organic compounds
(2E)-2-(3-Ethoxy-2-hydroxybenzylidene)hydrazinecarboxamide
aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com
The title compound, C10H13N3O3, adopts an E conformation with respect to the azomethine bond and crystallizes in the amide form. A classical intramolecular O—H⋯N hydrogen bond is present. The two N atoms of the hydrazinecarboxamide unit are also involved in intermolecular N—H⋯O hydrogen bonds, with the O atom of the hydrazinecarboxamide group acting as the acceptor. Pairs of N—H⋯O hydrogen bond link the molecules into centrosymmetric dimers, which are linked by further N—H⋯O hydrogen bonds into chains along the b axis. The chains are linked by C—H⋯π interactions.
Related literature
For biological applications of hydrazinecarboxamide and its derivatives, see: Afrasiabi et al. (2005); Siji et al. (2010); Beraldo & Gambino (2004). For related structures and background references, see: Sithambaresan & Kurup (2011); Noblía et al. (2004, 2005); Benítez et al. (2009, 2011); Rivadeneira et al. (2009); Gambino et al. (2011). For standard bond-length data, see: Allen et al. (1987); Kala et al. (2007). For the synthesis, see: Sreekanth et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813007617/fj2621sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813007617/fj2621Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813007617/fj2621Isup3.cml
The title compound was prepared by adapting a reported procedure (Sreekanth et al., 2004). To a warm methanolic solution of hydrazinecarboxamide (0.1115 g, 1 mmol), a methanolic solution of 3-ethoxy-2-hydroxybenzaldehyde (0.1662 g, 1 mmol) was added and the resulting solution was refluxed for 6 h after adding 3 drops of conc. HCl. On cooling the solution, colorless crystals were separated out. Single crystals suitable for X-ray diffraction studies were obtained by slow evaporation of its solution in 1:1 mixture of methanol and DMF.
All H atoms on C were placed in calculated positions, guided by difference maps, with C–H bond distances 0.93–0.97 Å. H atoms were assigned as Uiso=1.2Ueq (1.5 for Me). N2–H2 and O2–H2' H atoms were located from difference maps and restrained using DFIX instructions. N3–H3A and N3–H3B H atoms were also located from difference maps and restrained using DFIX and DANG instructions. Omitted owing to bad disagreement was the reflection (0 0 1).
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).Fig. 1. ORTEP view of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms. | |
Fig. 2. Graphical representation showing 1-D hydrogen bonding chain in the crystal structure of C10H13N3O3. | |
Fig. 3. C–H···π interaction found in the title compound showing the linkage between layers. | |
Fig. 4. A view of the unit cell along b axis. |
C10H13N3O3 | Z = 2 |
Mr = 223.23 | F(000) = 236.0 |
Triclinic, P1 | Dx = 1.403 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.0676 (4) Å | Cell parameters from 1468 reflections |
b = 7.0426 (7) Å | θ = 3.1–27.8° |
c = 15.8394 (15) Å | µ = 0.11 mm−1 |
α = 97.509 (4)° | T = 296 K |
β = 98.819 (3)° | Needle, colorless |
γ = 105.790 (4)° | 0.30 × 0.25 × 0.20 mm |
V = 528.62 (8) Å3 |
Bruker Kappa APEXII CCD diffractometer | 1794 independent reflections |
Radiation source: fine-focus sealed tube | 1496 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.011 |
Detector resolution: 8.33 pixels mm-1 | θmax = 25.0°, θmin = 2.7° |
ω and ϕ scan | h = −4→6 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | k = −8→7 |
Tmin = 0.969, Tmax = 0.979 | l = −18→18 |
2559 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0603P)2 + 0.0879P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1794 reflections | Δρmax = 0.15 e Å−3 |
163 parameters | Δρmin = −0.18 e Å−3 |
5 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.043 (11) |
C10H13N3O3 | γ = 105.790 (4)° |
Mr = 223.23 | V = 528.62 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.0676 (4) Å | Mo Kα radiation |
b = 7.0426 (7) Å | µ = 0.11 mm−1 |
c = 15.8394 (15) Å | T = 296 K |
α = 97.509 (4)° | 0.30 × 0.25 × 0.20 mm |
β = 98.819 (3)° |
Bruker Kappa APEXII CCD diffractometer | 1794 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 1496 reflections with I > 2σ(I) |
Tmin = 0.969, Tmax = 0.979 | Rint = 0.011 |
2559 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 5 restraints |
wR(F2) = 0.109 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.15 e Å−3 |
1794 reflections | Δρmin = −0.18 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.0222 (2) | 0.77360 (18) | 0.14679 (8) | 0.0535 (4) | |
O2 | 0.4871 (2) | 0.95529 (17) | 0.25818 (8) | 0.0507 (4) | |
N3 | 1.1509 (3) | 1.3215 (2) | 0.44231 (10) | 0.0451 (4) | |
N1 | 0.9230 (2) | 0.92842 (19) | 0.36957 (8) | 0.0378 (3) | |
N2 | 1.1846 (3) | 1.0000 (2) | 0.42199 (9) | 0.0415 (4) | |
O3 | 1.5573 (2) | 1.25778 (16) | 0.48904 (8) | 0.0484 (3) | |
C1 | 0.4059 (3) | 0.7519 (2) | 0.24373 (10) | 0.0380 (4) | |
C2 | 0.1566 (3) | 0.6509 (2) | 0.18340 (10) | 0.0409 (4) | |
C3 | 0.0673 (3) | 0.4439 (3) | 0.16548 (11) | 0.0482 (4) | |
H3 | −0.0981 | 0.3773 | 0.1258 | 0.058* | |
C4 | 0.2212 (4) | 0.3340 (3) | 0.20585 (12) | 0.0518 (5) | |
H4 | 0.1593 | 0.1945 | 0.1932 | 0.062* | |
C5 | 0.4660 (3) | 0.4317 (3) | 0.26476 (11) | 0.0460 (4) | |
H5 | 0.5691 | 0.3576 | 0.2916 | 0.055* | |
C6 | 0.5613 (3) | 0.6415 (2) | 0.28465 (9) | 0.0374 (4) | |
C7 | 0.8283 (3) | 0.7384 (2) | 0.34449 (9) | 0.0383 (4) | |
H7 | 0.9336 | 0.6587 | 0.3652 | 0.046* | |
C8 | 1.3056 (3) | 1.1985 (2) | 0.45241 (9) | 0.0359 (4) | |
C9 | −0.2192 (3) | 0.6811 (3) | 0.07918 (11) | 0.0510 (5) | |
H9A | −0.3608 | 0.5872 | 0.1005 | 0.061* | |
H9B | −0.1694 | 0.6088 | 0.0307 | 0.061* | |
C10 | −0.3277 (4) | 0.8456 (3) | 0.05117 (13) | 0.0641 (6) | |
H10A | −0.3775 | 0.9153 | 0.0996 | 0.096* | |
H10B | −0.4897 | 0.7890 | 0.0054 | 0.096* | |
H10C | −0.1854 | 0.9378 | 0.0305 | 0.096* | |
H2 | 1.274 (3) | 0.917 (2) | 0.4371 (11) | 0.045 (5)* | |
H2' | 0.642 (3) | 0.984 (3) | 0.2920 (12) | 0.079 (7)* | |
H3A | 1.223 (3) | 1.4467 (15) | 0.4605 (12) | 0.061 (6)* | |
H3B | 0.975 (2) | 1.278 (3) | 0.4271 (13) | 0.068 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0390 (6) | 0.0514 (8) | 0.0589 (7) | 0.0127 (5) | −0.0154 (5) | 0.0016 (6) |
O2 | 0.0410 (7) | 0.0387 (7) | 0.0609 (8) | 0.0109 (5) | −0.0143 (5) | −0.0013 (5) |
N3 | 0.0284 (7) | 0.0373 (8) | 0.0621 (9) | 0.0075 (6) | −0.0051 (6) | 0.0045 (7) |
N1 | 0.0270 (7) | 0.0419 (8) | 0.0375 (7) | 0.0069 (5) | −0.0039 (5) | 0.0016 (6) |
N2 | 0.0284 (7) | 0.0392 (8) | 0.0493 (8) | 0.0102 (6) | −0.0094 (5) | 0.0010 (6) |
O3 | 0.0246 (6) | 0.0407 (7) | 0.0695 (8) | 0.0063 (5) | −0.0086 (5) | 0.0021 (5) |
C1 | 0.0323 (8) | 0.0383 (9) | 0.0383 (8) | 0.0081 (7) | 0.0016 (6) | 0.0009 (6) |
C2 | 0.0315 (8) | 0.0461 (10) | 0.0405 (8) | 0.0107 (7) | −0.0008 (6) | 0.0029 (7) |
C3 | 0.0345 (9) | 0.0492 (10) | 0.0474 (9) | 0.0026 (7) | −0.0057 (7) | −0.0013 (7) |
C4 | 0.0468 (10) | 0.0385 (9) | 0.0569 (10) | 0.0015 (8) | −0.0026 (8) | 0.0018 (8) |
C5 | 0.0434 (9) | 0.0411 (9) | 0.0471 (9) | 0.0086 (7) | −0.0022 (7) | 0.0075 (7) |
C6 | 0.0316 (8) | 0.0418 (9) | 0.0341 (8) | 0.0075 (7) | 0.0018 (6) | 0.0032 (6) |
C7 | 0.0341 (8) | 0.0392 (9) | 0.0381 (8) | 0.0108 (7) | −0.0012 (6) | 0.0050 (7) |
C8 | 0.0270 (7) | 0.0386 (8) | 0.0382 (8) | 0.0075 (6) | 0.0006 (6) | 0.0053 (6) |
C9 | 0.0367 (9) | 0.0647 (12) | 0.0425 (9) | 0.0128 (8) | −0.0072 (7) | −0.0004 (8) |
C10 | 0.0483 (11) | 0.0769 (14) | 0.0604 (12) | 0.0167 (10) | −0.0099 (9) | 0.0168 (10) |
O1—C2 | 1.3697 (19) | C3—C4 | 1.386 (2) |
O1—C9 | 1.4319 (18) | C3—H3 | 0.9300 |
O2—C1 | 1.3558 (19) | C4—C5 | 1.377 (2) |
O2—H2' | 0.837 (10) | C4—H4 | 0.9300 |
N3—C8 | 1.326 (2) | C5—C6 | 1.400 (2) |
N3—H3A | 0.849 (9) | C5—H5 | 0.9300 |
N3—H3B | 0.846 (9) | C6—C7 | 1.459 (2) |
N1—C7 | 1.278 (2) | C7—H7 | 0.9300 |
N1—N2 | 1.3749 (17) | C9—C10 | 1.499 (3) |
N2—C8 | 1.352 (2) | C9—H9A | 0.9700 |
N2—H2 | 0.869 (9) | C9—H9B | 0.9700 |
O3—C8 | 1.2481 (17) | C10—H10A | 0.9600 |
C1—C6 | 1.397 (2) | C10—H10B | 0.9600 |
C1—C2 | 1.407 (2) | C10—H10C | 0.9600 |
C2—C3 | 1.380 (2) | ||
C2—O1—C9 | 117.61 (13) | C6—C5—H5 | 119.7 |
C1—O2—H2' | 102.2 (16) | C1—C6—C5 | 119.31 (14) |
C8—N3—H3A | 120.2 (13) | C1—C6—C7 | 121.94 (14) |
C8—N3—H3B | 121.7 (13) | C5—C6—C7 | 118.68 (14) |
H3A—N3—H3B | 117.1 (17) | N1—C7—C6 | 122.59 (14) |
C7—N1—N2 | 116.34 (13) | N1—C7—H7 | 118.7 |
C8—N2—N1 | 121.45 (13) | C6—C7—H7 | 118.7 |
C8—N2—H2 | 118.6 (12) | O3—C8—N3 | 122.89 (15) |
N1—N2—H2 | 120.0 (12) | O3—C8—N2 | 118.66 (13) |
O2—C1—C6 | 122.85 (14) | N3—C8—N2 | 118.45 (13) |
O2—C1—C2 | 117.48 (14) | O1—C9—C10 | 107.13 (15) |
C6—C1—C2 | 119.66 (15) | O1—C9—H9A | 110.3 |
O1—C2—C3 | 125.56 (14) | C10—C9—H9A | 110.3 |
O1—C2—C1 | 114.78 (14) | O1—C9—H9B | 110.3 |
C3—C2—C1 | 119.66 (14) | C10—C9—H9B | 110.3 |
C2—C3—C4 | 120.82 (15) | H9A—C9—H9B | 108.5 |
C2—C3—H3 | 119.6 | C9—C10—H10A | 109.5 |
C4—C3—H3 | 119.6 | C9—C10—H10B | 109.5 |
C5—C4—C3 | 119.85 (16) | H10A—C10—H10B | 109.5 |
C5—C4—H4 | 120.1 | C9—C10—H10C | 109.5 |
C3—C4—H4 | 120.1 | H10A—C10—H10C | 109.5 |
C4—C5—C6 | 120.70 (15) | H10B—C10—H10C | 109.5 |
C4—C5—H5 | 119.7 | ||
C7—N1—N2—C8 | −179.98 (14) | C2—C1—C6—C5 | 0.1 (2) |
C9—O1—C2—C3 | −5.3 (2) | O2—C1—C6—C7 | −1.8 (2) |
C9—O1—C2—C1 | 174.53 (14) | C2—C1—C6—C7 | 176.94 (13) |
O2—C1—C2—O1 | −0.8 (2) | C4—C5—C6—C1 | −0.3 (3) |
C6—C1—C2—O1 | −179.55 (13) | C4—C5—C6—C7 | −177.26 (14) |
O2—C1—C2—C3 | 179.03 (14) | N2—N1—C7—C6 | −176.32 (13) |
C6—C1—C2—C3 | 0.3 (2) | C1—C6—C7—N1 | 6.9 (2) |
O1—C2—C3—C4 | 179.43 (16) | C5—C6—C7—N1 | −176.21 (15) |
C1—C2—C3—C4 | −0.4 (3) | N1—N2—C8—O3 | −169.81 (13) |
C2—C3—C4—C5 | 0.1 (3) | N1—N2—C8—N3 | 10.5 (2) |
C3—C4—C5—C6 | 0.2 (3) | C2—O1—C9—C10 | 179.40 (14) |
O2—C1—C6—C5 | −178.64 (14) |
Cg is the centroid of the C1–C6 ring |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O3i | 0.85 (1) | 2.06 (1) | 2.9034 (19) | 173 (2) |
O2—H2′···N1 | 0.84 (1) | 1.89 (1) | 2.6736 (15) | 155 (2) |
N2—H2···O3ii | 0.87 (1) | 2.06 (1) | 2.8965 (17) | 161 (2) |
C9—H9A···Cgiii | 0.97 | 2.75 | 3.5896 (19) | 145 |
Symmetry codes: (i) −x+3, −y+3, −z+1; (ii) −x+3, −y+2, −z+1; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C10H13N3O3 |
Mr | 223.23 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 5.0676 (4), 7.0426 (7), 15.8394 (15) |
α, β, γ (°) | 97.509 (4), 98.819 (3), 105.790 (4) |
V (Å3) | 528.62 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.969, 0.979 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2559, 1794, 1496 |
Rint | 0.011 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.109, 1.05 |
No. of reflections | 1794 |
No. of parameters | 163 |
No. of restraints | 5 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.15, −0.18 |
Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).
Cg is the centroid of the C1–C6 ring |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O3i | 0.849 (9) | 2.060 (10) | 2.9034 (19) | 172.6 (17) |
O2—H2'···N1 | 0.837 (10) | 1.893 (13) | 2.6736 (15) | 155 (2) |
N2—H2···O3ii | 0.869 (9) | 2.062 (11) | 2.8965 (17) | 160.7 (16) |
C9—H9A···Cgiii | 0.970 | 2.75 | 3.5896 (19) | 145 |
Symmetry codes: (i) −x+3, −y+3, −z+1; (ii) −x+3, −y+2, −z+1; (iii) x−1, y, z. |
Acknowledgements
AAA thanks the Council of Scientific and Industrial Research, New Delhi, India, for financial support in the form of a Junior Research Fellowship. The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for the data collection. MRPK thanks the University Grants Commission, New Delhi, for a UGC–BSR one-time grant to faculty.
References
Afrasiabi, Z., Sinn, E., Lin, W., Ma, Y., Campana, C. & Padhye, S. (2005). J. Inorg. Biochem. 99, 1526–1531. Web of Science CSD CrossRef PubMed CAS Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Benítez, J., Becco, L., Correia, I., Leal, S. M., Guiset, H., Costa Pessoa, J., Lorenzo, J., Aviles, F., Escobar, P., Moreno, V., Garat, B. & Gambino, D. (2011). J. Inorg. Biochem. 105, 303–312. Web of Science PubMed Google Scholar
Benítez, J., Guggeri, L., Tomaz, I., Arrambide, G., Navarro, M., Costa Pessoa, J., Garat, B. & Gambino, D. (2009). J. Inorg. Biochem. 103, 609–616. Web of Science PubMed Google Scholar
Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39. Web of Science CrossRef PubMed CAS Google Scholar
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gambino, D., Fernándeza, M., Santosa, D., Etcheverría, G. A., Piro, O. E., Pavan, F. R., Leite, C. Q. F., Tomaz, I. & Marques, F. (2011). Polyhedron, 30, 1360–1366. Web of Science CSD CrossRef CAS Google Scholar
Kala, U. L., Suma, S., Kurup, M. R. P., Suja, K. & John, R. P. (2007). Polyhedron, 26, 1427–1435. Web of Science CSD CrossRef CAS Google Scholar
Noblía, P., Vieites, M., Parajón-Costa, P., Baran, E. J., Cerecetto, H., Draper, P., González, M., Piro, O. E., Castellano, E. E., Azqueta, A., López, A., Monge-Vega, A. & Gambino, D. (2005). J. Inorg. Biochem. 99, 443–451. Web of Science PubMed Google Scholar
Noblía, P., Baran, E. J., Otero, L., Draper, P., Cerecetto, H., González, M., Piro, O. E., Castellano, E. E., Inohara, T., Adachi, Y., Sakurai, H. & Gambino, D. (2004). Eur. J. Inorg. Chem. pp. 322–328. Google Scholar
Rivadeneira, J., Barrio, D., Arrambide, G., Gambino, D., Bruzzone, L. & Etcheverry, S. (2009). J. Inorg. Biochem. 103, 633–642. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siji, V. L., Sudarsanakumar, M. R., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta Part A, 76, 22–28. CrossRef CAS Google Scholar
Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o2972. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sreekanth, A., Kala, U. L., Nayar, C. R. & Kurup, M. R. P. (2004). Polyhedron, 23, 41–47. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The importance of semicarbazones lies in its pharmacological activities such as antitumoral (Afrasiabi et al., 2005), antimicrobial (Siji et al., 2010), antihypertensive, hypolipidemic, antineoplastic, hypnotic and anticonvulsant properties (Beraldo & Gambino, 2004). As the literature reports, the title compound, C10H13N3O3, is a tridentate semicarbazone ligand which formed complexes with vanadium (Noblía et al., 2004, 2005; Rivadeneira et al., 2009; Benítez et al., 2009; Benítez et al., 2011), and gallium (Gambino et al., 2011) and have demonstrated to possess biological activity as antitumor and antiparasitic agents.
The compound crystallizes in triclinic, P1 space group. The molecule exists in the E configuration with respect to C7═N1 bond (Sithambaresan & Kurup, 2011) which is confirmed by the torsion angle of -176.32 (13)° of C6—C7—N1—N2 moiety (Fig. 1). The torsion angle value of -169.81 (13)° corresponding to N1—N2—C8—O3 moiety supports the trans configuration of the O3 atom with respect to the hydrazine nitrogen atom N1 similar to its phenyl derivative (Sithambaresan & Kurup, 2011). The torsion angle value of 10.5 (2)° corresponding to N1—N2—C8—N3 moiety supports the cis configuration of the N3 atom with respect to the nitrogen atom N1. Also the torsion angles of -1.8 (2)° and 6.9 (2)° for O2—C1—C6—C7 and C1—C6—C7—N1 moieties respectively confirm the cis configuration of phenolic oxygen O2 and azomethine nitrogen N1 and it favours intramolecular hydrogen bonding between N1 and H attached to O2. The molecule as a whole slightly goes out of planarity with maximum mean plane deviations of 0.392 (2)° at N(3) and -0.345 (1)° at O(3).
Even though atom O1 lies cis to O2, with a torsion angle of -0.8 (2)° (O2—C1—C2—O1) and N1 lies cis to N3, with a torsion angle of 10.5 (2)° (N1—N2—C8—N3), there are no intramolecular hydrogen bonding interactions involving N3—H3'···N1 and O2—H2'···O1 bonds, which makes the title compound different from its phenyl derivative (Sithambaresan & Kurup, 2011). The C7═N1 [1.278 (2) Å] and C8═O3 [1.2481 (17) Å] bond distances are very close to the formal C═N and C═O bond lengths [C═ N; 1.28 Å and C═O; 1.21 Å] (Allen et al., 1987) respectively confirming the azomethine bond formation and the existence of semicarbazone in amido form in solid state. The N1—N2 [1.3749 (17) Å] and C8—N2 [1.352 (2) Å] bond distances lie in between the ideal values of corresponding single and double bonds [N—N; 1.45 and C—N; 1.47, N═N; 1.25 and C═N; 1.28] (Kala et al., 2007) and it clearly proves the extended conjugation in the molecule.
Two conventional intermolecular hydrogen bonds are present in the molecular system (Fig. 2) between the O3 and the H atoms attached to N2 and N3 atoms of the neighbouring molecules with D···A distances of 2.8963 (19) and 2.9032 (18) Å. N2–H2···O3 hydrogen bonds form centrosymmetric dimers and these dimers are connected together by means of N3–H3A···O3 hydrogen bond to construct a 1-D hydrogen bonding chain and such chains are beautifully connected one over the other by C–H···π interaction (Fig. 3) with H···π distance of 2.7500 Å keeping the molecular system stable. Fig. 4 shows the packing diagram of the title compound along b axis.