metal-organic compounds
Poly[aqua(μ2-4,4′-bipyridine-κ2N:N′)(ethane-1,2-diol-κO)(μ2-sulfato-κ2O:O′)nickel(II)]
aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zklong@tom.com
The title compound, [Ni(SO4)(C10H8N2)(C2H6O2)(H2O)]n, contains two crystallographically unique NiII atoms, each lying on a twofold rotation axis and having a slightly distorted octahedral environment. It is isotypic with the previously reported CuII analog [Zhong et al. (2011). Acta Cryst. C67, m62–m64]. One NiII atom is coordinated by two N atoms from two bridging 4,4′-bipyridine (4,4′-bipy) ligands, two O atoms from two sulfate ions and two aqua O atoms. The second NiII atom is surrounded by two N atoms from 4,4′-bipy ligands and four O atoms, two from bridging sulfate ions and from two ethane-1,2-diol ligands. The sulfate anion acts as a bridging ligand, linking adjacent NiII atoms, leading to the formation of linear ⋯Ni1—Ni2—Ni1—Ni2⋯ chains along the a-axis direction. Adjacent chains are further bridged by 4,4′-bipy ligands, resulting in a two-dimensional layered polymer parallel to (001). In the crystal, the polymeric layers are linked by extensive O—H⋯O hydrogen-bonding interactions involving the O atoms of the water molecules and the ethane-1,2-diol molecules, resulting in a three-dimensional supramolecular network.
Related literature
For Ni-(4,4′-bipy) complexes with perchlorate, citraconate or phthalate anions and a water molecule as a second ligand, see: Yang et al. (2003); Kopf et al. (2005); Wang et al. (2006). For an isotypic structure, see: Zhong et al. (2011). For background to coordination polymers, see: Dietzel et al. (2005); Robin & Fromm (2006); Sarma et al. (2009); Zhang et al. (2010).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrystalClear (Rigaku, 2007); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536813003772/zq2195sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813003772/zq2195Isup2.hkl
Green block-shaped crystals of the title compound were obtained by a procedure similar to that described previously in Zhong et al. (2011) with NiSO4.7H2O instead of CuSO4.5H2O.
All non-hydrogen atoms were refined anisotropically. The aromatic H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of ethane-1,2-diol were geometrically placed and refined using a riding model [O—H = 0.82 Å and C—H = 0.97 Å; Uiso(H) = 1.5Ueq(O) and Uiso(H) = 1.2Ueq(C)]. The water H atoms were either located in difference Fourier maps or placed in calculated positions so as to form a reasonable hydrogen-bond networks, as far as possible. Initially, their positions were refined with tight restraints on the O—H and H···H distances [0.85 (1) and 1.35 (1) Å, respectively] in order to ensure a reasonable geometry. Then they were constrained to ride on their parent O atom [Uiso(H) = 1.5Ueq(O)].
Data collection: CrystalClear (Rigaku, 2007); cell
CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ni(SO4)(C10H8N2)(C2H6O2)(H2O)] | F(000) = 1616 |
Mr = 391.04 | Dx = 1.728 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 6950 reflections |
a = 11.022 (2) Å | θ = 3.3–27.5° |
b = 22.606 (5) Å | µ = 1.47 mm−1 |
c = 12.123 (2) Å | T = 223 K |
β = 95.65 (3)° | Block, green |
V = 3005.9 (10) Å3 | 0.40 × 0.35 × 0.10 mm |
Z = 8 |
Rigaku Mercury CCD diffractometer | 3420 independent reflections |
Radiation source: fine-focus sealed tube | 2885 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.024 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 27.5°, θmin = 3.3° |
ω scans | h = −14→11 |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | k = −23→29 |
Tmin = 0.743, Tmax = 1.000 | l = −14→15 |
8555 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.0501P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3420 reflections | Δρmax = 0.56 e Å−3 |
214 parameters | Δρmin = −0.41 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0014 (2) |
[Ni(SO4)(C10H8N2)(C2H6O2)(H2O)] | V = 3005.9 (10) Å3 |
Mr = 391.04 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 11.022 (2) Å | µ = 1.47 mm−1 |
b = 22.606 (5) Å | T = 223 K |
c = 12.123 (2) Å | 0.40 × 0.35 × 0.10 mm |
β = 95.65 (3)° |
Rigaku Mercury CCD diffractometer | 3420 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 2885 reflections with I > 2σ(I) |
Tmin = 0.743, Tmax = 1.000 | Rint = 0.024 |
8555 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.56 e Å−3 |
3420 reflections | Δρmin = −0.41 e Å−3 |
214 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.379715 (14) | 0.2500 | 0.01501 (11) | |
Ni2 | 0.0000 | 0.378572 (13) | 0.2500 | 0.01544 (11) | |
S1 | 0.23450 (4) | 0.39830 (2) | 0.10920 (4) | 0.01777 (13) | |
O1 | 0.31124 (12) | 0.37951 (6) | 0.21319 (12) | 0.0197 (3) | |
O1W | 0.47576 (13) | 0.37522 (5) | 0.41787 (12) | 0.0234 (3) | |
H1WA | 0.4323 | 0.3957 | 0.4577 | 0.035* | |
H1WB | 0.5451 | 0.3772 | 0.4551 | 0.035* | |
O2 | 0.10883 (12) | 0.37748 (5) | 0.11907 (11) | 0.0194 (3) | |
O3 | 0.28195 (13) | 0.36860 (7) | 0.01488 (13) | 0.0289 (4) | |
O4 | 0.23754 (14) | 0.46204 (6) | 0.09809 (14) | 0.0360 (4) | |
O5 | 0.15466 (13) | 0.37609 (6) | 0.36000 (12) | 0.0233 (3) | |
H5B | 0.2169 | 0.3765 | 0.3282 | 0.028* | |
O6 | 0.30832 (13) | 0.43173 (6) | 0.52663 (13) | 0.0329 (4) | |
H6A | 0.2989 | 0.4663 | 0.5447 | 0.049* | |
N1 | 0.5000 | 0.28676 (10) | 0.2500 | 0.0188 (5) | |
N2 | 0.5000 | 0.47137 (10) | 0.2500 | 0.0182 (5) | |
N3 | 0.0000 | 0.28565 (10) | 0.2500 | 0.0213 (5) | |
N4 | 0.0000 | 0.47128 (10) | 0.2500 | 0.0185 (5) | |
C1 | 0.5000 | 0.16183 (12) | 0.2500 | 0.0188 (6) | |
C2 | 0.43554 (19) | 0.19444 (9) | 0.16563 (17) | 0.0243 (4) | |
H2A | 0.3912 | 0.1750 | 0.1072 | 0.029* | |
C3 | 0.43763 (19) | 0.25555 (9) | 0.16891 (18) | 0.0245 (4) | |
H3A | 0.3935 | 0.2762 | 0.1119 | 0.029* | |
C4 | 0.58066 (18) | 0.50219 (9) | 0.19796 (17) | 0.0237 (4) | |
H4A | 0.6383 | 0.4815 | 0.1622 | 0.028* | |
C5 | 0.58292 (18) | 0.56309 (8) | 0.19449 (17) | 0.0233 (4) | |
H5A | 0.6395 | 0.5825 | 0.1553 | 0.028* | |
C6 | 0.5000 | 0.59546 (12) | 0.2500 | 0.0200 (6) | |
C7 | 0.0000 | 0.16101 (12) | 0.2500 | 0.0215 (6) | |
C8 | 0.0906 (2) | 0.19347 (9) | 0.2077 (2) | 0.0426 (7) | |
H8A | 0.1540 | 0.1741 | 0.1774 | 0.051* | |
C9 | 0.0880 (2) | 0.25446 (10) | 0.2101 (2) | 0.0419 (6) | |
H9A | 0.1515 | 0.2749 | 0.1821 | 0.050* | |
C10 | 0.0662 (2) | 0.50282 (9) | 0.32806 (18) | 0.0294 (5) | |
H10A | 0.1126 | 0.4824 | 0.3839 | 0.035* | |
C11 | 0.0692 (2) | 0.56365 (9) | 0.33016 (18) | 0.0282 (5) | |
H11A | 0.1180 | 0.5831 | 0.3857 | 0.034* | |
C12 | 0.0000 | 0.59610 (12) | 0.2500 | 0.0187 (5) | |
C13 | 0.18041 (19) | 0.35033 (9) | 0.46738 (18) | 0.0274 (5) | |
H13A | 0.2502 | 0.3242 | 0.4675 | 0.033* | |
H13B | 0.1111 | 0.3271 | 0.4854 | 0.033* | |
C14 | 0.2067 (2) | 0.39774 (10) | 0.55251 (19) | 0.0317 (5) | |
H14A | 0.1360 | 0.4232 | 0.5542 | 0.038* | |
H14B | 0.2239 | 0.3800 | 0.6252 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01408 (18) | 0.01323 (17) | 0.0177 (2) | 0.000 | 0.00165 (14) | 0.000 |
Ni2 | 0.01432 (18) | 0.01335 (18) | 0.0185 (2) | 0.000 | 0.00093 (14) | 0.000 |
S1 | 0.0155 (2) | 0.0190 (2) | 0.0187 (2) | −0.00140 (18) | 0.00098 (17) | 0.00331 (18) |
O1 | 0.0152 (7) | 0.0260 (7) | 0.0178 (7) | 0.0001 (5) | 0.0010 (6) | 0.0034 (5) |
O1W | 0.0197 (7) | 0.0294 (8) | 0.0213 (8) | 0.0027 (6) | 0.0036 (6) | −0.0021 (6) |
O2 | 0.0146 (6) | 0.0232 (7) | 0.0202 (7) | −0.0016 (5) | 0.0009 (6) | −0.0005 (5) |
O3 | 0.0194 (7) | 0.0480 (10) | 0.0199 (8) | 0.0001 (6) | 0.0041 (6) | −0.0026 (6) |
O4 | 0.0342 (8) | 0.0204 (7) | 0.0514 (11) | −0.0054 (6) | −0.0058 (8) | 0.0132 (7) |
O5 | 0.0181 (7) | 0.0333 (8) | 0.0185 (7) | 0.0006 (6) | 0.0023 (6) | 0.0034 (6) |
O6 | 0.0302 (8) | 0.0303 (8) | 0.0389 (9) | −0.0006 (6) | 0.0072 (7) | −0.0136 (7) |
N1 | 0.0188 (11) | 0.0154 (11) | 0.0217 (12) | 0.000 | −0.0005 (9) | 0.000 |
N2 | 0.0180 (11) | 0.0151 (10) | 0.0213 (12) | 0.000 | 0.0012 (9) | 0.000 |
N3 | 0.0220 (11) | 0.0133 (10) | 0.0288 (13) | 0.000 | 0.0041 (10) | 0.000 |
N4 | 0.0178 (11) | 0.0170 (11) | 0.0206 (12) | 0.000 | 0.0021 (9) | 0.000 |
C1 | 0.0193 (13) | 0.0183 (13) | 0.0193 (14) | 0.000 | 0.0043 (11) | 0.000 |
C2 | 0.0290 (10) | 0.0186 (9) | 0.0235 (11) | −0.0018 (8) | −0.0060 (9) | −0.0013 (8) |
C3 | 0.0284 (10) | 0.0197 (10) | 0.0240 (11) | −0.0003 (9) | −0.0038 (9) | 0.0012 (8) |
C4 | 0.0241 (10) | 0.0215 (10) | 0.0259 (11) | −0.0009 (8) | 0.0050 (9) | −0.0019 (8) |
C5 | 0.0241 (10) | 0.0202 (9) | 0.0268 (11) | −0.0009 (8) | 0.0076 (9) | 0.0021 (8) |
C6 | 0.0220 (13) | 0.0174 (13) | 0.0201 (14) | 0.000 | −0.0003 (11) | 0.000 |
C7 | 0.0230 (14) | 0.0190 (13) | 0.0226 (15) | 0.000 | 0.0021 (11) | 0.000 |
C8 | 0.0407 (13) | 0.0191 (10) | 0.0735 (19) | 0.0030 (10) | 0.0328 (14) | −0.0012 (12) |
C9 | 0.0388 (13) | 0.0214 (10) | 0.0711 (19) | −0.0001 (10) | 0.0327 (13) | 0.0020 (12) |
C10 | 0.0376 (12) | 0.0189 (10) | 0.0287 (12) | 0.0023 (9) | −0.0120 (10) | −0.0003 (9) |
C11 | 0.0351 (12) | 0.0214 (10) | 0.0254 (11) | −0.0019 (9) | −0.0106 (9) | −0.0030 (8) |
C12 | 0.0191 (13) | 0.0158 (12) | 0.0217 (14) | 0.000 | 0.0041 (11) | 0.000 |
C13 | 0.0284 (11) | 0.0268 (11) | 0.0265 (11) | −0.0012 (9) | 0.0003 (9) | 0.0094 (9) |
C14 | 0.0303 (11) | 0.0416 (13) | 0.0240 (11) | −0.0020 (10) | 0.0066 (9) | −0.0008 (10) |
Ni1—N2 | 2.072 (2) | C1—C2i | 1.397 (2) |
Ni1—O1W | 2.0809 (15) | C1—C2 | 1.397 (2) |
Ni1—O1Wi | 2.0809 (15) | C1—C12iii | 1.486 (4) |
Ni1—O1 | 2.0844 (14) | C2—C3 | 1.382 (3) |
Ni1—O1i | 2.0844 (14) | C2—H2A | 0.9300 |
Ni1—N1 | 2.101 (2) | C3—H3A | 0.9300 |
Ni2—O5 | 2.0591 (15) | C4—C5 | 1.378 (3) |
Ni2—O5ii | 2.0591 (15) | C4—H4A | 0.9300 |
Ni2—O2ii | 2.0817 (15) | C5—C6 | 1.395 (2) |
Ni2—O2 | 2.0817 (15) | C5—H5A | 0.9300 |
Ni2—N4 | 2.096 (2) | C6—C5i | 1.395 (2) |
Ni2—N3 | 2.101 (2) | C6—C7iv | 1.482 (4) |
S1—O4 | 1.4480 (15) | C7—C8 | 1.378 (3) |
S1—O3 | 1.4660 (16) | C7—C8ii | 1.378 (3) |
S1—O2 | 1.4788 (14) | C7—C6v | 1.482 (4) |
S1—O1 | 1.5084 (15) | C8—C9 | 1.379 (3) |
O1W—H1WA | 0.8500 | C8—H8A | 0.9300 |
O1W—H1WB | 0.8500 | C9—H9A | 0.9300 |
O5—C13 | 1.429 (2) | C10—C11 | 1.376 (3) |
O5—H5B | 0.8200 | C10—H10A | 0.9300 |
O6—C14 | 1.419 (3) | C11—C12 | 1.385 (2) |
O6—H6A | 0.8200 | C11—H11A | 0.9300 |
N1—C3 | 1.343 (2) | C12—C11ii | 1.385 (2) |
N1—C3i | 1.343 (2) | C12—C1vi | 1.486 (4) |
N2—C4i | 1.336 (2) | C13—C14 | 1.496 (3) |
N2—C4 | 1.336 (2) | C13—H13A | 0.9700 |
N3—C9ii | 1.328 (3) | C13—H13B | 0.9700 |
N3—C9 | 1.328 (3) | C14—H14A | 0.9700 |
N4—C10 | 1.342 (2) | C14—H14B | 0.9700 |
N4—C10ii | 1.342 (2) | ||
N2—Ni1—O1W | 92.80 (4) | C9—N3—Ni2 | 122.06 (13) |
N2—Ni1—O1Wi | 92.80 (4) | C10—N4—C10ii | 115.8 (2) |
O1W—Ni1—O1Wi | 174.41 (7) | C10—N4—Ni2 | 122.10 (12) |
N2—Ni1—O1 | 90.13 (4) | C10ii—N4—Ni2 | 122.10 (12) |
O1W—Ni1—O1 | 89.30 (6) | C2i—C1—C2 | 116.3 (2) |
O1Wi—Ni1—O1 | 90.69 (6) | C2i—C1—C12iii | 121.85 (12) |
N2—Ni1—O1i | 90.13 (4) | C2—C1—C12iii | 121.85 (12) |
O1W—Ni1—O1i | 90.69 (6) | C3—C2—C1 | 120.03 (18) |
O1Wi—Ni1—O1i | 89.30 (6) | C3—C2—H2A | 120.0 |
O1—Ni1—O1i | 179.74 (7) | C1—C2—H2A | 120.0 |
N2—Ni1—N1 | 180.0 | N1—C3—C2 | 123.50 (18) |
O1W—Ni1—N1 | 87.20 (4) | N1—C3—H3A | 118.2 |
O1Wi—Ni1—N1 | 87.20 (4) | C2—C3—H3A | 118.2 |
O1—Ni1—N1 | 89.87 (4) | N2—C4—C5 | 123.4 (2) |
O1i—Ni1—N1 | 89.87 (4) | N2—C4—H4A | 118.3 |
O5—Ni2—O5ii | 176.88 (7) | C5—C4—H4A | 118.3 |
O5—Ni2—O2ii | 90.48 (6) | C4—C5—C6 | 119.7 (2) |
O5ii—Ni2—O2ii | 89.49 (6) | C4—C5—H5A | 120.2 |
O5—Ni2—O2 | 89.49 (6) | C6—C5—H5A | 120.2 |
O5ii—Ni2—O2 | 90.48 (6) | C5i—C6—C5 | 116.7 (3) |
O2ii—Ni2—O2 | 178.64 (7) | C5i—C6—C7iv | 121.66 (13) |
O5—Ni2—N4 | 91.56 (4) | C5—C6—C7iv | 121.66 (13) |
O5ii—Ni2—N4 | 91.56 (4) | C8—C7—C8ii | 115.6 (3) |
O2ii—Ni2—N4 | 90.68 (3) | C8—C7—C6v | 122.18 (13) |
O2—Ni2—N4 | 90.68 (3) | C8ii—C7—C6v | 122.18 (13) |
O5—Ni2—N3 | 88.44 (4) | C7—C8—C9 | 120.5 (2) |
O5ii—Ni2—N3 | 88.44 (4) | C7—C8—H8A | 119.8 |
O2ii—Ni2—N3 | 89.32 (3) | C9—C8—H8A | 119.8 |
O2—Ni2—N3 | 89.32 (3) | N3—C9—C8 | 123.7 (2) |
N4—Ni2—N3 | 180.0 | N3—C9—H9A | 118.1 |
O4—S1—O3 | 111.71 (10) | C8—C9—H9A | 118.1 |
O4—S1—O2 | 110.77 (8) | N4—C10—C11 | 123.70 (19) |
O3—S1—O2 | 109.04 (9) | N4—C10—H10A | 118.2 |
O4—S1—O1 | 109.99 (8) | C11—C10—H10A | 118.2 |
O3—S1—O1 | 108.01 (8) | C10—C11—C12 | 120.37 (19) |
O2—S1—O1 | 107.18 (8) | C10—C11—H11A | 119.8 |
S1—O1—Ni1 | 130.10 (9) | C12—C11—H11A | 119.8 |
Ni1—O1W—H1WA | 131.5 | C11ii—C12—C11 | 116.1 (3) |
Ni1—O1W—H1WB | 108.7 | C11ii—C12—C1vi | 121.97 (13) |
H1WA—O1W—H1WB | 101.4 | C11—C12—C1vi | 121.97 (13) |
S1—O2—Ni2 | 132.26 (9) | O5—C13—C14 | 110.12 (17) |
C13—O5—Ni2 | 132.74 (12) | O5—C13—H13A | 109.6 |
C13—O5—H5B | 109.5 | C14—C13—H13A | 109.6 |
Ni2—O5—H5B | 111.9 | O5—C13—H13B | 109.6 |
C14—O6—H6A | 109.5 | C14—C13—H13B | 109.6 |
C3—N1—C3i | 116.6 (2) | H13A—C13—H13B | 108.2 |
C3—N1—Ni1 | 121.69 (12) | O6—C14—C13 | 109.80 (18) |
C3i—N1—Ni1 | 121.69 (12) | O6—C14—H14A | 109.7 |
C4i—N2—C4 | 117.1 (2) | C13—C14—H14A | 109.7 |
C4i—N2—Ni1 | 121.44 (12) | O6—C14—H14B | 109.7 |
C4—N2—Ni1 | 121.44 (12) | C13—C14—H14B | 109.7 |
C9ii—N3—C9 | 115.9 (3) | H14A—C14—H14B | 108.2 |
C9ii—N3—Ni2 | 122.06 (13) | ||
O4—S1—O1—Ni1 | −70.98 (12) | O2ii—Ni2—N3—C9ii | 24.04 (16) |
O3—S1—O1—Ni1 | 51.16 (12) | O2—Ni2—N3—C9ii | −155.96 (16) |
O2—S1—O1—Ni1 | 168.52 (9) | O5—Ni2—N3—C9 | −65.47 (16) |
N2—Ni1—O1—S1 | 68.28 (10) | O5ii—Ni2—N3—C9 | 114.53 (16) |
O1W—Ni1—O1—S1 | 161.08 (10) | O2ii—Ni2—N3—C9 | −155.96 (16) |
O1Wi—Ni1—O1—S1 | −24.52 (10) | O2—Ni2—N3—C9 | 24.04 (16) |
N1—Ni1—O1—S1 | −111.72 (10) | O5—Ni2—N4—C10 | −15.81 (13) |
O4—S1—O2—Ni2 | −76.72 (13) | O5ii—Ni2—N4—C10 | 164.19 (13) |
O3—S1—O2—Ni2 | 159.96 (10) | O2ii—Ni2—N4—C10 | 74.68 (13) |
O1—S1—O2—Ni2 | 43.28 (12) | O2—Ni2—N4—C10 | −105.32 (13) |
O5—Ni2—O2—S1 | −27.71 (11) | O5—Ni2—N4—C10ii | 164.19 (13) |
O5ii—Ni2—O2—S1 | 155.42 (10) | O5ii—Ni2—N4—C10ii | −15.81 (13) |
N4—Ni2—O2—S1 | 63.85 (10) | O2ii—Ni2—N4—C10ii | −105.32 (13) |
N3—Ni2—O2—S1 | −116.15 (10) | O2—Ni2—N4—C10ii | 74.68 (13) |
O2ii—Ni2—O5—C13 | 31.31 (16) | C2i—C1—C2—C3 | −0.18 (15) |
O2—Ni2—O5—C13 | −147.33 (16) | C12iii—C1—C2—C3 | 179.82 (15) |
N4—Ni2—O5—C13 | 122.01 (16) | C3i—N1—C3—C2 | −0.20 (16) |
N3—Ni2—O5—C13 | −57.99 (16) | Ni1—N1—C3—C2 | 179.80 (16) |
O1W—Ni1—N1—C3 | 135.88 (12) | C1—C2—C3—N1 | 0.4 (3) |
O1Wi—Ni1—N1—C3 | −44.12 (12) | C4i—N2—C4—C5 | −0.94 (14) |
O1—Ni1—N1—C3 | 46.58 (12) | Ni1—N2—C4—C5 | 179.06 (14) |
O1i—Ni1—N1—C3 | −133.42 (12) | N2—C4—C5—C6 | 1.9 (3) |
O1W—Ni1—N1—C3i | −44.12 (12) | C4—C5—C6—C5i | −0.87 (13) |
O1Wi—Ni1—N1—C3i | 135.88 (12) | C4—C5—C6—C7iv | 179.13 (13) |
O1—Ni1—N1—C3i | −133.42 (12) | C8ii—C7—C8—C9 | 0.6 (2) |
O1i—Ni1—N1—C3i | 46.58 (12) | C6v—C7—C8—C9 | −179.4 (2) |
O1W—Ni1—N2—C4i | −43.57 (11) | C9ii—N3—C9—C8 | 0.6 (2) |
O1Wi—Ni1—N2—C4i | 136.43 (11) | Ni2—N3—C9—C8 | −179.4 (2) |
O1—Ni1—N2—C4i | 45.73 (11) | C7—C8—C9—N3 | −1.2 (4) |
O1i—Ni1—N2—C4i | −134.27 (11) | C10ii—N4—C10—C11 | −0.58 (17) |
O1W—Ni1—N2—C4 | 136.43 (11) | Ni2—N4—C10—C11 | 179.42 (17) |
O1Wi—Ni1—N2—C4 | −43.57 (11) | N4—C10—C11—C12 | 1.2 (3) |
O1—Ni1—N2—C4 | −134.27 (11) | C10—C11—C12—C11ii | −0.54 (16) |
O1i—Ni1—N2—C4 | 45.73 (11) | C10—C11—C12—C1vi | 179.46 (16) |
O5—Ni2—N3—C9ii | 114.53 (16) | Ni2—O5—C13—C14 | −114.44 (17) |
O5ii—Ni2—N3—C9ii | −65.47 (16) | O5—C13—C14—O6 | −59.5 (2) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x, y, −z+1/2; (iii) x+1/2, y−1/2, z; (iv) x+1/2, y+1/2, z; (v) x−1/2, y−1/2, z; (vi) x−1/2, y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6A···O4vii | 0.82 | 1.89 | 2.694 (2) | 165 |
O5—H5B···O1 | 0.82 | 1.82 | 2.599 (2) | 158 |
O1W—H1WA···O6 | 0.85 | 1.86 | 2.693 (2) | 167 |
O1W—H1WB···O3i | 0.85 | 1.91 | 2.718 (2) | 157 |
Symmetry codes: (i) −x+1, y, −z+1/2; (vii) x, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(SO4)(C10H8N2)(C2H6O2)(H2O)] |
Mr | 391.04 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 223 |
a, b, c (Å) | 11.022 (2), 22.606 (5), 12.123 (2) |
β (°) | 95.65 (3) |
V (Å3) | 3005.9 (10) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.47 |
Crystal size (mm) | 0.40 × 0.35 × 0.10 |
Data collection | |
Diffractometer | Rigaku Mercury CCD diffractometer |
Absorption correction | Multi-scan (REQAB; Jacobson, 1998) |
Tmin, Tmax | 0.743, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8555, 3420, 2885 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.086, 1.06 |
No. of reflections | 3420 |
No. of parameters | 214 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −0.41 |
Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Ni1—N2 | 2.072 (2) | Ni2—O5 | 2.0591 (15) |
Ni1—O1W | 2.0809 (15) | Ni2—O2 | 2.0817 (15) |
Ni1—O1 | 2.0844 (14) | Ni2—N4 | 2.096 (2) |
Ni1—N1 | 2.101 (2) | Ni2—N3 | 2.101 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6A···O4i | 0.82 | 1.89 | 2.694 (2) | 164.6 |
O5—H5B···O1 | 0.82 | 1.82 | 2.599 (2) | 158.2 |
O1W—H1WA···O6 | 0.85 | 1.86 | 2.693 (2) | 167.1 |
O1W—H1WB···O3ii | 0.85 | 1.91 | 2.718 (2) | 157.3 |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1, y, −z+1/2. |
Acknowledgements
This work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2013–10).
References
Dietzel, P. D. C., Morita, Y., Blom, R. & Fjellvåg, H. (2005). Angew. Chem. Int. Ed. 44, 1483–1492. Web of Science CSD CrossRef Google Scholar
Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA. Google Scholar
Kopf, A. L., Maggard, P. A., Stern, C. L. & Poeppelmeier, K. R. (2005). Acta Cryst. C61, m165–m168. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157. Web of Science CrossRef CAS Google Scholar
Sarma, D., Ramanujachary, K. V., Lofland, S. E., Magdaleno, T. & Natarajan, S. (2009). Inorg. Chem. 48, 11660–11676. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, X.-L., Qin, C. & Wang, E.-B. (2006). Cryst. Growth Des. 6, 439–443. Web of Science CSD CrossRef CAS Google Scholar
Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m507–m509. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Zhang, L.-P., Ma, J.-F., Yang, J., Pang, Y.-Y. & Ma, J.-C. (2010). Inorg. Chem. 49, 1535–1550. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhong, K.-L., Chen, L. & Chen, L. (2011). Acta Cryst. C67, m62–m64. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, the design and synthesis of metal-organic complexes or polymeric coordination networks belong to a rapidly developing field in coordination and supramolecular chemistry (Dietzel et al., 2005; Robin & Fromm, 2006; Sarma et al., 2009; Zhang et al., 2010). 4,4'-Bipyridine (4,4'-bipy) has been widely used as a bridging ligand to construct interesting complexes. Several Ni-(4,4'-bipy) complexes with perchlorate-anion, citraconate-anion, phthalate-anion and water-molecular ligands have been synthesized and characterized by X-ray diffraction (Yang et al., 2003; Kopf et al., 2005; Wang et al., 2006). The title nickel complex, [Ni2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]n, was obtained via a solvothermal reaction.
The single-crystal X-ray diffraction experiment revealed that the title compound is isostructural to the previously reported CuII analog (Zhong et al., 2011). It contains two crystallographically independent NiII centres. Atom Ni1 adopts a slightly distorted octahedral geometry. It is coordinated by two N atoms (N1 and N2) from two bridging 4,4'-bipy ligands occupying the axial positions, two O atoms (O1) from two bridging sulfate anions and two O atoms (O1W) from two water molecules occupying the equatorial sites (Fig. 1 & Table 1). The coordination environment of the Ni2 centre is very similar to that of Ni1, with ethane-1,2-diol ligands in place of the water ligands. Both Ni atoms and 4,4'-bipy ligands occupy special positions on crystallographic twofold axes. The Ni—N bond distances [2.072 (2)- 2.101 (2) Å], the Ni—O bond distances [2.0591 (15) - 2.0844 (14) Å] and the cis bond angles around NiII centres [87.20 (4) - 92.80 (4) °] are in agreement with those observed in the previously reported Ni-(4,4'-bipy) complex (Yang et al., 2003). The sulfate anion and 4,4'-bipy act as bridging ligands between two different Ni2+ ions, giving rise to the formation of linear ···Ni1—O—SO2—O—Ni2—O— SO2—O··· chains running along the a direction and ···Ni1-bipy-Ni2-bipy··· chains along the b direction, respectively. The ···M—O—SO2—O—M··· chains and the ···M—bipy—M··· chains are almost orthogonal, leading to a layered structure (Fig. 2). Intermolecular O1W—H5C···O6 and O5—H6···O1 hydrogen bonds help to further stabilize the layered structure (Table 2). In the crystal structure, extensive O—H···O hydrogen-bonding interactions between the water molecules, sulfate anions and 1,2-ethanediol molecules result in a three-dimensional supramolecular network.