organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o516-o517

Bis{(R)-1-(3-amino­sulfonyl-4-meth­­oxy­phen­yl)-N-[2-(2-eth­­oxy­phen­­oxy)eth­yl]propan-2-aminium} adipate tetra­hydrate

aLek Pharmaceuticals, Sandoz Development Centre Slovenia, Verovškova 57, SI-1526 Ljubljana, Slovenia, and bFaculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: tone.meden@fkkt.uni-lj.si

(Received 14 January 2013; accepted 23 February 2013; online 9 March 2013)

The title compound, 2C20H29N2O5S+·C6H8O42−·4H2O, which was found to be optically active, is a relatively rare example of a chiral compound crystallizing in the triclinic crystal system. The dihedral angles between the phenyl rings of the cations are 60.03 (15) and 62.03 (16)°, while the C atoms of the anion are almost coplanar (r.m.s. deviation 0.085 Å) and all trans to each other. In the crystal, the components are connected by an extensive network of N—H⋯O and O—H⋯O hydrogen bonds. The sulfonamide groups link the cations into pairs via two N—H⋯O hydrogen bonds about the pseudo-inversion centre, leading to the formation of R22(8) rings. The anions are stacked in between four cationic pairs. Pairs of water mol­ecules bridge the larger building units, forming hydrogen bonds with the remaining two O atoms of the anion.

Related literature

(R)-5-(2-(2-(2-Eth­oxy­phen­oxy)ethyl­amino)­prop­yl)-2-meth­oxy­benzene­sulfonamide (generic name tamsulosin) has an α-adrenergic blocking action and possesses hypotensive activity and is used mainly for the treatment of benign prostatic hyperplasia, see: Abrams et al. (1995[Abrams, P., Schulman, C. C., Vaage, S. & Wyndaele, J. (1995). Br. J. Urol. 76, 325-336.]).

[Scheme 1]

Experimental

Crystal data
  • 2C20H29N2O5S+·C6H8O42−·4H2O

  • Mr = 1035.21

  • Triclinic, P 1

  • a = 10.4595 (2) Å

  • b = 11.9020 (3) Å

  • c = 12.6423 (3) Å

  • α = 69.439 (1)°

  • β = 70.466 (1)°

  • γ = 67.058 (1)°

  • V = 1320.95 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.933, Tmax = 0.966

  • 26272 measured reflections

  • 10988 independent reflections

  • 8651 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.143

  • S = 1.00

  • 10988 reflections

  • 641 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4978 Friedel pairs

  • Flack parameter: 0.10 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O21i 0.96 2.11 3.028 (5) 160
N11—H11B⋯O11ii 0.86 2.23 3.029 (5) 155
N2—H2C⋯O3W 0.96 1.84 2.755 (4) 160
N12—H12B⋯O1W 0.96 1.87 2.797 (4) 160
N2—H2D⋯O1iii 0.96 1.98 2.854 (4) 151
N12—H12A⋯O3iv 0.96 1.83 2.746 (4) 159
N1—H1A⋯O3 0.95 1.84 2.790 (5) 173
N11—H11A⋯O1 0.78 2.03 2.798 (6) 169
O1W—H1WB⋯O2Wv 0.95 1.80 2.746 (5) 174
O3W—H3WB⋯O4Wvi 0.96 1.82 2.747 (5) 161
O2W—H2WA⋯O2 0.95 1.75 2.690 (6) 175
O4W—H4WA⋯O4iv 0.89 1.77 2.658 (5) 175
O1W—H1WA⋯O24 0.90 2.33 2.899 (4) 121
O1W—H1WA⋯O25 0.90 2.08 2.963 (4) 165
O3W—H3WA⋯O14 0.92 2.39 2.920 (4) 116
O3W—H3WA⋯O15 0.92 2.03 2.935 (4) 166
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) x-1, y, z; (iv) x+1, y, z; (v) x, y, z+1; (vi) x-1, y, z-1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

(R)-5-(2-(2-(2-ethoxyphenoxy)ethylamino)propyl)-2-methoxybenzenesulfonamide, designated with the generic pharmaceutical name tamsulosin, has an alpha-adrenergic blocking action and possesses a hypotensive activity and is used mainly for the treatment of benign prostatic hyperplasia (BPH) (Abrams et al., 1995). It has been used in the form of the hydrochloride salt of the pure R-enantiomer. Our attempts to prepare new salts of tamsulosin with improved solubility lead to the formation of yet unpublished tamsulosin adipate tetrahydrate (I). In this article, we report the absolute structure of (I). The asymmetric unit contains two protonated molecules of tamsulosin, adipate anion and four water molecules of solvation. All building units are connected with an extensive network of hydrogen bonds of N–H···O and O–H···O types. The former are donored by sulfonamide and amine N atoms from the cations: the shortest N···O distances and thus the strongest bonds lead towards water and anionic O atoms and are of lengths between 2.746 (4) and 2.854 (4) Å. As expected, intercationic N–H···O hydrogen bonds are somewhat weaker with N···O distances of 3.028 (5) and 3.029 (5) Å, respectively. O–H···O hydrogen bonds are donored by water molecules while the acceptors are anions, water molecules and cations, respectively. The shortest O···O distances are between water and anion (2.658 (5) and 2.690 (6) Å) while O(water)···O(water) distances are prolonged (2.746 (5) and 2.747 (5) Å, respectively). The building units are accommodated so that the O···O distances between water and cations are the longest (from 2.899 (4) to 2.963 (4) Å). The reason for significantly longer O···O aforementioned contacts are two pairs of bifurcated hydrogen bonds, donored by O1w and O3w. The details about hydrogen bonding can be seen in Table 1.

When considering the hydrogen bond topology, firstly, the sulfonamide groups link cations into pairs via two N–H···O hydrogen bonds around the pseudo inversion centre that leads to the formation of R22(8) rings. The cationic pairs are spatially arranged one above the other, i.e. there are columns of the cationic pairs in the structure. In between four of such pairs, anions are stacked, forming a larger structural segment (i.e. an anion in between four cationic pairs, 'A+4C'). This building unit is held together by N–H···O hydrogen bonds in which the anionic O atoms O1 and O3 are acceptors of two H-bonds being donnored by two neighbouring cationic columns. The other two anionic O atoms, i.e. O2 and O4, are in charge for further connections of the aforementioned larger structural segment 'A+4C', each via two water molecules, e.g. by a sequence of O–H···O hydrogen bonds which link together a cationic pair from one unit with the anion of the neighbouring unit. The described connections are depicted in Fig. 3.

Related literature top

(R)-5-(2-(2-(2-Ethoxyphenoxy)ethylamino)propyl)-2-methoxybenzenesulfonamide (generic name tamsulosin) has an α-adrenergic blocking action and possesses hypotensive activity and is used mainly for the treatment of benign prostatic hyperplasia, see: Abrams et al. (1995).

Experimental top

Tamsulosin adipate was prepared by mixing tamsulosin base and adipic (hexanedioic) acid in acetone at reflux temperature. The solution was cooled, concentrated and filtered. Obtained tamsulosin adipate was dried and dissolved in water at 25 °C to obtain a clear solution. The solution was left to stand at 25 °C for 7 days. Precipitated crystals of the title compound were separated from mother solution. The starting base was optically pure R enantiomer as well as the final product were optically active ([α]Na20 °C=-6°, conc. in methanol = 4 mg ml-1), which proves that the chirality was preserved during synthesis.

Refinement top

All H atoms were observed in a difference Fourier map. All H atoms bonded to carbon atoms were put at their idealized positions and treated as riding with C–H distances 0.98 (methyl), 0.97 (methylene) and 0.93 Å (aromatic H atoms). The methyl groups were allowed to rotate. The temperature parameters of the methyl H atoms were set to Uiso(H) = 1.5 Ueq(C) of the parent carbon atom, for all other H atoms they were set to Uiso(H) = 1.2 Ueq(C). H atoms from the water molecules were found in a difference Fourier map; their coordinates were fixed while their displacement parameters were constrained to be Uiso(H) = 1.2 Ueq(O). Hydrogen atoms bonded to N atoms were obtained from the difference electron density map. To additionally prove the correct assignment and positioning of such hydrogen atoms, their coordinates were allowed to change according to SHELXL97's AFIX 4 command (i.e. such hydrogen were treated as riding with the changeable N–H distance while the N–H direction did not change). N–H distance was restrained to 0.95 (2) Å while displacement parameters were set to be Uiso(H) = 1.2 Ueq(N).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. ORTEP plot of the unit-cell contents together with axis labels showing the network of hydrogen bonds. Displacement ellipsoids are drawn at the 30% probability level while and H atoms are drawn as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A presentation of hydrogen bonds topology starting with the formation of cationic pairs (a), larger structural segments 'A+4C' (b), revealing a role of water molecules for further connections of 'A+4C' units with additional two cationic pairs (c) leading to the final structure in which each of the cationic pairs is shared by two anions (d). Anions are drawn in green, cationic pairs in red-orange or magenta-cyan combination, and water molecules are represented by blue spheres. Hydrogen atoms have been omitted for clarity.
Bis{(R)-1-(3-aminosulfonyl-4-methoxyphenyl)-N-[2-(2-ethoxyphenoxy)ethyl]propan-2-aminium} adipate tetrahydrate top
Crystal data top
2C20H29N2O5S+·C6H8O42·4H2OZ = 1
Mr = 1035.21F(000) = 554
Triclinic, P1Dx = 1.301 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4595 (2) ÅCell parameters from 5866 reflections
b = 11.9020 (3) Åθ = 2.6–27.5°
c = 12.6423 (3) ŵ = 0.17 mm1
α = 69.439 (1)°T = 293 K
β = 70.466 (1)°Prism, colourless
γ = 67.058 (1)°0.25 × 0.25 × 0.20 mm
V = 1320.95 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
10988 independent reflections
Radiation source: fine-focus sealed tube8651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.933, Tmax = 0.966k = 1515
26272 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.082P)2 + 0.3804P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.012
10988 reflectionsΔρmax = 0.42 e Å3
641 parametersΔρmin = 0.36 e Å3
7 restraintsAbsolute structure: Flack (1983), 4978 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (8)
Crystal data top
2C20H29N2O5S+·C6H8O42·4H2Oγ = 67.058 (1)°
Mr = 1035.21V = 1320.95 (5) Å3
Triclinic, P1Z = 1
a = 10.4595 (2) ÅMo Kα radiation
b = 11.9020 (3) ŵ = 0.17 mm1
c = 12.6423 (3) ÅT = 293 K
α = 69.439 (1)°0.25 × 0.25 × 0.20 mm
β = 70.466 (1)°
Data collection top
Nonius KappaCCD
diffractometer
10988 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
8651 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.966Rint = 0.030
26272 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.143Δρmax = 0.42 e Å3
S = 1.00Δρmin = 0.36 e Å3
10988 reflectionsAbsolute structure: Flack (1983), 4978 Friedel pairs
641 parametersAbsolute structure parameter: 0.10 (8)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6496 (4)0.5164 (3)0.0736 (3)0.0565 (9)
O20.7569 (5)0.3443 (4)0.0177 (3)0.0905 (14)
O30.1453 (3)0.1548 (3)0.4551 (3)0.0523 (8)
O40.0387 (5)0.3273 (3)0.5150 (3)0.0777 (12)
C10.6746 (4)0.4005 (4)0.0907 (4)0.0442 (10)
C20.5971 (5)0.3303 (4)0.2015 (4)0.0477 (11)
H2A0.61760.33940.26690.057*
H2B0.63240.24130.20370.057*
C30.4355 (5)0.3774 (4)0.2138 (3)0.0450 (10)
H3A0.39810.46200.22480.054*
H3B0.41570.38200.14250.054*
C40.3585 (4)0.2935 (4)0.3147 (3)0.0421 (10)
H4A0.39530.20900.30340.050*
H4B0.37870.28840.38600.050*
C50.1984 (5)0.3409 (4)0.3272 (4)0.0462 (10)
H5A0.17700.33180.26220.055*
H5B0.16340.42990.32500.055*
C60.1220 (4)0.2694 (4)0.4398 (4)0.0415 (9)
S10.18986 (9)0.00121 (8)0.22314 (7)0.0430 (2)
N10.2480 (4)0.0319 (3)0.3356 (3)0.0467 (9)
H1A0.2095 (12)0.037 (2)0.3710 (11)0.056*
H1B0.346 (3)0.0821 (16)0.3247 (4)0.056*
N20.1459 (3)0.6004 (3)0.1238 (3)0.0376 (7)
H2C0.1640 (4)0.6259 (4)0.1995 (10)0.045*
H2D0.2078 (9)0.5522 (7)0.0727 (7)0.045*
O110.2622 (4)0.1080 (3)0.1734 (3)0.0539 (8)
O120.0377 (3)0.0360 (3)0.2568 (3)0.0631 (10)
O130.4740 (3)0.0202 (3)0.1156 (3)0.0476 (7)
O140.3472 (3)0.8492 (2)0.2029 (2)0.0416 (7)
O150.3762 (3)0.9233 (3)0.4155 (2)0.0443 (7)
C110.2329 (4)0.1324 (4)0.1231 (3)0.0357 (9)
C120.3758 (4)0.1302 (4)0.0791 (3)0.0369 (8)
C130.4067 (5)0.2386 (4)0.0041 (4)0.0474 (10)
H130.50070.23950.02480.057*
C140.2944 (5)0.3470 (4)0.0276 (4)0.0497 (11)
H140.31590.41770.08150.060*
C150.1554 (4)0.3519 (4)0.0180 (4)0.0408 (9)
C160.1232 (4)0.2435 (3)0.0934 (3)0.0367 (8)
H160.02850.24490.12390.044*
C170.6170 (5)0.0194 (5)0.0968 (4)0.0553 (12)
H17A0.65340.05130.01560.083*
H17B0.67570.06540.12280.083*
H17C0.61790.07160.13950.083*
C180.0310 (5)0.4697 (3)0.0052 (3)0.0428 (9)
H18A0.04490.53700.01180.051*
H18B0.05510.45400.04870.051*
C190.0067 (4)0.5163 (3)0.1288 (3)0.0418 (8)
H190.07030.56650.17840.050*
C200.0324 (4)0.4120 (3)0.1822 (3)0.0577 (8)
H20A0.02040.35590.12970.086*
H20B0.13230.36600.19710.086*
H20C0.00160.44760.25380.086*
C210.1822 (5)0.7154 (4)0.0838 (4)0.0443 (10)
H21A0.11920.76450.13430.053*
H21B0.16800.69060.00580.053*
C220.3367 (5)0.7961 (4)0.0847 (3)0.0418 (9)
H22A0.39980.74470.04380.050*
H22B0.36400.86260.04650.050*
C230.4814 (4)0.9261 (3)0.2209 (3)0.0392 (9)
C240.5956 (5)0.9652 (4)0.1320 (4)0.0481 (10)
H240.58580.93850.05580.058*
C250.7254 (5)1.0458 (5)0.1603 (5)0.0584 (12)
H250.80291.07270.10210.070*
C260.7398 (5)1.0853 (4)0.2721 (5)0.0569 (13)
H260.82641.13990.28950.068*
C270.6266 (5)1.0447 (4)0.3602 (4)0.0486 (11)
H270.63771.07060.43590.058*
C280.4974 (4)0.9656 (4)0.3347 (4)0.0389 (9)
C290.3867 (5)0.9648 (5)0.5339 (4)0.0557 (12)
H29A0.41971.05630.55770.067*
H29B0.45470.93370.54240.067*
C300.2435 (6)0.9161 (6)0.6079 (4)0.0683 (15)
H30A0.17380.93610.59010.102*
H30B0.24580.95450.68820.102*
H30C0.21870.82620.59310.102*
S20.60656 (9)0.66650 (8)0.31156 (7)0.0439 (2)
N110.5491 (4)0.6979 (4)0.1995 (3)0.0544 (10)
H11A0.5659 (7)0.647 (2)0.1666 (13)0.065*
H11B0.461 (3)0.7428 (17)0.2154 (7)0.065*
N120.9489 (4)0.0739 (3)0.6452 (3)0.0428 (8)
H12A1.0225 (10)0.1083 (6)0.5916 (7)0.051*
H12B0.9646 (4)0.0530 (4)0.7214 (10)0.051*
O210.5347 (4)0.7730 (3)0.3602 (3)0.0536 (8)
O220.7593 (4)0.6269 (3)0.2803 (3)0.0700 (11)
O230.3185 (3)0.6474 (3)0.4169 (3)0.0517 (8)
O241.1348 (3)0.1864 (3)0.7396 (2)0.0432 (7)
O251.1648 (3)0.2583 (3)0.9491 (2)0.0453 (7)
C310.5598 (4)0.5330 (4)0.4112 (3)0.0400 (9)
C320.4169 (4)0.5365 (4)0.4548 (4)0.0424 (10)
C330.3869 (5)0.4294 (4)0.5306 (5)0.0538 (12)
H330.29280.43120.56590.065*
C340.4958 (5)0.3202 (5)0.5540 (4)0.0548 (12)
H340.47310.24740.60140.066*
C350.6403 (5)0.3133 (4)0.5095 (4)0.0493 (11)
C360.6673 (5)0.4240 (4)0.4382 (4)0.0496 (11)
H360.76130.42430.40770.059*
C370.1771 (5)0.6470 (5)0.4389 (5)0.0672 (15)
H37A0.17760.57910.41430.101*
H37B0.12270.72580.39670.101*
H37C0.13480.63590.52040.101*
C380.7597 (6)0.1903 (4)0.5347 (4)0.0572 (12)
H38A0.83980.18780.46790.069*
H38B0.72650.11960.54880.069*
C390.8075 (4)0.1791 (4)0.6409 (3)0.0493 (9)
H390.82450.25830.62990.059*
C400.6991 (4)0.1575 (5)0.7543 (3)0.0792 (12)
H40A0.61140.22530.75010.119*
H40B0.73470.15440.81640.119*
H40C0.68250.07910.76820.119*
C410.9714 (5)0.0457 (4)0.6204 (4)0.0507 (11)
H41A0.95430.02710.54430.061*
H41B0.90210.08530.67690.061*
C421.1161 (5)0.1357 (4)0.6235 (4)0.0511 (11)
H42A1.13060.20370.59120.061*
H42B1.18640.09300.57630.061*
C431.2695 (4)0.2615 (4)0.7532 (3)0.0371 (9)
C441.3831 (5)0.3016 (5)0.6684 (4)0.0568 (12)
H441.37260.27620.59250.068*
C451.5136 (6)0.3792 (5)0.6927 (5)0.0672 (14)
H451.58990.40630.63390.081*
C461.5293 (5)0.4158 (5)0.8044 (5)0.0631 (14)
H461.61690.46780.82130.076*
C471.4161 (5)0.3761 (4)0.8921 (4)0.0490 (11)
H471.42840.40070.96730.059*
C481.2845 (4)0.2999 (4)0.8685 (3)0.0366 (9)
C491.1750 (6)0.2944 (5)1.0684 (4)0.0579 (12)
H49A1.23990.25851.07510.069*
H49B1.21150.38551.09470.069*
C501.0326 (6)0.2480 (5)1.1399 (4)0.0661 (14)
H50A0.99150.15991.10660.099*
H50B1.04000.25981.21700.099*
H50C0.97320.29391.14290.099*
O1W0.9470 (4)0.0136 (3)0.8819 (3)0.0628 (9)
H1WA1.02230.08420.88890.075*
H1WB0.93290.02890.93810.075*
O2W0.9007 (4)0.0962 (4)0.0550 (4)0.0800 (12)
H2WA0.84890.18290.04620.096*
H2WB0.92530.08370.12850.096*
O3W0.1434 (3)0.6917 (3)0.3570 (2)0.0537 (8)
H3WA0.22610.75830.36500.064*
H3WB0.13900.63780.40080.064*
O4W0.8976 (5)0.5726 (4)0.4780 (4)0.0810 (12)
H4WA0.94730.49140.49310.097*
H4WB0.83040.59390.43640.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.071 (2)0.0392 (17)0.0538 (17)0.0240 (15)0.0103 (16)0.0007 (13)
O20.094 (3)0.074 (2)0.061 (2)0.009 (2)0.022 (2)0.0241 (19)
O30.0575 (19)0.0375 (16)0.0513 (17)0.0196 (13)0.0034 (14)0.0085 (13)
O40.092 (3)0.0450 (18)0.065 (2)0.0189 (18)0.017 (2)0.0141 (16)
C10.040 (2)0.041 (2)0.043 (2)0.0135 (18)0.0062 (18)0.0028 (18)
C20.045 (2)0.040 (2)0.048 (2)0.0135 (18)0.0098 (19)0.0000 (18)
C30.050 (2)0.045 (2)0.0354 (19)0.0199 (19)0.0083 (19)0.0006 (17)
C40.043 (2)0.039 (2)0.041 (2)0.0177 (17)0.0077 (18)0.0022 (16)
C50.049 (2)0.043 (2)0.042 (2)0.0194 (19)0.0081 (19)0.0012 (17)
C60.038 (2)0.039 (2)0.044 (2)0.0129 (17)0.0075 (18)0.0079 (17)
S10.0410 (5)0.0356 (5)0.0466 (5)0.0139 (4)0.0112 (4)0.0002 (4)
N10.060 (2)0.0373 (18)0.0337 (16)0.0069 (17)0.0119 (16)0.0062 (14)
N20.0378 (16)0.0348 (16)0.0356 (15)0.0108 (12)0.0094 (13)0.0033 (12)
O110.066 (2)0.0427 (17)0.0592 (19)0.0194 (15)0.0197 (16)0.0119 (14)
O120.0371 (16)0.054 (2)0.077 (2)0.0167 (14)0.0107 (16)0.0087 (17)
O130.0329 (14)0.0435 (16)0.0583 (18)0.0065 (12)0.0152 (13)0.0050 (14)
O140.0394 (14)0.0420 (15)0.0323 (13)0.0041 (11)0.0127 (11)0.0020 (11)
O150.0473 (16)0.0453 (16)0.0314 (13)0.0067 (13)0.0115 (12)0.0056 (11)
C110.0317 (18)0.036 (2)0.040 (2)0.0109 (15)0.0142 (16)0.0031 (16)
C120.0328 (19)0.036 (2)0.042 (2)0.0086 (16)0.0108 (16)0.0096 (16)
C130.044 (2)0.054 (3)0.046 (2)0.020 (2)0.0089 (19)0.010 (2)
C140.053 (2)0.038 (2)0.052 (2)0.0177 (18)0.013 (2)0.0005 (18)
C150.040 (2)0.033 (2)0.049 (2)0.0054 (16)0.0217 (17)0.0062 (16)
C160.0336 (18)0.036 (2)0.0388 (19)0.0081 (15)0.0153 (16)0.0036 (16)
C170.034 (2)0.062 (3)0.072 (3)0.010 (2)0.020 (2)0.017 (2)
C180.051 (2)0.0293 (18)0.0402 (19)0.0022 (15)0.0186 (17)0.0080 (14)
C190.0359 (16)0.0335 (16)0.0447 (18)0.0057 (12)0.0111 (14)0.0008 (13)
C200.066 (2)0.0532 (19)0.0473 (17)0.0068 (15)0.0165 (15)0.0152 (14)
C210.053 (2)0.032 (2)0.049 (2)0.0128 (18)0.0212 (19)0.0034 (17)
C220.048 (2)0.040 (2)0.0321 (17)0.0098 (16)0.0143 (16)0.0025 (15)
C230.039 (2)0.030 (2)0.044 (2)0.0072 (16)0.0103 (18)0.0079 (16)
C240.048 (2)0.051 (2)0.042 (2)0.0109 (19)0.0050 (19)0.0169 (19)
C250.037 (2)0.062 (3)0.068 (3)0.001 (2)0.005 (2)0.029 (2)
C260.035 (2)0.051 (3)0.084 (3)0.0033 (19)0.025 (2)0.017 (2)
C270.049 (2)0.044 (2)0.057 (3)0.0086 (19)0.032 (2)0.0053 (19)
C280.039 (2)0.033 (2)0.045 (2)0.0127 (16)0.0081 (17)0.0096 (16)
C290.064 (3)0.055 (3)0.046 (2)0.013 (2)0.029 (2)0.000 (2)
C300.076 (4)0.094 (4)0.035 (2)0.035 (3)0.012 (2)0.009 (2)
S20.0419 (5)0.0370 (5)0.0497 (5)0.0132 (4)0.0150 (5)0.0019 (4)
N110.054 (2)0.048 (2)0.048 (2)0.0023 (18)0.0148 (18)0.0086 (17)
N120.0408 (17)0.0409 (18)0.0382 (16)0.0153 (13)0.0134 (14)0.0070 (13)
O210.070 (2)0.0360 (16)0.0600 (19)0.0175 (14)0.0262 (16)0.0055 (14)
O220.0437 (18)0.062 (2)0.089 (3)0.0227 (16)0.0130 (18)0.0038 (19)
O230.0337 (15)0.0454 (17)0.068 (2)0.0036 (13)0.0168 (15)0.0101 (15)
O240.0474 (16)0.0428 (15)0.0312 (13)0.0080 (12)0.0127 (12)0.0033 (11)
O250.0465 (16)0.0501 (17)0.0330 (14)0.0111 (13)0.0126 (13)0.0042 (12)
C310.043 (2)0.033 (2)0.043 (2)0.0136 (17)0.0135 (18)0.0036 (17)
C320.042 (2)0.039 (2)0.049 (2)0.0100 (18)0.0181 (19)0.0093 (18)
C330.036 (2)0.047 (3)0.073 (3)0.018 (2)0.008 (2)0.009 (2)
C340.061 (3)0.048 (3)0.062 (3)0.030 (2)0.023 (2)0.002 (2)
C350.061 (3)0.044 (2)0.046 (2)0.021 (2)0.018 (2)0.0040 (18)
C360.045 (2)0.046 (2)0.059 (3)0.018 (2)0.019 (2)0.004 (2)
C370.038 (2)0.067 (3)0.100 (4)0.004 (2)0.022 (3)0.031 (3)
C380.068 (3)0.048 (3)0.068 (3)0.025 (2)0.032 (2)0.005 (2)
C390.053 (2)0.055 (2)0.0369 (17)0.0219 (16)0.0107 (15)0.0023 (15)
C400.054 (2)0.101 (3)0.052 (2)0.009 (2)0.0073 (17)0.0058 (19)
C410.063 (3)0.054 (3)0.038 (2)0.023 (2)0.025 (2)0.0040 (18)
C420.072 (3)0.040 (2)0.0343 (19)0.0095 (19)0.0176 (19)0.0043 (16)
C430.040 (2)0.035 (2)0.036 (2)0.0128 (16)0.0113 (17)0.0062 (15)
C440.056 (3)0.056 (3)0.052 (3)0.009 (2)0.012 (2)0.015 (2)
C450.052 (3)0.074 (3)0.071 (3)0.013 (3)0.006 (3)0.027 (3)
C460.046 (3)0.064 (3)0.077 (3)0.008 (2)0.018 (3)0.021 (3)
C470.049 (2)0.048 (3)0.053 (2)0.020 (2)0.016 (2)0.006 (2)
C480.043 (2)0.033 (2)0.0358 (19)0.0150 (16)0.0149 (16)0.0015 (15)
C490.067 (3)0.080 (3)0.034 (2)0.030 (3)0.010 (2)0.014 (2)
C500.075 (4)0.075 (4)0.038 (2)0.023 (3)0.006 (2)0.010 (2)
O1W0.0567 (19)0.063 (2)0.0516 (17)0.0036 (15)0.0139 (15)0.0181 (15)
O2W0.081 (3)0.067 (2)0.108 (3)0.0004 (19)0.042 (2)0.048 (2)
O3W0.0537 (17)0.0573 (17)0.0391 (14)0.0001 (14)0.0165 (13)0.0134 (12)
O4W0.083 (3)0.065 (2)0.106 (3)0.001 (2)0.044 (2)0.039 (2)
Geometric parameters (Å, º) top
O1—C11.251 (5)C29—H29B0.9700
O2—C11.222 (5)C30—H30A0.9600
O3—C61.243 (5)C30—H30B0.9600
O4—C61.255 (5)C30—H30C0.9600
C1—C21.505 (5)S2—O211.430 (3)
C2—C31.530 (6)S2—O221.433 (3)
C2—H2A0.9700S2—N111.590 (4)
C2—H2B0.9700S2—C311.771 (4)
C3—C41.522 (3)N11—H11A0.7839
C3—H3A0.9700N11—H11B0.8609
C3—H3B0.9700N12—C411.477 (6)
C4—C51.515 (6)N12—C391.524 (6)
C4—H4A0.9700N12—H12A0.9601
C4—H4B0.9700N12—H12B0.9601
C5—C61.519 (5)O23—C321.363 (5)
C5—H5A0.9700O23—C371.412 (6)
C5—H5B0.9700O24—C431.373 (5)
S1—O121.429 (3)O24—C421.427 (5)
S1—O111.440 (3)O25—C481.367 (5)
S1—N11.602 (4)O25—C491.445 (5)
S1—C111.760 (4)C31—C361.368 (6)
N1—H1A0.9540C31—C321.399 (6)
N1—H1B0.9575C32—C331.377 (6)
N2—C211.492 (5)C33—C341.369 (7)
N2—C191.511 (5)C33—H330.9300
N2—H2C0.9564C34—C351.406 (6)
N2—H2D0.9564C34—H340.9300
O13—C121.351 (5)C35—C361.383 (6)
O13—C171.431 (5)C35—C381.523 (7)
O14—C231.388 (5)C36—H360.9300
O14—C221.427 (4)C37—H37A0.9600
O15—C281.379 (5)C37—H37B0.9600
O15—C291.430 (5)C37—H37C0.9600
C11—C161.401 (5)C38—C391.531 (6)
C11—C121.403 (5)C38—H38A0.9700
C12—C131.389 (5)C38—H38B0.9700
C13—C141.405 (6)C39—C401.512 (5)
C13—H130.9300C39—H390.9800
C14—C151.359 (6)C40—H40A0.9600
C14—H140.9300C40—H40B0.9600
C15—C161.396 (5)C40—H40C0.9600
C15—C181.513 (5)C41—C421.478 (7)
C16—H160.9300C41—H41A0.9700
C17—H17A0.9600C41—H41B0.9700
C17—H17B0.9600C42—H42A0.9700
C17—H17C0.9600C42—H42B0.9700
C18—C191.537 (5)C43—C441.362 (6)
C18—H18A0.9700C43—C481.410 (5)
C18—H18B0.9700C44—C451.381 (8)
C19—C201.509 (5)C44—H440.9300
C19—H190.9800C45—C461.371 (8)
C20—H20A0.9600C45—H450.9300
C20—H20B0.9600C46—C471.381 (7)
C20—H20C0.9600C46—H460.9300
C21—C221.526 (6)C47—C481.385 (6)
C21—H21A0.9700C47—H470.9300
C21—H21B0.9700C49—C501.466 (7)
C22—H22A0.9700C49—H49A0.9700
C22—H22B0.9700C49—H49B0.9700
C23—C241.394 (6)C50—H50A0.9600
C23—C281.394 (6)C50—H50B0.9600
C24—C251.400 (7)C50—H50C0.9600
C24—H240.9300O1W—H1WA0.9011
C25—C261.364 (7)O1W—H1WB0.9531
C25—H250.9300O2W—H2WA0.9461
C26—C271.388 (7)O2W—H2WB0.9924
C26—H260.9300O3W—H3WA0.9248
C27—C281.379 (6)O3W—H3WB0.9642
C27—H270.9300O4W—H4WA0.8873
C29—C301.491 (7)O4W—H4WB0.9218
C29—H29A0.9700
O2—C1—O1121.4 (4)C27—C28—C23120.0 (4)
O2—C1—C2119.5 (4)O15—C29—C30108.9 (4)
O1—C1—C2119.1 (4)O15—C29—H29A109.9
C1—C2—C3112.8 (3)C30—C29—H29A109.9
C1—C2—H2A109.0O15—C29—H29B109.9
C3—C2—H2A109.0C30—C29—H29B109.9
C1—C2—H2B109.0H29A—C29—H29B108.3
C3—C2—H2B109.0C29—C30—H30A109.5
H2A—C2—H2B107.8C29—C30—H30B109.5
C4—C3—C2113.2 (2)H30A—C30—H30B109.5
C4—C3—H3A108.9C29—C30—H30C109.5
C2—C3—H3A108.9H30A—C30—H30C109.5
C4—C3—H3B108.9H30B—C30—H30C109.5
C2—C3—H3B108.9O21—S2—O22118.1 (2)
H3A—C3—H3B107.8O21—S2—N11107.1 (2)
C5—C4—C3113.0 (2)O22—S2—N11108.6 (2)
C5—C4—H4A109.0O21—S2—C31109.55 (19)
C3—C4—H4A109.0O22—S2—C31105.57 (19)
C5—C4—H4B109.0N11—S2—C31107.5 (2)
C3—C4—H4B109.0S2—N11—H11A122.6
H4A—C4—H4B107.8S2—N11—H11B105.4
C4—C5—C6111.9 (3)H11A—N11—H11B116.1
C4—C5—H5A109.2C41—N12—C39120.4 (3)
C6—C5—H5A109.2C41—N12—H12A107.3
C4—C5—H5B109.2C39—N12—H12A107.2
C6—C5—H5B109.2C41—N12—H12B107.2
H5A—C5—H5B107.9C39—N12—H12B107.3
O3—C6—O4122.0 (4)H12A—N12—H12B106.8
O3—C6—C5118.8 (4)C32—O23—C37117.7 (4)
O4—C6—C5119.1 (4)C43—O24—C42116.5 (3)
O12—S1—O11117.8 (2)C48—O25—C49118.2 (4)
O12—S1—N1107.7 (2)C36—C31—C32120.8 (4)
O11—S1—N1107.7 (2)C36—C31—S2118.2 (3)
O12—S1—C11105.73 (17)C32—C31—S2120.8 (3)
O11—S1—C11109.37 (18)O23—C32—C33125.5 (4)
N1—S1—C11108.19 (18)O23—C32—C31116.2 (4)
S1—N1—H1A112.9C33—C32—C31118.3 (4)
S1—N1—H1B110.6C34—C33—C32119.9 (4)
H1A—N1—H1B123.5C34—C33—H33120.0
C21—N2—C19114.6 (3)C32—C33—H33120.0
C21—N2—H2C108.7C33—C34—C35122.8 (4)
C19—N2—H2C108.6C33—C34—H34118.6
C21—N2—H2D108.6C35—C34—H34118.6
C19—N2—H2D108.6C36—C35—C34115.9 (4)
H2C—N2—H2D107.6C36—C35—C38122.1 (4)
C12—O13—C17118.7 (3)C34—C35—C38121.9 (4)
C23—O14—C22116.0 (3)C31—C36—C35122.0 (4)
C28—O15—C29117.1 (3)C31—C36—H36119.0
C16—C11—C12120.2 (3)C35—C36—H36119.0
C16—C11—S1119.5 (3)O23—C37—H37A109.5
C12—C11—S1120.2 (3)O23—C37—H37B109.5
O13—C12—C13124.9 (4)H37A—C37—H37B109.5
O13—C12—C11116.0 (3)O23—C37—H37C109.5
C13—C12—C11119.1 (4)H37A—C37—H37C109.5
C12—C13—C14119.3 (4)H37B—C37—H37C109.5
C12—C13—H13120.4C35—C38—C39110.2 (4)
C14—C13—H13120.4C35—C38—H38A109.6
C15—C14—C13122.1 (4)C39—C38—H38A109.6
C15—C14—H14118.9C35—C38—H38B109.6
C13—C14—H14118.9C39—C38—H38B109.6
C14—C15—C16119.0 (4)H38A—C38—H38B108.1
C14—C15—C18124.0 (4)C40—C39—N12110.8 (3)
C16—C15—C18117.0 (4)C40—C39—C38114.0 (4)
C15—C16—C11120.2 (4)N12—C39—C38108.4 (4)
C15—C16—H16119.9C40—C39—H39107.8
C11—C16—H16119.9N12—C39—H39107.8
O13—C17—H17A109.5C38—C39—H39107.8
O13—C17—H17B109.5C39—C40—H40A109.5
H17A—C17—H17B109.5C39—C40—H40B109.5
O13—C17—H17C109.5H40A—C40—H40B109.5
H17A—C17—H17C109.5C39—C40—H40C109.5
H17B—C17—H17C109.5H40A—C40—H40C109.5
C15—C18—C19116.2 (3)H40B—C40—H40C109.5
C15—C18—H18A108.2N12—C41—C42113.5 (4)
C19—C18—H18A108.2N12—C41—H41A108.9
C15—C18—H18B108.2C42—C41—H41A108.9
C19—C18—H18B108.2N12—C41—H41B108.9
H18A—C18—H18B107.4C42—C41—H41B108.9
N2—C19—C20108.8 (3)H41A—C41—H41B107.7
N2—C19—C18107.8 (3)O24—C42—C41110.8 (4)
C20—C19—C18114.0 (3)O24—C42—H42A109.5
N2—C19—H19108.7C41—C42—H42A109.5
C20—C19—H19108.7O24—C42—H42B109.5
C18—C19—H19108.7C41—C42—H42B109.5
C19—C20—H20A109.5H42A—C42—H42B108.1
C19—C20—H20B109.5O24—C43—C44126.5 (4)
H20A—C20—H20B109.5O24—C43—C48113.9 (3)
C19—C20—H20C109.5C44—C43—C48119.6 (4)
H20A—C20—H20C109.5C45—C44—C43121.4 (5)
H20B—C20—H20C109.5C45—C44—H44119.3
N2—C21—C22110.9 (4)C43—C44—H44119.3
N2—C21—H21A109.5C44—C45—C46119.3 (5)
C22—C21—H21A109.5C44—C45—H45120.4
N2—C21—H21B109.5C46—C45—H45120.4
C22—C21—H21B109.5C45—C46—C47120.5 (5)
H21A—C21—H21B108.0C45—C46—H46119.7
O14—C22—C21107.7 (3)C47—C46—H46119.7
O14—C22—H22A110.2C48—C47—C46120.4 (5)
C21—C22—H22A110.2C48—C47—H47119.8
O14—C22—H22B110.2C46—C47—H47119.8
C21—C22—H22B110.2O25—C48—C47125.2 (4)
H22A—C22—H22B108.5O25—C48—C43116.1 (4)
C24—C23—C28120.5 (4)C47—C48—C43118.7 (4)
C24—C23—O14123.0 (4)O25—C49—C50108.6 (4)
C28—C23—O14116.5 (3)O25—C49—H49A110.0
C23—C24—C25118.3 (4)C50—C49—H49A110.0
C23—C24—H24120.9O25—C49—H49B110.0
C25—C24—H24120.9C50—C49—H49B110.0
C26—C25—C24120.9 (4)H49A—C49—H49B108.3
C26—C25—H25119.5C49—C50—H50A109.5
C24—C25—H25119.5C49—C50—H50B109.5
C25—C26—C27120.7 (4)H50A—C50—H50B109.5
C25—C26—H26119.7C49—C50—H50C109.5
C27—C26—H26119.7H50A—C50—H50C109.5
C26—C27—C28119.6 (5)H50B—C50—H50C109.5
C26—C27—H27120.2H1WA—O1W—H1WB109.4
C28—C27—H27120.2H2WA—O2W—H2WB95.9
O15—C28—C27124.7 (4)H3WA—O3W—H3WB105.2
O15—C28—C23115.2 (4)H4WA—O4W—H4WB114.1
O2—C1—C2—C3115.3 (5)C24—C23—C28—C270.4 (6)
O1—C1—C2—C362.3 (6)O14—C23—C28—C27178.5 (4)
C1—C2—C3—C4170.3 (3)C28—O15—C29—C30176.5 (4)
C2—C3—C4—C5179.6 (5)O21—S2—C31—C36128.8 (4)
C3—C4—C5—C6170.0 (3)O22—S2—C31—C360.7 (5)
C4—C5—C6—O363.9 (5)N11—S2—C31—C36115.1 (4)
C4—C5—C6—O4115.3 (5)O21—S2—C31—C3255.6 (4)
O12—S1—C11—C160.6 (4)O22—S2—C31—C32176.3 (4)
O11—S1—C11—C16127.2 (4)N11—S2—C31—C3260.5 (4)
N1—S1—C11—C16115.8 (3)C37—O23—C32—C3312.6 (7)
O12—S1—C11—C12175.4 (4)C37—O23—C32—C31166.9 (4)
O11—S1—C11—C1256.8 (4)C36—C31—C32—O23176.0 (4)
N1—S1—C11—C1260.2 (4)S2—C31—C32—O230.5 (6)
C17—O13—C12—C1313.7 (6)C36—C31—C32—C333.5 (7)
C17—O13—C12—C11165.5 (4)S2—C31—C32—C33179.0 (4)
C16—C11—C12—O13177.9 (4)O23—C32—C33—C34174.1 (5)
S1—C11—C12—O131.9 (5)C31—C32—C33—C345.4 (8)
C16—C11—C12—C131.3 (6)C32—C33—C34—C354.2 (9)
S1—C11—C12—C13177.3 (3)C33—C34—C35—C361.0 (8)
O13—C12—C13—C14179.7 (4)C33—C34—C35—C38178.7 (5)
C11—C12—C13—C141.2 (7)C32—C31—C36—C350.3 (7)
C12—C13—C14—C153.9 (7)S2—C31—C36—C35176.0 (4)
C13—C14—C15—C163.9 (7)C34—C35—C36—C311.0 (7)
C13—C14—C15—C18174.3 (4)C38—C35—C36—C31176.7 (5)
C14—C15—C16—C111.3 (6)C36—C35—C38—C3989.2 (6)
C18—C15—C16—C11177.1 (4)C34—C35—C38—C3993.3 (5)
C12—C11—C16—C151.3 (6)C41—N12—C39—C4083.6 (5)
S1—C11—C16—C15177.3 (3)C41—N12—C39—C3842.3 (5)
C14—C15—C18—C1969.6 (6)C35—C38—C39—C4070.1 (5)
C16—C15—C18—C19112.1 (4)C35—C38—C39—N12165.9 (3)
C21—N2—C19—C20174.1 (3)C39—N12—C41—C42177.6 (3)
C21—N2—C19—C1861.7 (4)C43—O24—C42—C41173.6 (4)
C15—C18—C19—N2159.5 (3)N12—C41—C42—O2471.0 (5)
C15—C18—C19—C2038.6 (5)C42—O24—C43—C446.5 (6)
C19—N2—C21—C22178.4 (3)C42—O24—C43—C48174.9 (4)
C23—O14—C22—C21179.9 (3)O24—C43—C44—C45178.8 (5)
N2—C21—C22—O1469.4 (4)C48—C43—C44—C450.2 (7)
C22—O14—C23—C249.0 (6)C43—C44—C45—C460.5 (9)
C22—O14—C23—C28172.1 (4)C44—C45—C46—C470.2 (8)
C28—C23—C24—C250.6 (7)C45—C46—C47—C480.8 (8)
O14—C23—C24—C25178.2 (4)C49—O25—C48—C470.8 (6)
C23—C24—C25—C260.2 (8)C49—O25—C48—C43179.5 (4)
C24—C25—C26—C271.1 (8)C46—C47—C48—O25178.1 (4)
C25—C26—C27—C281.3 (7)C46—C47—C48—C431.5 (7)
C29—O15—C28—C270.2 (6)O24—C43—C48—O250.3 (5)
C29—O15—C28—C23178.1 (4)C44—C43—C48—O25178.5 (4)
C26—C27—C28—O15177.3 (4)O24—C43—C48—C47180.0 (4)
C26—C27—C28—C230.5 (7)C44—C43—C48—C471.2 (6)
C24—C23—C28—O15178.5 (4)C48—O25—C49—C50175.5 (4)
O14—C23—C28—O150.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O21i0.962.113.028 (5)160
N11—H11B···O11ii0.862.233.029 (5)155
N2—H2C···O3W0.961.842.755 (4)160
N12—H12B···O1W0.961.872.797 (4)160
N2—H2D···O1iii0.961.982.854 (4)151
N12—H12A···O3iv0.961.832.746 (4)159
N1—H1A···O30.951.842.790 (5)173
N11—H11A···O10.782.032.798 (6)169
O1W—H1WB···O2Wv0.951.802.746 (5)174
O3W—H3WB···O4Wvi0.961.822.747 (5)161
O2W—H2WA···O20.951.752.690 (6)175
O4W—H4WA···O4iv0.891.772.658 (5)175
O1W—H1WA···O240.902.332.899 (4)121
O1W—H1WA···O250.902.082.963 (4)165
O3W—H3WA···O140.922.392.920 (4)116
O3W—H3WA···O150.922.032.935 (4)166
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x+1, y, z; (v) x, y, z+1; (vi) x1, y, z1.

Experimental details

Crystal data
Chemical formula2C20H29N2O5S+·C6H8O42·4H2O
Mr1035.21
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.4595 (2), 11.9020 (3), 12.6423 (3)
α, β, γ (°)69.439 (1), 70.466 (1), 67.058 (1)
V3)1320.95 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.933, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
26272, 10988, 8651
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.143, 1.00
No. of reflections10988
No. of parameters641
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.36
Absolute structureFlack (1983), 4978 Friedel pairs
Absolute structure parameter0.10 (8)

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O21i0.962.113.028 (5)159.8
N11—H11B···O11ii0.862.233.029 (5)154.8
N2—H2C···O3W0.961.842.755 (4)160.0
N12—H12B···O1W0.961.872.797 (4)160.3
N2—H2D···O1iii0.961.982.854 (4)150.9
N12—H12A···O3iv0.961.832.746 (4)159.3
N1—H1A···O30.951.842.790 (5)172.6
N11—H11A···O10.782.032.798 (6)168.6
O1W—H1WB···O2Wv0.951.802.746 (5)174.2
O3W—H3WB···O4Wvi0.961.822.747 (5)160.8
O2W—H2WA···O20.951.752.690 (6)175.3
O4W—H4WA···O4iv0.891.772.658 (5)174.7
O1W—H1WA···O240.902.332.899 (4)120.9
O1W—H1WA···O250.902.082.963 (4)165.0
O3W—H3WA···O140.922.392.920 (4)116.1
O3W—H3WA···O150.922.032.935 (4)166.3
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x+1, y, z; (v) x, y, z+1; (vi) x1, y, z1.
 

Acknowledgements

The financial support of Ministry of Education, Science, Culture and Sport of the Republic of Slovenia via grant X-2000 is acknowledged.

References

First citationAbrams, P., Schulman, C. C., Vaage, S. & Wyndaele, J. (1995). Br. J. Urol. 76, 325–336.  CrossRef CAS PubMed Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o516-o517
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds