metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­{5-(pyridin-2-yl-κN)-3-[4-(pyri­din-4-yl)phenyl]-1H-1,2,4-triazol-1-ido-κN1}zinc

aAdvanced Material Institute of Research, Department of Chemistry and Chemical Engineering, Qilu Normal University, Zhangqiu 250200, People's Republic of China
*Correspondence e-mail: libin_qlnu@yahoo.com.cn

(Received 25 February 2013; accepted 1 March 2013; online 16 March 2013)

The asymmetric unit of the title compound, [Zn(C18H12N5)2(H2O)2], consists a ZnII ion, located on an inversion center, a deprotonated 5-pyridin-2-yl-3-[4-(pyridin-4-yl)phen­yl]-1H-1,2,4-triazol-1-ido ligand and a water mol­ecule. The whole mol­ecule is generated by inversion symmetry. The ZnII ion has a distorted octa­hedral coordination geometry, defined by four N atoms from the two deprotonated organic ligands and two water O atoms. In the crystal, O—H⋯N hydrogen bonds link the mol­ecules, forming a three-dimensional network.

Related literature

For background to coordination complexes, see: Zhang et al. (2012a[Zhang, X. T., Sun, D., Li, B., Fan, L. M., Li, B. & Wei, P. H. (2012a). Cryst. Growth Des. 12, 3845-3848.],b[Zhang, X. T., Li, B., Zhao, X., Sun, D., Li, D. C. & Dou, J. M. (2012b). CrystEngComm, 14, 2053-2061.]); Fan et al. (2013[Fan, L. M., Zhang, X. T., Li, D. C., Sun, D., Zhang, W. & Dou, J. M. (2013). CrystEngComm, 15, 349-355.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C18H12N5)2(H2O)2]

  • Mr = 698.05

  • Monoclinic, P 21 /c

  • a = 13.214 (5) Å

  • b = 12.049 (5) Å

  • c = 9.825 (4) Å

  • β = 100.709 (3)°

  • V = 1537.0 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.905, Tmax = 0.935

  • 7962 measured reflections

  • 2718 independent reflections

  • 1731 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.151

  • S = 1.00

  • 2718 reflections

  • 229 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯N3i 0.75 (6) 2.07 (6) 2.812 (5) 169 (6)
O1—H2W⋯N5ii 0.85 (6) 2.38 (6) 3.165 (7) 155 (6)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of coordination complexes has attracted upsurging research interest not only because of their appealing structural and topological novelty but also owing to their potential applications in gas storage, microelectronics, ion exchange, chemical separations, nonlinear optics and heterogeneous catalysis. Here, we report on the complex formed by a solvothermal reaction of 2-(3-(4-(pyridin-4- yl)phenyl)-1H-1,2,4-triazol-5-yl)pyridine with zinc(II) acetate.

The title compound, Fig. 1, possesses inversion symmetry, and consists of a zinc atom (located on the inversion center) coordinated to two symmetry related deprotonated 2-(3-(4-(pyridin-4- yl)phenyl)-1H-1,2,4-triazol-5-yl)pyridine ligands and two water molecules. The zinc atom, Zn1, has a distorted ZnN4O2 octahedral coordination geometry; completed by four N atoms of the ligand and two O atoms from the two water molecules. The Zn1—O1 distance is 2.301 (4) Å, and the Zn—N distances varying from 2.048 (3) - 2.134 (3) Å.

In the crystal, O-H···N hydrogen bonds link the molecules forming a three-dimensional network (Fig. 2 and Table 1).

Related literature top

For background to coordination complexes, see: Zhang et al. (2012a,b); Fan et al. (2013).

Experimental top

A mixture of 2-(3-(4-(pyridin-4- yl)phenyl)-1H-1,2,4-triazol-5-yl)pyridine (0.20 mmol, 0.060 g), zinc acetate dihydrate (0.20 mmol, 0.044 g) and NaOH (0.20 mmol, 0.008 g) in 12 mL H2O was placed in a Teflon-lined stainless steel vessel and heated to 443 K for 3 days, followed by slow cooling (a descent rate of 10 K/h) to room temperature. Colourless block-like crystals suitable for X-ray diffraction analysis were obtained. Anal. Calc. for C36H28ZnN10O2: C 61.94, H 4.04, N 20.06%; Found: C 61.89, H 4.01, N 19.97%.

Refinement top

The C-bound H atoms were included in calculated positions refined using a riding model: C—H = 0.93 Å with Uiso = 1.2Ueq(C). The water H atoms were located in difference electron density maps and refined with distance restraints: O—H = 0.83 (2) Å and Uiso(H) fixed at 0.80 Å2.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed cyan lines (see Table 1 for details; C-bound H atoms have been omitted for clarity).
Diaquabis{5-(pyridin-2-yl-κN)-3-[4-(pyridin-4-yl)phenyl]-1H-1,2,4-triazol-1-ido-κN1}zinc top
Crystal data top
[Zn(C18H12N5)2(H2O)2]F(000) = 720
Mr = 698.05Dx = 1.508 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 985 reflections
a = 13.214 (5) Åθ = 2.3–20.2°
b = 12.049 (5) ŵ = 0.85 mm1
c = 9.825 (4) ÅT = 296 K
β = 100.709 (3)°Block, colorless
V = 1537.0 (10) Å30.12 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2718 independent reflections
Radiation source: fine-focus sealed tube1731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1514
Tmin = 0.905, Tmax = 0.935k = 1414
7962 measured reflectionsl = 119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.035P)2 + 1.3183P]
where P = (Fo2 + 2Fc2)/3
2718 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Zn(C18H12N5)2(H2O)2]V = 1537.0 (10) Å3
Mr = 698.05Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.214 (5) ŵ = 0.85 mm1
b = 12.049 (5) ÅT = 296 K
c = 9.825 (4) Å0.12 × 0.10 × 0.08 mm
β = 100.709 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2718 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1731 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.935Rint = 0.070
7962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.65 e Å3
2718 reflectionsΔρmin = 0.32 e Å3
229 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3744 (3)0.7926 (3)0.1269 (4)0.0397 (11)
H10.34150.84100.19460.048*
C20.3495 (4)0.6829 (4)0.1378 (5)0.0444 (12)
H20.30160.65680.21240.053*
C30.3963 (4)0.6118 (4)0.0371 (5)0.0474 (13)
H30.38000.53660.04240.057*
C40.4679 (4)0.6519 (3)0.0729 (5)0.0412 (11)
H40.50010.60470.14260.049*
C50.4902 (3)0.7630 (3)0.0761 (4)0.0317 (10)
C60.5671 (3)0.8172 (3)0.1839 (4)0.0308 (10)
C70.6829 (3)0.8610 (3)0.3510 (4)0.0360 (10)
C80.7641 (3)0.8613 (4)0.4753 (4)0.0373 (11)
C90.8225 (4)0.9560 (4)0.5076 (5)0.0619 (16)
H90.80831.01830.45140.074*
C100.9010 (4)0.9603 (4)0.6208 (6)0.0636 (16)
H100.93951.02500.63860.076*
C110.9241 (4)0.8705 (4)0.7089 (5)0.0459 (12)
C120.8626 (4)0.7784 (4)0.6780 (5)0.0540 (14)
H120.87470.71720.73640.065*
C130.7839 (4)0.7727 (4)0.5648 (5)0.0468 (12)
H130.74400.70880.54870.056*
C141.0114 (4)0.8769 (4)0.8265 (5)0.0523 (13)
C151.0930 (5)0.9456 (6)0.8211 (7)0.091 (2)
H151.09460.98680.74150.109*
C161.1734 (5)0.9543 (6)0.9339 (8)0.091 (2)
H161.22701.00260.92620.109*
C171.1083 (6)0.8258 (8)1.0459 (7)0.123 (3)
H171.11440.77711.12040.148*
C181.0230 (5)0.8124 (7)0.9395 (7)0.112 (3)
H180.97390.75860.94720.134*
N10.4441 (3)0.8336 (3)0.0228 (3)0.0349 (9)
N20.5866 (3)0.9241 (3)0.1689 (4)0.0390 (9)
N30.6254 (3)0.7724 (3)0.2965 (3)0.0336 (9)
N40.6623 (3)0.9535 (3)0.2762 (4)0.0406 (10)
N51.1795 (4)0.8996 (5)1.0499 (5)0.0778 (15)
O10.3799 (3)1.0467 (3)0.1325 (4)0.0501 (10)
Zn10.50001.00000.00000.0435 (3)
H1W0.376 (5)1.109 (5)0.141 (6)0.080*
H2W0.328 (5)1.006 (5)0.139 (6)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (3)0.039 (2)0.035 (3)0.004 (2)0.014 (2)0.003 (2)
C20.051 (3)0.040 (3)0.035 (3)0.009 (2)0.011 (2)0.006 (2)
C30.056 (3)0.035 (2)0.045 (3)0.007 (2)0.007 (3)0.002 (2)
C40.048 (3)0.033 (2)0.036 (3)0.001 (2)0.008 (2)0.005 (2)
C50.035 (2)0.032 (2)0.026 (2)0.0006 (18)0.001 (2)0.0002 (18)
C60.030 (2)0.029 (2)0.031 (2)0.0004 (17)0.001 (2)0.0008 (18)
C70.036 (3)0.036 (2)0.032 (3)0.0013 (19)0.003 (2)0.002 (2)
C80.033 (3)0.044 (3)0.031 (2)0.002 (2)0.005 (2)0.000 (2)
C90.068 (4)0.041 (3)0.060 (4)0.009 (3)0.031 (3)0.010 (3)
C100.065 (4)0.053 (3)0.058 (4)0.016 (3)0.027 (3)0.000 (3)
C110.039 (3)0.061 (3)0.032 (3)0.005 (2)0.009 (2)0.005 (2)
C120.049 (3)0.064 (3)0.041 (3)0.006 (3)0.011 (3)0.019 (3)
C130.046 (3)0.048 (3)0.040 (3)0.011 (2)0.008 (2)0.009 (2)
C140.038 (3)0.074 (4)0.039 (3)0.009 (3)0.007 (3)0.005 (3)
C150.076 (5)0.097 (5)0.081 (5)0.032 (4)0.033 (4)0.014 (4)
C160.073 (5)0.102 (5)0.083 (5)0.026 (4)0.026 (4)0.006 (4)
C170.092 (6)0.197 (9)0.059 (4)0.042 (6)0.039 (4)0.053 (5)
C180.070 (5)0.191 (8)0.058 (4)0.042 (5)0.030 (4)0.049 (5)
N10.039 (2)0.0279 (18)0.032 (2)0.0037 (16)0.0103 (17)0.0011 (15)
N20.041 (2)0.034 (2)0.034 (2)0.0006 (17)0.0135 (18)0.0007 (16)
N30.033 (2)0.0334 (19)0.029 (2)0.0020 (15)0.0094 (17)0.0007 (16)
N40.041 (2)0.0330 (19)0.038 (2)0.0003 (17)0.0174 (19)0.0022 (17)
N50.047 (3)0.131 (5)0.047 (3)0.003 (3)0.015 (2)0.003 (3)
O10.052 (2)0.0376 (18)0.054 (2)0.0033 (17)0.0082 (18)0.0060 (18)
Zn10.0506 (5)0.0289 (4)0.0399 (5)0.0042 (4)0.0204 (4)0.0043 (3)
Geometric parameters (Å, º) top
C1—N11.338 (5)C11—C141.475 (6)
C1—C21.361 (6)C12—C131.375 (6)
C1—H10.9300C12—H120.9300
C2—C31.366 (6)C13—H130.9300
C2—H20.9300C14—C181.341 (7)
C3—C41.385 (6)C14—C151.368 (8)
C3—H30.9300C15—C161.389 (8)
C4—C51.370 (6)C15—H150.9300
C4—H40.9300C16—N51.306 (8)
C5—N11.348 (5)C16—H160.9300
C5—C61.477 (5)C17—N51.289 (8)
C6—N21.327 (5)C17—C181.397 (8)
C6—N31.338 (5)C17—H170.9300
C7—N41.335 (5)C18—H180.9300
C7—N31.361 (5)N1—Zn12.134 (3)
C7—C81.469 (6)N2—N41.358 (5)
C8—C131.378 (6)N2—Zn12.048 (3)
C8—C91.381 (6)O1—Zn12.301 (4)
C9—C101.374 (7)O1—H1W0.75 (6)
C9—H90.9300O1—H2W0.85 (6)
C10—C111.384 (7)Zn1—N2i2.048 (3)
C10—H100.9300Zn1—N1i2.134 (3)
C11—C121.376 (6)Zn1—O1i2.301 (4)
N1—C1—C2122.7 (4)C15—C14—C11120.6 (5)
N1—C1—H1118.6C16—C15—C14120.5 (6)
C2—C1—H1118.6C16—C15—H15119.8
C3—C2—C1118.8 (4)C14—C15—H15119.8
C3—C2—H2120.6N5—C16—C15124.9 (7)
C1—C2—H2120.6N5—C16—H16117.6
C2—C3—C4119.9 (4)C15—C16—H16117.6
C2—C3—H3120.1N5—C17—C18125.8 (7)
C4—C3—H3120.1N5—C17—H17117.1
C5—C4—C3118.2 (4)C18—C17—H17117.1
C5—C4—H4120.9C14—C18—C17120.3 (7)
C3—C4—H4120.9C14—C18—H18119.9
N1—C5—C4122.2 (4)C17—C18—H18119.8
N1—C5—C6113.4 (3)C1—N1—C5118.2 (4)
C4—C5—C6124.4 (4)C1—N1—Zn1127.1 (3)
N2—C6—N3112.9 (3)C5—N1—Zn1114.6 (3)
N2—C6—C5118.1 (3)C6—N2—N4107.3 (3)
N3—C6—C5128.9 (4)C6—N2—Zn1115.6 (3)
N4—C7—N3113.3 (4)N4—N2—Zn1137.1 (3)
N4—C7—C8119.9 (4)C6—N3—C7101.7 (3)
N3—C7—C8126.7 (4)C7—N4—N2104.8 (3)
C13—C8—C9117.6 (4)C17—N5—C16113.3 (6)
C13—C8—C7123.5 (4)Zn1—O1—H1W112 (5)
C9—C8—C7119.0 (4)Zn1—O1—H2W123 (4)
C10—C9—C8121.5 (5)H1W—O1—H2W119 (6)
C10—C9—H9119.3N2i—Zn1—N2180.0
C8—C9—H9119.3N2i—Zn1—N1101.80 (13)
C9—C10—C11121.6 (5)N2—Zn1—N178.20 (13)
C9—C10—H10119.2N2i—Zn1—N1i78.20 (13)
C11—C10—H10119.2N2—Zn1—N1i101.80 (13)
C12—C11—C10116.1 (4)N1—Zn1—N1i180.000 (1)
C12—C11—C14124.0 (4)N2i—Zn1—O1i89.48 (14)
C10—C11—C14119.9 (5)N2—Zn1—O1i90.52 (14)
C13—C12—C11123.1 (4)N1—Zn1—O1i88.42 (13)
C13—C12—H12118.5N1i—Zn1—O1i91.58 (13)
C11—C12—H12118.5N2i—Zn1—O190.52 (14)
C12—C13—C8120.2 (4)N2—Zn1—O189.48 (14)
C12—C13—H13119.9N1—Zn1—O191.58 (13)
C8—C13—H13119.9N1i—Zn1—O188.42 (13)
C18—C14—C15114.4 (5)O1i—Zn1—O1180.000 (1)
C18—C14—C11124.8 (5)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N3ii0.75 (6)2.07 (6)2.812 (5)169 (6)
O1—H2W···N5iii0.85 (6)2.38 (6)3.165 (7)155 (6)
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Zn(C18H12N5)2(H2O)2]
Mr698.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.214 (5), 12.049 (5), 9.825 (4)
β (°) 100.709 (3)
V3)1537.0 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.905, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
7962, 2718, 1731
Rint0.070
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.151, 1.00
No. of reflections2718
No. of parameters229
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.32

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N3i0.75 (6)2.07 (6)2.812 (5)169 (6)
O1—H2W···N5ii0.85 (6)2.38 (6)3.165 (7)155 (6)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z1.
 

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, L. M., Zhang, X. T., Li, D. C., Sun, D., Zhang, W. & Dou, J. M. (2013). CrystEngComm, 15, 349–355.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. T., Li, B., Zhao, X., Sun, D., Li, D. C. & Dou, J. M. (2012b). CrystEngComm, 14, 2053–2061.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. T., Sun, D., Li, B., Fan, L. M., Li, B. & Wei, P. H. (2012a). Cryst. Growth Des. 12, 3845–3848.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds