2120.7 (2)C10—C11—H11120.0
C4—C3—H3119.7C11—C12—C13119.43 (19)
C2—C3—H3119.7C11—C12—H12120.3
C5—C4—C3120.1 (2)C13—C12—H12120.3
C5—C4—H4119.9C14—C13—C12120.40 (18)
C3—C4—H4119.9C14—C13—H13119.8
C6—C5—C4119.7 (2)C12—C13—H13119.8
C6—C5—H5120.2C13—C14—C9120.80 (19)
C4—C5—H5120.2C13—C14—H14119.6
C5—C6—C7120.4 (2)C9—C14—H14119.6
C5—C6—H6119.8
N2—N1—C1—C260.2 (2)N2—N1—C8—C966.5 (2)
C8—N1—C1—C260.9 (2)C1—N1—C8—C9172.31 (16)
N1—C1—C2—C787.6 (2)N1—C8—C9—C10122.1 (2)
N1—C1—C2—C390.4 (2)N1—C8—C9—C1458.4 (3)
C7—C2—C3—C40.7 (3)C14—C9—C10—C110.0 (3)
C1—C2—C3—C4177.35 (19)C8—C9—C10—C11179.45 (19)
C2—C3—C4—C50.2 (3)C9—C10—C11—C120.3 (3)
C3—C4—C5—C60.2 (3)C10—C11—C12—C130.7 (3)
C4—C5—C6—C70.5 (3)C11—C12—C13—C140.7 (3)
C3—C2—C7—C61.5 (3)C12—C13—C14—C90.4 (3)
C1—C2—C7—C6176.61 (18)C10—C9—C14—C130.0 (3)
C5—C6—C7—C21.4 (3)C8—C9—C14—C13179.51 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N···Cl10.94 (3)2.30 (3)3.2130 (18)163 (2)
N2—H2N···Cl1i0.97 (2)2.21 (2)3.1287 (19)158 (2)
N2—H3N···Cl1ii0.93 (3)2.20 (3)3.1235 (18)172 (2)
C8—H8A···Cg1iii0.992.643.542 (2)152
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H17N2+·Cl
Mr248.75
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.6155 (4), 9.9804 (7), 11.7302 (9)
α, β, γ (°)79.532 (6), 78.508 (6), 83.550 (6)
V3)631.54 (8)
Z2
Radiation typeCu Kα
µ (mm1)2.49
Crystal size (mm)0.14 × 0.09 × 0.02
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.72, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
6961, 2407, 2076
Rint0.034
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.129, 1.07
No. of reflections2407
No. of parameters166
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.24

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N···Cl10.94 (3)2.30 (3)3.2130 (18)163 (2)
N2—H2N···Cl1i0.97 (2)2.21 (2)3.1287 (19)158 (2)
N2—H3N···Cl1ii0.93 (3)2.20 (3)3.1235 (18)172 (2)
C8—H8A···Cg1iii0.992.643.542 (2)152
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: crouse@pc.jaring.my.

Acknowledgements

Support for the project came from Universiti Putra Malaysia (UPM) through the purchase of the diffractometer and under their Research University Grant Scheme (RUGS No. 9174000), the Malaysian Ministry of Science, Technology and Innovation (grant No. 09–02-04–0752-EA001) and the Malaysian Fundamental Research Grant Scheme (FRGS No. 01–13-11–986FR). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkin, D. J. (2010). Transition Met. Chem. 35, 871–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStender, M., Olmstead, M. M., Balch, A. L., Rios, D. & Attar, S. (2003). Dalton Trans. pp. 4282–4287.  Web of Science CSD CrossRef Google Scholar
First citationTarafder, M. T. A., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456–460.  Web of Science CrossRef CAS Google Scholar
First citationTayamon, S., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1640–o1641.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds