organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­benzyl­­idene)propane­di­nitrile: monoclinic polymorph

aChemistry Department, Faculty of Science, King Khalid University, Abha 61413, PO Box 9004, Saudi Arabia, bChemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt, cPharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, dDrug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, eApplied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt, fDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and gChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 March 2013; accepted 4 March 2013; online 9 March 2013)

The title compound, C10H5FN2, is a monoclinic (P21/c) polymorph of the previously reported triclinic (P-1) form [Anti­pin et al. (2003[Antipin, M. Yu., Nesterov, V. N., Jiang, S., Borbulevych, O. Ya., Sammeth, D. M., Sevostianova, E. V. & Timofeeva, T. V. (2003). J. Mol. Struct. 650, 1-20.]). J. Mol. Struct. 650, 1–20]. The 13 non-H atoms in the title polymorph are almost coplanar (r.m.s. deviation = 0.020 Å); a small twist between the fluoro­benzene and dinitrile groups [C—C—C—C torsion angle = 175.49 (16)°] is evident in the triclinic polymorph. In the crystal, C—H⋯N inter­actions lead to supra­molecular layers parallel to (-101); these are connected by C—F⋯π inter­actions.

Related literature

For background to the chemistry and biological activity of 4H-pyran derivatives, see: El-Agrody et al. (2011[El-Agrody, A. M., Sabry, N. M. & Motlaq, S. S. (2011). J. Chem. Res. 35, 77-83.]); Sabry et al. (2011[Sabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765-772.]). For the structure of the triclinic polymorph, see: Anti­pin et al. (2003[Antipin, M. Yu., Nesterov, V. N., Jiang, S., Borbulevych, O. Ya., Sammeth, D. M., Sevostianova, E. V. & Timofeeva, T. V. (2003). J. Mol. Struct. 650, 1-20.]); Ng & Tiekink (2013[Ng, S. W. & Tiekink, E. R. T. (2013). Private communication (deposition number 926904). CCDC, Cambridge, England.]).

[Scheme 1]

Experimental

Crystal data
  • C10H5FN2

  • Mr = 172.16

  • Monoclinic, P 21 /c

  • a = 9.1491 (9) Å

  • b = 12.7961 (14) Å

  • c = 7.5828 (11) Å

  • β = 106.317 (13)°

  • V = 851.98 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.35 × 0.15 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.892, Tmax = 1.000

  • 7732 measured reflections

  • 1957 independent reflections

  • 1149 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.190

  • S = 1.09

  • 1957 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1i 0.93 2.61 3.478 (4) 155
C7—H7⋯N2ii 0.93 2.51 3.424 (3) 167
C4—F1⋯Cg1iii 1.35 (1) 3.59 (1) 3.573 (2) 79 (1)
Symmetry codes: (i) x-1, y, z-1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of a program on the chemistry of 4H-pyran derivatives (El-Agrody et al., 2011; Sabry et al., 2011), the title compound was isolated from a failed reaction, see Experimental, as a monoclinic polymorph (P21/c) of the previously reported triclinic (P1) form (Antipin et al., 2003). In fact, both forms were characterized from the same reaction product (Ng & Tiekink, 2013).

In (I), Fig. 1, the 13 non-hydrogen atoms are almost co-planar with a r.m.s. deviation of 0.020 Å, and with maximum deviations of 0.028 (2) Å for the C5 atom and -0.028 (2) Å for C2. This contrasts the small twist found in the triclinic form (r.m.s. deviation = 0.062 Å) as seen in the C2—C1—C7—C8 torsion angle of 175.49 (16)° (Ng & Tiekink, 2013), which compares to -180.0 (2)° in (I); this difference is emphasized in the overlay diagram shown in Fig. 2.

In the crystal, supramolecular layers mediated by C—H···N interactions are formed parallel to (1 0 1), Fig. 2 and Table 1, and these are connected into a three-dimensional array by C—F···π contacts, Fig. 4 and Table 1. This pattern of interactions is in stark contrast to that in the triclinic polymorph whereby C—H···N interactions, involving one N atom only, lead to supramolecular chains which are connected into double chains by weak ππ contacts (Ng & Tiekink, 2013).

Related literature top

For background to the chemistry and biological activity of 4H-pyran derivatives, see: El-Agrody et al. (2011); Sabry et al. (2011). For the structure of the triclinic polymorph, see: Antipin et al. (2003); Ng & Tiekink (2013).

Experimental top

A solution of 6-bromo-1-naphthol (0.01 mol) in EtOH (30 ml) was treated with 4-fluoro-1-(2,2-dicyanovinyl)benzene (0.01 mol) and piperidine (0.5 ml). The reaction mixture was heated until complete precipitation occurred (reaction time: 60 min). The solid product which formed was collected by filtration and recrystallized from ethanol to give the title compound, i.e. unreacted 4-fluoro-1-(2,2-dicyanovinyl)benzene, as both triclinic (Ng & Tiekink, 2013) and monoclinic (I) polymorphs. Both crystal forms have the appearance of yellow prisms.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Overlay diagram of (I) (red) with the triclinic form (blue). The molecules are overlaid so that the benzene rings are superimposed.
[Figure 3] Fig. 3. A view of the supramolecular layer parallel to (1 0 1) in (I) sustained by C—H···N interactions, shown as blue dashed lines.
[Figure 4] Fig. 4. A view in projection down the b axis of the crystal packing in (I). The C—H···N and C—F···π interactions are shown as blue and purple dashed lines, respectively.
2-(4-Fluorobenzylidene)propanedinitrile top
Crystal data top
C10H5FN2F(000) = 352
Mr = 172.16Dx = 1.342 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1835 reflections
a = 9.1491 (9) Åθ = 3.1–27.5°
b = 12.7961 (14) ŵ = 0.10 mm1
c = 7.5828 (11) ÅT = 295 K
β = 106.317 (13)°Prism, yellow
V = 851.98 (18) Å30.35 × 0.15 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1957 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1149 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.045
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.2°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1614
Tmin = 0.892, Tmax = 1.000l = 99
7732 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0742P)2 + 0.0917P]
where P = (Fo2 + 2Fc2)/3
1957 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C10H5FN2V = 851.98 (18) Å3
Mr = 172.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1491 (9) ŵ = 0.10 mm1
b = 12.7961 (14) ÅT = 295 K
c = 7.5828 (11) Å0.35 × 0.15 × 0.05 mm
β = 106.317 (13)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1957 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1149 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 1.000Rint = 0.045
7732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.09Δρmax = 0.15 e Å3
1957 reflectionsΔρmin = 0.18 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.35050 (15)0.22275 (14)0.1895 (2)0.0959 (6)
N11.2165 (3)0.47627 (19)0.9490 (4)0.1097 (9)
N21.0706 (2)0.15887 (19)0.8205 (3)0.0900 (8)
C10.7452 (2)0.34429 (17)0.5304 (3)0.0566 (6)
C20.6299 (3)0.4089 (2)0.4263 (3)0.0704 (7)
H20.64340.48090.43400.084*
C30.4968 (3)0.3689 (2)0.3126 (3)0.0775 (7)
H30.42090.41290.24420.093*
C40.4797 (2)0.2624 (2)0.3035 (3)0.0685 (7)
C50.5886 (2)0.1964 (2)0.4027 (3)0.0651 (6)
H50.57330.12450.39370.078*
C60.7208 (2)0.23631 (18)0.5158 (3)0.0606 (6)
H60.79520.19110.58360.073*
C70.8788 (2)0.39364 (18)0.6487 (3)0.0627 (6)
H70.87630.46630.64510.075*
C81.0061 (2)0.35367 (18)0.7630 (3)0.0611 (6)
C91.1232 (3)0.4227 (2)0.8665 (3)0.0773 (7)
C101.0398 (2)0.2445 (2)0.7927 (3)0.0648 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0668 (9)0.1132 (15)0.0951 (11)0.0038 (8)0.0019 (8)0.0117 (9)
N10.1033 (16)0.0584 (16)0.131 (2)0.0124 (13)0.0271 (14)0.0014 (13)
N20.0849 (14)0.0549 (15)0.1148 (19)0.0018 (11)0.0028 (12)0.0019 (12)
C10.0644 (12)0.0469 (14)0.0582 (12)0.0029 (9)0.0169 (9)0.0002 (9)
C20.0809 (15)0.0528 (15)0.0747 (14)0.0089 (11)0.0174 (12)0.0037 (11)
C30.0714 (14)0.080 (2)0.0734 (15)0.0198 (13)0.0088 (11)0.0048 (13)
C40.0595 (13)0.080 (2)0.0642 (14)0.0006 (11)0.0139 (10)0.0066 (11)
C50.0686 (13)0.0576 (15)0.0684 (13)0.0032 (11)0.0179 (11)0.0039 (10)
C60.0639 (12)0.0516 (14)0.0632 (12)0.0033 (10)0.0125 (10)0.0013 (9)
C70.0760 (14)0.0398 (13)0.0702 (13)0.0018 (10)0.0174 (11)0.0001 (9)
C80.0681 (12)0.0434 (14)0.0686 (13)0.0041 (10)0.0141 (10)0.0015 (9)
C90.0803 (15)0.0485 (16)0.0899 (17)0.0003 (12)0.0024 (13)0.0028 (12)
C100.0638 (13)0.0487 (15)0.0766 (14)0.0028 (11)0.0113 (10)0.0037 (11)
Geometric parameters (Å, º) top
F1—C41.352 (3)C3—H30.9300
N1—C91.135 (3)C4—C51.361 (3)
N2—C101.136 (3)C5—C61.370 (3)
C1—C61.399 (3)C5—H50.9300
C1—C21.396 (3)C6—H60.9300
C1—C71.443 (3)C7—C81.342 (3)
C2—C31.378 (3)C7—H70.9300
C2—H20.9300C8—C101.435 (3)
C3—C41.372 (3)C8—C91.440 (3)
C6—C1—C2117.5 (2)C4—C5—H5120.2
C6—C1—C7124.74 (19)C6—C5—H5120.2
C2—C1—C7117.8 (2)C5—C6—C1120.7 (2)
C3—C2—C1121.9 (3)C5—C6—H6119.6
C3—C2—H2119.0C1—C6—H6119.6
C1—C2—H2119.0C8—C7—C1131.6 (2)
C4—C3—C2118.0 (2)C8—C7—H7114.2
C4—C3—H3121.0C1—C7—H7114.2
C2—C3—H3121.0C7—C8—C10125.6 (2)
F1—C4—C5119.5 (3)C7—C8—C9119.7 (2)
F1—C4—C3118.2 (2)C10—C8—C9114.7 (2)
C5—C4—C3122.3 (2)N1—C9—C8179.3 (3)
C4—C5—C6119.7 (2)N2—C10—C8177.8 (2)
C6—C1—C2—C30.2 (3)C4—C5—C6—C10.0 (3)
C7—C1—C2—C3178.55 (19)C2—C1—C6—C50.2 (3)
C1—C2—C3—C40.1 (4)C7—C1—C6—C5178.50 (19)
C2—C3—C4—F1178.78 (19)C6—C1—C7—C81.7 (4)
C2—C3—C4—C50.3 (4)C2—C1—C7—C8180.0 (2)
F1—C4—C5—C6178.84 (19)C1—C7—C8—C100.8 (4)
C3—C4—C5—C60.2 (4)C1—C7—C8—C9179.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.932.613.478 (4)155
C7—H7···N2ii0.932.513.424 (3)167
C4—F1···Cg1iii1.35 (1)3.59 (1)3.573 (2)79 (1)
Symmetry codes: (i) x1, y, z1; (ii) x+2, y+1/2, z+3/2; (iii) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC10H5FN2
Mr172.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.1491 (9), 12.7961 (14), 7.5828 (11)
β (°) 106.317 (13)
V3)851.98 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.15 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.892, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7732, 1957, 1149
Rint0.045
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.190, 1.09
No. of reflections1957
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.932.613.478 (4)155
C7—H7···N2ii0.932.513.424 (3)167
C4—F1···Cg1iii1.352 (3)3.5852 (18)3.573 (2)78.60 (11)
Symmetry codes: (i) x1, y, z1; (ii) x+2, y+1/2, z+3/2; (iii) x, y1/2, z3/2.
 

Footnotes

Additional correspondence author, e-mail: aamr1963@yahoo.com.

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group project No. RGP-VPP-099. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAntipin, M. Yu., Nesterov, V. N., Jiang, S., Borbulevych, O. Ya., Sammeth, D. M., Sevostianova, E. V. & Timofeeva, T. V. (2003). J. Mol. Struct. 650, 1–20.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Agrody, A. M., Sabry, N. M. & Motlaq, S. S. (2011). J. Chem. Res. 35, 77–83.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNg, S. W. & Tiekink, E. R. T. (2013). Private communication (deposition number 926904). CCDC, Cambridge, England.  Google Scholar
First citationSabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765–772.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds