organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o586-o587

(2E)-2-(3-Eth­­oxy-2-hy­dr­oxy­benzyl­­idene)hydrazinecarboxamide

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com

(Received 5 March 2013; accepted 19 March 2013; online 23 March 2013)

The title compound, C10H13N3O3, adopts an E conformation with respect to the azomethine bond and crystallizes in the amide form. A classical intra­molecular O—H⋯N hydrogen bond is present. The two N atoms of the hydrazinecarboxamide unit are also involved in inter­molecular N—H⋯O hydrogen bonds, with the O atom of the hydrazinecarboxamide group acting as the acceptor. Pairs of N—H⋯O hydrogen bond link the mol­ecules into centrosymmetric dimers, which are linked by further N—H⋯O hydrogen bonds into chains along the b axis. The chains are linked by C—H⋯π inter­actions.

Related literature

For biological applications of hydrazinecarboxamide and its derivatives, see: Afrasiabi et al. (2005[Afrasiabi, Z., Sinn, E., Lin, W., Ma, Y., Campana, C. & Padhye, S. (2005). J. Inorg. Biochem. 99, 1526-1531.]); Siji et al. (2010[Siji, V. L., Sudarsanakumar, M. R., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta Part A, 76, 22-28.]); Beraldo & Gambino (2004[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.]). For related structures and background references, see: Sithambaresan & Kurup (2011[Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o2972.]); Noblía et al. (2004,[Noblía, P., Baran, E. J., Otero, L., Draper, P., Cerecetto, H., González, M., Piro, O. E., Castellano, E. E., Inohara, T., Adachi, Y., Sakurai, H. & Gambino, D. (2004). Eur. J. Inorg. Chem. pp. 322-328.] 2005[Noblía, P., Vieites, M., Parajón-Costa, P., Baran, E. J., Cerecetto, H., Draper, P., González, M., Piro, O. E., Castellano, E. E., Azqueta, A., López, A., Monge-Vega, A. & Gambino, D. (2005). J. Inorg. Biochem. 99, 443-451.]); Benítez et al. (2009[Benítez, J., Guggeri, L., Tomaz, I., Arrambide, G., Navarro, M., Costa Pessoa, J., Garat, B. & Gambino, D. (2009). J. Inorg. Biochem. 103, 609-616.], 2011[Benítez, J., Becco, L., Correia, I., Leal, S. M., Guiset, H., Costa Pessoa, J., Lorenzo, J., Aviles, F., Escobar, P., Moreno, V., Garat, B. & Gambino, D. (2011). J. Inorg. Biochem. 105, 303-312.]); Rivadeneira et al. (2009[Rivadeneira, J., Barrio, D., Arrambide, G., Gambino, D., Bruzzone, L. & Etcheverry, S. (2009). J. Inorg. Biochem. 103, 633-642.]); Gambino et al. (2011[Gambino, D., Fernándeza, M., Santosa, D., Etcheverría, G. A., Piro, O. E., Pavan, F. R., Leite, C. Q. F., Tomaz, I. & Marques, F. (2011). Polyhedron, 30, 1360-1366.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Kala et al. (2007[Kala, U. L., Suma, S., Kurup, M. R. P., Suja, K. & John, R. P. (2007). Polyhedron, 26, 1427-1435.]). For the synthesis, see: Sreekanth et al. (2004[Sreekanth, A., Kala, U. L., Nayar, C. R. & Kurup, M. R. P. (2004). Polyhedron, 23, 41-47.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13N3O3

  • Mr = 223.23

  • Triclinic, [P \overline 1]

  • a = 5.0676 (4) Å

  • b = 7.0426 (7) Å

  • c = 15.8394 (15) Å

  • α = 97.509 (4)°

  • β = 98.819 (3)°

  • γ = 105.790 (4)°

  • V = 528.62 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.979

  • 2559 measured reflections

  • 1794 independent reflections

  • 1496 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.109

  • S = 1.05

  • 1794 reflections

  • 163 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3i 0.85 (1) 2.06 (1) 2.9034 (19) 173 (2)
O2—H2′⋯N1 0.84 (1) 1.89 (1) 2.6736 (15) 155 (2)
N2—H2⋯O3ii 0.87 (1) 2.06 (1) 2.8965 (17) 161 (2)
C9—H9ACgiii 0.97 2.75 3.5896 (19) 145
Symmetry codes: (i) -x+3, -y+3, -z+1; (ii) -x+3, -y+2, -z+1; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The importance of semicarbazones lies in its pharmacological activities such as antitumoral (Afrasiabi et al., 2005), antimicrobial (Siji et al., 2010), antihypertensive, hypolipidemic, antineoplastic, hypnotic and anticonvulsant properties (Beraldo & Gambino, 2004). As the literature reports, the title compound, C10H13N3O3, is a tridentate semicarbazone ligand which formed complexes with vanadium (Noblía et al., 2004, 2005; Rivadeneira et al., 2009; Benítez et al., 2009; Benítez et al., 2011), and gallium (Gambino et al., 2011) and have demonstrated to possess biological activity as antitumor and antiparasitic agents.

The compound crystallizes in triclinic, P1 space group. The molecule exists in the E configuration with respect to C7N1 bond (Sithambaresan & Kurup, 2011) which is confirmed by the torsion angle of -176.32 (13)° of C6—C7—N1—N2 moiety (Fig. 1). The torsion angle value of -169.81 (13)° corresponding to N1—N2—C8—O3 moiety supports the trans configuration of the O3 atom with respect to the hydrazine nitrogen atom N1 similar to its phenyl derivative (Sithambaresan & Kurup, 2011). The torsion angle value of 10.5 (2)° corresponding to N1—N2—C8—N3 moiety supports the cis configuration of the N3 atom with respect to the nitrogen atom N1. Also the torsion angles of -1.8 (2)° and 6.9 (2)° for O2—C1—C6—C7 and C1—C6—C7—N1 moieties respectively confirm the cis configuration of phenolic oxygen O2 and azomethine nitrogen N1 and it favours intramolecular hydrogen bonding between N1 and H attached to O2. The molecule as a whole slightly goes out of planarity with maximum mean plane deviations of 0.392 (2)° at N(3) and -0.345 (1)° at O(3).

Even though atom O1 lies cis to O2, with a torsion angle of -0.8 (2)° (O2—C1—C2—O1) and N1 lies cis to N3, with a torsion angle of 10.5 (2)° (N1—N2—C8—N3), there are no intramolecular hydrogen bonding interactions involving N3—H3'···N1 and O2—H2'···O1 bonds, which makes the title compound different from its phenyl derivative (Sithambaresan & Kurup, 2011). The C7N1 [1.278 (2) Å] and C8O3 [1.2481 (17) Å] bond distances are very close to the formal CN and CO bond lengths [C N; 1.28 Å and CO; 1.21 Å] (Allen et al., 1987) respectively confirming the azomethine bond formation and the existence of semicarbazone in amido form in solid state. The N1—N2 [1.3749 (17) Å] and C8—N2 [1.352 (2) Å] bond distances lie in between the ideal values of corresponding single and double bonds [N—N; 1.45 and C—N; 1.47, NN; 1.25 and CN; 1.28] (Kala et al., 2007) and it clearly proves the extended conjugation in the molecule.

Two conventional intermolecular hydrogen bonds are present in the molecular system (Fig. 2) between the O3 and the H atoms attached to N2 and N3 atoms of the neighbouring molecules with D···A distances of 2.8963 (19) and 2.9032 (18) Å. N2–H2···O3 hydrogen bonds form centrosymmetric dimers and these dimers are connected together by means of N3–H3A···O3 hydrogen bond to construct a 1-D hydrogen bonding chain and such chains are beautifully connected one over the other by C–H···π interaction (Fig. 3) with H···π distance of 2.7500 Å keeping the molecular system stable. Fig. 4 shows the packing diagram of the title compound along b axis.

Related literature top

For biological applications of hydrazinecarboxamide and its derivatives, see: Afrasiabi et al. (2005); Siji et al. (2010); Beraldo & Gambino (2004). For related structures and background references, see: Sithambaresan & Kurup (2011); Noblía et al. (2004, 2005); Benítez et al. (2009, 2011); Rivadeneira et al. (2009); Gambino et al. (2011). For standard bond-length data, see: Allen et al. (1987); Kala et al. (2007). For the synthesis, see: Sreekanth et al. (2004).

Experimental top

The title compound was prepared by adapting a reported procedure (Sreekanth et al., 2004). To a warm methanolic solution of hydrazinecarboxamide (0.1115 g, 1 mmol), a methanolic solution of 3-ethoxy-2-hydroxybenzaldehyde (0.1662 g, 1 mmol) was added and the resulting solution was refluxed for 6 h after adding 3 drops of conc. HCl. On cooling the solution, colorless crystals were separated out. Single crystals suitable for X-ray diffraction studies were obtained by slow evaporation of its solution in 1:1 mixture of methanol and DMF.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C–H bond distances 0.93–0.97 Å. H atoms were assigned as Uiso=1.2Ueq (1.5 for Me). N2–H2 and O2–H2' H atoms were located from difference maps and restrained using DFIX instructions. N3–H3A and N3–H3B H atoms were also located from difference maps and restrained using DFIX and DANG instructions. Omitted owing to bad disagreement was the reflection (0 0 1).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Graphical representation showing 1-D hydrogen bonding chain in the crystal structure of C10H13N3O3.
[Figure 3] Fig. 3. C–H···π interaction found in the title compound showing the linkage between layers.
[Figure 4] Fig. 4. A view of the unit cell along b axis.
(2E)-2-(3-Ethoxy-2-hydroxybenzylidene)hydrazinecarboxamide top
Crystal data top
C10H13N3O3Z = 2
Mr = 223.23F(000) = 236.0
Triclinic, P1Dx = 1.403 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0676 (4) ÅCell parameters from 1468 reflections
b = 7.0426 (7) Åθ = 3.1–27.8°
c = 15.8394 (15) ŵ = 0.11 mm1
α = 97.509 (4)°T = 296 K
β = 98.819 (3)°Needle, colorless
γ = 105.790 (4)°0.30 × 0.25 × 0.20 mm
V = 528.62 (8) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1794 independent reflections
Radiation source: fine-focus sealed tube1496 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.7°
ω and ϕ scanh = 46
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 87
Tmin = 0.969, Tmax = 0.979l = 1818
2559 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.0879P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1794 reflectionsΔρmax = 0.15 e Å3
163 parametersΔρmin = 0.18 e Å3
5 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.043 (11)
Crystal data top
C10H13N3O3γ = 105.790 (4)°
Mr = 223.23V = 528.62 (8) Å3
Triclinic, P1Z = 2
a = 5.0676 (4) ÅMo Kα radiation
b = 7.0426 (7) ŵ = 0.11 mm1
c = 15.8394 (15) ÅT = 296 K
α = 97.509 (4)°0.30 × 0.25 × 0.20 mm
β = 98.819 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1794 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1496 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.979Rint = 0.011
2559 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0375 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.15 e Å3
1794 reflectionsΔρmin = 0.18 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0222 (2)0.77360 (18)0.14679 (8)0.0535 (4)
O20.4871 (2)0.95529 (17)0.25818 (8)0.0507 (4)
N31.1509 (3)1.3215 (2)0.44231 (10)0.0451 (4)
N10.9230 (2)0.92842 (19)0.36957 (8)0.0378 (3)
N21.1846 (3)1.0000 (2)0.42199 (9)0.0415 (4)
O31.5573 (2)1.25778 (16)0.48904 (8)0.0484 (3)
C10.4059 (3)0.7519 (2)0.24373 (10)0.0380 (4)
C20.1566 (3)0.6509 (2)0.18340 (10)0.0409 (4)
C30.0673 (3)0.4439 (3)0.16548 (11)0.0482 (4)
H30.09810.37730.12580.058*
C40.2212 (4)0.3340 (3)0.20585 (12)0.0518 (5)
H40.15930.19450.19320.062*
C50.4660 (3)0.4317 (3)0.26476 (11)0.0460 (4)
H50.56910.35760.29160.055*
C60.5613 (3)0.6415 (2)0.28465 (9)0.0374 (4)
C70.8283 (3)0.7384 (2)0.34449 (9)0.0383 (4)
H70.93360.65870.36520.046*
C81.3056 (3)1.1985 (2)0.45241 (9)0.0359 (4)
C90.2192 (3)0.6811 (3)0.07918 (11)0.0510 (5)
H9A0.36080.58720.10050.061*
H9B0.16940.60880.03070.061*
C100.3277 (4)0.8456 (3)0.05117 (13)0.0641 (6)
H10A0.37750.91530.09960.096*
H10B0.48970.78900.00540.096*
H10C0.18540.93780.03050.096*
H21.274 (3)0.917 (2)0.4371 (11)0.045 (5)*
H2'0.642 (3)0.984 (3)0.2920 (12)0.079 (7)*
H3A1.223 (3)1.4467 (15)0.4605 (12)0.061 (6)*
H3B0.975 (2)1.278 (3)0.4271 (13)0.068 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0390 (6)0.0514 (8)0.0589 (7)0.0127 (5)0.0154 (5)0.0016 (6)
O20.0410 (7)0.0387 (7)0.0609 (8)0.0109 (5)0.0143 (5)0.0013 (5)
N30.0284 (7)0.0373 (8)0.0621 (9)0.0075 (6)0.0051 (6)0.0045 (7)
N10.0270 (7)0.0419 (8)0.0375 (7)0.0069 (5)0.0039 (5)0.0016 (6)
N20.0284 (7)0.0392 (8)0.0493 (8)0.0102 (6)0.0094 (5)0.0010 (6)
O30.0246 (6)0.0407 (7)0.0695 (8)0.0063 (5)0.0086 (5)0.0021 (5)
C10.0323 (8)0.0383 (9)0.0383 (8)0.0081 (7)0.0016 (6)0.0009 (6)
C20.0315 (8)0.0461 (10)0.0405 (8)0.0107 (7)0.0008 (6)0.0029 (7)
C30.0345 (9)0.0492 (10)0.0474 (9)0.0026 (7)0.0057 (7)0.0013 (7)
C40.0468 (10)0.0385 (9)0.0569 (10)0.0015 (8)0.0026 (8)0.0018 (8)
C50.0434 (9)0.0411 (9)0.0471 (9)0.0086 (7)0.0022 (7)0.0075 (7)
C60.0316 (8)0.0418 (9)0.0341 (8)0.0075 (7)0.0018 (6)0.0032 (6)
C70.0341 (8)0.0392 (9)0.0381 (8)0.0108 (7)0.0012 (6)0.0050 (7)
C80.0270 (7)0.0386 (8)0.0382 (8)0.0075 (6)0.0006 (6)0.0053 (6)
C90.0367 (9)0.0647 (12)0.0425 (9)0.0128 (8)0.0072 (7)0.0004 (8)
C100.0483 (11)0.0769 (14)0.0604 (12)0.0167 (10)0.0099 (9)0.0168 (10)
Geometric parameters (Å, º) top
O1—C21.3697 (19)C3—C41.386 (2)
O1—C91.4319 (18)C3—H30.9300
O2—C11.3558 (19)C4—C51.377 (2)
O2—H2'0.837 (10)C4—H40.9300
N3—C81.326 (2)C5—C61.400 (2)
N3—H3A0.849 (9)C5—H50.9300
N3—H3B0.846 (9)C6—C71.459 (2)
N1—C71.278 (2)C7—H70.9300
N1—N21.3749 (17)C9—C101.499 (3)
N2—C81.352 (2)C9—H9A0.9700
N2—H20.869 (9)C9—H9B0.9700
O3—C81.2481 (17)C10—H10A0.9600
C1—C61.397 (2)C10—H10B0.9600
C1—C21.407 (2)C10—H10C0.9600
C2—C31.380 (2)
C2—O1—C9117.61 (13)C6—C5—H5119.7
C1—O2—H2'102.2 (16)C1—C6—C5119.31 (14)
C8—N3—H3A120.2 (13)C1—C6—C7121.94 (14)
C8—N3—H3B121.7 (13)C5—C6—C7118.68 (14)
H3A—N3—H3B117.1 (17)N1—C7—C6122.59 (14)
C7—N1—N2116.34 (13)N1—C7—H7118.7
C8—N2—N1121.45 (13)C6—C7—H7118.7
C8—N2—H2118.6 (12)O3—C8—N3122.89 (15)
N1—N2—H2120.0 (12)O3—C8—N2118.66 (13)
O2—C1—C6122.85 (14)N3—C8—N2118.45 (13)
O2—C1—C2117.48 (14)O1—C9—C10107.13 (15)
C6—C1—C2119.66 (15)O1—C9—H9A110.3
O1—C2—C3125.56 (14)C10—C9—H9A110.3
O1—C2—C1114.78 (14)O1—C9—H9B110.3
C3—C2—C1119.66 (14)C10—C9—H9B110.3
C2—C3—C4120.82 (15)H9A—C9—H9B108.5
C2—C3—H3119.6C9—C10—H10A109.5
C4—C3—H3119.6C9—C10—H10B109.5
C5—C4—C3119.85 (16)H10A—C10—H10B109.5
C5—C4—H4120.1C9—C10—H10C109.5
C3—C4—H4120.1H10A—C10—H10C109.5
C4—C5—C6120.70 (15)H10B—C10—H10C109.5
C4—C5—H5119.7
C7—N1—N2—C8179.98 (14)C2—C1—C6—C50.1 (2)
C9—O1—C2—C35.3 (2)O2—C1—C6—C71.8 (2)
C9—O1—C2—C1174.53 (14)C2—C1—C6—C7176.94 (13)
O2—C1—C2—O10.8 (2)C4—C5—C6—C10.3 (3)
C6—C1—C2—O1179.55 (13)C4—C5—C6—C7177.26 (14)
O2—C1—C2—C3179.03 (14)N2—N1—C7—C6176.32 (13)
C6—C1—C2—C30.3 (2)C1—C6—C7—N16.9 (2)
O1—C2—C3—C4179.43 (16)C5—C6—C7—N1176.21 (15)
C1—C2—C3—C40.4 (3)N1—N2—C8—O3169.81 (13)
C2—C3—C4—C50.1 (3)N1—N2—C8—N310.5 (2)
C3—C4—C5—C60.2 (3)C2—O1—C9—C10179.40 (14)
O2—C1—C6—C5178.64 (14)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.85 (1)2.06 (1)2.9034 (19)173 (2)
O2—H2···N10.84 (1)1.89 (1)2.6736 (15)155 (2)
N2—H2···O3ii0.87 (1)2.06 (1)2.8965 (17)161 (2)
C9—H9A···Cgiii0.972.753.5896 (19)145
Symmetry codes: (i) x+3, y+3, z+1; (ii) x+3, y+2, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H13N3O3
Mr223.23
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.0676 (4), 7.0426 (7), 15.8394 (15)
α, β, γ (°)97.509 (4), 98.819 (3), 105.790 (4)
V3)528.62 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.969, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
2559, 1794, 1496
Rint0.011
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.109, 1.05
No. of reflections1794
No. of parameters163
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.849 (9)2.060 (10)2.9034 (19)172.6 (17)
O2—H2'···N10.837 (10)1.893 (13)2.6736 (15)155 (2)
N2—H2···O3ii0.869 (9)2.062 (11)2.8965 (17)160.7 (16)
C9—H9A···Cgiii0.9702.753.5896 (19)145
Symmetry codes: (i) x+3, y+3, z+1; (ii) x+3, y+2, z+1; (iii) x1, y, z.
 

Acknowledgements

AAA thanks the Council of Scientific and Industrial Research, New Delhi, India, for financial support in the form of a Junior Research Fellowship. The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for the data collection. MRPK thanks the University Grants Commission, New Delhi, for a UGC–BSR one-time grant to faculty.

References

First citationAfrasiabi, Z., Sinn, E., Lin, W., Ma, Y., Campana, C. & Padhye, S. (2005). J. Inorg. Biochem. 99, 1526–1531.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBenítez, J., Becco, L., Correia, I., Leal, S. M., Guiset, H., Costa Pessoa, J., Lorenzo, J., Aviles, F., Escobar, P., Moreno, V., Garat, B. & Gambino, D. (2011). J. Inorg. Biochem. 105, 303–312.  Web of Science PubMed Google Scholar
First citationBenítez, J., Guggeri, L., Tomaz, I., Arrambide, G., Navarro, M., Costa Pessoa, J., Garat, B. & Gambino, D. (2009). J. Inorg. Biochem. 103, 609–616.  Web of Science PubMed Google Scholar
First citationBeraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGambino, D., Fernándeza, M., Santosa, D., Etcheverría, G. A., Piro, O. E., Pavan, F. R., Leite, C. Q. F., Tomaz, I. & Marques, F. (2011). Polyhedron, 30, 1360–1366.  Web of Science CSD CrossRef CAS Google Scholar
First citationKala, U. L., Suma, S., Kurup, M. R. P., Suja, K. & John, R. P. (2007). Polyhedron, 26, 1427–1435.  Web of Science CSD CrossRef CAS Google Scholar
First citationNoblía, P., Vieites, M., Parajón-Costa, P., Baran, E. J., Cerecetto, H., Draper, P., González, M., Piro, O. E., Castellano, E. E., Azqueta, A., López, A., Monge-Vega, A. & Gambino, D. (2005). J. Inorg. Biochem. 99, 443–451.  Web of Science PubMed Google Scholar
First citationNoblía, P., Baran, E. J., Otero, L., Draper, P., Cerecetto, H., González, M., Piro, O. E., Castellano, E. E., Inohara, T., Adachi, Y., Sakurai, H. & Gambino, D. (2004). Eur. J. Inorg. Chem. pp. 322–328.  Google Scholar
First citationRivadeneira, J., Barrio, D., Arrambide, G., Gambino, D., Bruzzone, L. & Etcheverry, S. (2009). J. Inorg. Biochem. 103, 633–642.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiji, V. L., Sudarsanakumar, M. R., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta Part A, 76, 22–28.  CrossRef CAS Google Scholar
First citationSithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o2972.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSreekanth, A., Kala, U. L., Nayar, C. R. & Kurup, M. R. P. (2004). Polyhedron, 23, 41–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o586-o587
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds