organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o493-o494

(6′R*,7′R*)-7′-(1,3,-Di­phenyl-1H-pyrazol-4-yl)-1,2,5′,6′,7′,7a',3′′,4′′-octa­hydro-1′H,2′′H-di­spiro­[ace­naphthyl­ene-1,5′-pyrrolo­[1,2-c][1,3]thia­zole-6′,3′′-[1]benzo­pyran]-2,4′′-dione

aDepartment of Physics, Sree Krishna College of Engineering, Anicut, Vellore 632 001, India, bIndustrial Chemistry Labratory, Central Leather Research Institute, Adyar, Chennai 600 020, India, cDepartment of Physics, Mahendra Engineering College, Namakkal 637 503, India, and dDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 27 February 2013; accepted 28 February 2013; online 6 March 2013)

In the title compound, C40H29N3O3S, the pyran ring adopts a sofa conformation, the thia­zolidine ring adopts a twisted conformation and the pyrrolidine ring adopts an envelope conformation with the N atom as the flap. The pyrazole ring is essentially planar [maximum deviation = 0.002 (2) Å] and forms dihedral angles of 4.8 (1) and 39.0 (1)°, respectively, with the benzene rings attached to the N and C atoms. The acenapthylene ring system is approximately planar [maximum deviation = 0.058 (2) Å] and forms dihedral angles of 85.9 (1) and 48.5 (1)°, respectively, with the pyrollothia­zole and chromene ring systems. The mol­ecular conformation is stabilized by three weak intra­molecular C—H⋯O hydrogen bonds, which generate one S(8) and two S(6) ring motifs. In the crystal, pairs of C—H⋯O hydrogen bonds link centrosymmetrically related mol­ecules into dimers, generating R22(14) ring motifs. The crystal packing also features pairs of C—H⋯π inter­actions, which link the dimers into a supra­molecular chain along the b axis.

Related literature

For the biological properties of spiro­heterocycles, see: Kilonda et al. (1995[Kilonda, A., Compernolle, F. & Hoornaert, G. J. (1995). J. Org. Chem. 60, 5820-5824.]); Ferguson et al. (2005[Ferguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S. & Burke, D. S. (2005). Nature, 437, 209-214.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]), and for asymmetry parameters, see: Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271-383. New York: John Wiley.]). For related structures, see: Wei et al. (2012[Wei, A. C., Ali, M. A., Choon, T. S., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o1265-o1266.]); Jagadeesan et al. (2013[Jagadeesan, G., Sethusankar, K., Kathirvelan, D., Haribabu, J. & Reddy, B. S. R. (2013). Acta Cryst. E69, o317.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C40H29N3O3S

  • Mr = 631.72

  • Triclinic, [P \overline 1]

  • a = 9.9924 (6) Å

  • b = 13.2317 (8) Å

  • c = 13.2867 (8) Å

  • α = 116.900 (3)°

  • β = 92.325 (2)°

  • γ = 98.518 (3)°

  • V = 1537.79 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.976

  • 36242 measured reflections

  • 9612 independent reflections

  • 6569 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.154

  • S = 1.03

  • 9612 reflections

  • 424 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C23–C28 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3 0.93 2.47 3.207 (2) 136
C29—H29A⋯O3 0.97 2.45 3.074 (2) 122
C17—H17⋯O3 0.98 2.52 3.091 (2) 117
C38—H38⋯O1i 0.93 2.40 3.226 (2) 148
C1—H1⋯Cgii 0.93 2.94 3.713 (3) 142
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The design and synthesis of glycospiroheterocycles attracts interest because of the synthetic challenges they present and their biological profile against viruses, bacteria and cancer cells (Ferguson et al., 2005). Pyrrolidines, pyrroles and chromenes are common structural motifs in drugs and drug candidates owing to their ability to act as selective glycosidase inhibitors, which are used in the treatment of diabetes, cancer, malaria and viral infections, including AIDS (Kilonda et al., 1995). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The pyran ring (O2/C21/C22/C23/C28/C29) adopts a sofa conformation with puckering parameters (Cremer & Pople, 1975), QT = 0.499 (2) Å, θ = 127.1 (2)°, ϕ = 102.3 (2)°. The thiazolidine (S1,N3,C17–C19) ring adopts a twist conformation, with twist about the C17—N3 bond; the puckering parameters q2 = 0.473 (2) Å and ϕ2 = 267.1 (2)°, and asymmetry parameter (Duax et al., 1976) ΔC2[C17—N3] = 2.0 (1) Å. The pyrrolidine (N3/C16/C17/C20/C21) ring adopts an envelope conformation with the N3 (displacement = 0.273 (1) Å) atom as the flap atom and with puckering parameters q2 = 0.4062 (2) Å and ϕ2 = 357.2 (2)°. The pyrazole ring (N1/N2/C7–C9) is essentially planar [maximum deviation = 0.002 (2) Å for atom C8] and the N- and C-bound benzene rings are inclined to this plane [dihedral angles = 4.8 (1) and 39.0 (1)°, respectively] and form a dihedral angle of 34.6 (1)° with each other. The acenapthalene ring system is approximately planar [maximum deviation = -0.058 (2) Å for atom C37] and forms dihedral angles of 85.9 (1)° and 48.5 (1)°, respectively, with the pyrollothiazole and chromene ring systems. The geometric parameters of the title molecule agrees well with those reported for similar structures (Wei et al., 2012; Jagadeesan et al., 2013).

The molecular structure is stabilized by a C7—H7···O3 intramolecular hydrogen bond, forming S(8) ring motif as well as intramolecular C29—H29A···O3 and C17—H17···O3 hydrogen bonds, both forming S(6) ring motifs (Bernstein et al., 1995) (Table 1). In the crystal packing (Fig. 2), the centrosymmetrically related molecules are linked by C38—H38···O1 hydrogen bonds into cyclic centrosymmetric R22(14) dimers. The crystal packing (Fig. 3) is further stabilized by C—H···π(arene) hydrogen bonds, in which atom C1 acts as a hydrogen bond donor via H1, to the C23–C28 benzene ring of a neighbouring molecule (symmetry operation: 1-x, -y, 1-z), thereby generating a cyclic centrosymmetric dimer (Table 1).

Related literature top

For the biological properties of spiroheterocycles, see: Kilonda et al. (1995); Ferguson et al. (2005). For ring puckering parameters, see: Cremer & Pople (1975), and for asymmetry parameters, see: Duax et al. (1976). For related structures, see: Wei et al. (2012); Jagadeesan et al. (2013). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of Acenaphthoquinone (1.0 mmol), thioproline (1.1 mmol) and (E)-2,3-dihydro-3-((1,3-diphenyl-1H-pyrazol-4-yl) methylene)chromen-4-one (1.0 mmol) in ethanol was refluxed for 4h and cooled to room temperature. The solid formed in the reaction mixture was poured into water and filtered, dried, and recrystallized from ethanol to obtain the title compound in good yield (84–91%).

Refinement top

All the H atoms were positioned geometrically with C–H = 0.93–0.98 Å and constrained to ride on their parent atom, with Uiso(H) =1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for the sake of clarity.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing C—H···O intermolecular hydrogen bonds (dotted lines) generating an R22(14) centrosymmetric dimer [Symmetry code: (i) 1-x, 1-y, 1-z].
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a cyclic centrosymmetric dimer. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Cg denotes centroid of the C23–C28 benzene ring. [Symmetry code: (ii) 1-x, -y, 1-z].
(6'R*,7'R*)-7'-(1,3,-Diphenyl-1H-pyrazol-4-yl)-1,2,5',6',7',7a',3'',4''-octahydro-1'H,2''H-dispiro[acenaphthylene-1,5'-pyrrolo[1,2-c][1,3]thiazole-6',3''-[1]benzopyran]-2,4''-dione top
Crystal data top
C40H29N3O3SZ = 2
Mr = 631.72F(000) = 660
Triclinic, P1Dx = 1.364 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9924 (6) ÅCell parameters from 9836 reflections
b = 13.2317 (8) Åθ = 1.8–31.0°
c = 13.2867 (8) ŵ = 0.15 mm1
α = 116.900 (3)°T = 293 K
β = 92.325 (2)°Block, colourless
γ = 98.518 (3)°0.23 × 0.21 × 0.16 mm
V = 1537.79 (16) Å3
Data collection top
Bruker APEXII CCD
diffractometer
9612 independent reflections
Radiation source: fine-focus sealed tube6569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.0 pixels mm-1θmax = 31.0°, θmin = 1.8°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1819
Tmin = 0.966, Tmax = 0.976l = 1917
36242 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.3833P]
where P = (Fo2 + 2Fc2)/3
9612 reflections(Δ/σ)max < 0.001
424 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C40H29N3O3Sγ = 98.518 (3)°
Mr = 631.72V = 1537.79 (16) Å3
Triclinic, P1Z = 2
a = 9.9924 (6) ÅMo Kα radiation
b = 13.2317 (8) ŵ = 0.15 mm1
c = 13.2867 (8) ÅT = 293 K
α = 116.900 (3)°0.23 × 0.21 × 0.16 mm
β = 92.325 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
9612 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6569 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.976Rint = 0.029
36242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
9612 reflectionsΔρmin = 0.23 e Å3
424 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7455 (3)0.28167 (19)0.25650 (18)0.0819 (8)
H10.77960.24540.33310.098*
C20.7608 (4)0.3935 (2)0.1866 (2)0.1099 (13)
H20.80450.43260.21710.132*
C30.7129 (3)0.44716 (19)0.07414 (19)0.0747 (7)
H30.72280.52280.02820.090*
C40.6509 (2)0.38972 (17)0.02968 (17)0.0604 (5)
H40.61940.42540.04750.073*
C50.6343 (2)0.27878 (16)0.09814 (16)0.0555 (5)
H50.59170.23970.06690.067*
C60.67997 (16)0.22511 (13)0.21208 (13)0.0384 (3)
C70.61357 (16)0.03814 (13)0.25043 (13)0.0381 (3)
H70.57980.05590.17690.046*
C80.62107 (14)0.06520 (12)0.34519 (12)0.0333 (3)
C90.67850 (15)0.04757 (12)0.43425 (13)0.0344 (3)
C100.71557 (16)0.12760 (13)0.55610 (13)0.0375 (3)
C110.63355 (19)0.20395 (16)0.61809 (15)0.0480 (4)
H110.55290.20620.58230.058*
C120.6707 (3)0.27680 (19)0.73271 (18)0.0653 (6)
H120.61540.32830.77360.078*
C130.7883 (3)0.2736 (2)0.78628 (18)0.0743 (7)
H130.81250.32240.86360.089*
C140.8713 (2)0.1981 (2)0.72601 (18)0.0662 (6)
H140.95170.19640.76250.079*
C150.83462 (19)0.12508 (16)0.61162 (15)0.0484 (4)
H150.89020.07370.57130.058*
C160.59016 (14)0.17413 (12)0.34794 (12)0.0313 (3)
H160.63680.23900.41920.038*
C170.64407 (14)0.19223 (12)0.24940 (12)0.0318 (3)
H170.63800.11760.18190.038*
C180.78268 (15)0.26687 (14)0.26813 (15)0.0417 (3)
H18A0.85480.22260.25760.050*
H18B0.79960.33190.34390.050*
C190.58590 (16)0.27596 (14)0.13448 (14)0.0397 (3)
H19A0.54570.33790.13350.048*
H19B0.55610.20660.06300.048*
C200.41210 (13)0.20580 (11)0.23217 (11)0.0293 (3)
C210.43588 (13)0.18533 (11)0.33985 (11)0.0292 (3)
C220.41078 (15)0.29222 (12)0.44361 (12)0.0336 (3)
C230.26783 (15)0.29257 (13)0.46627 (13)0.0369 (3)
C240.22855 (18)0.39297 (16)0.54484 (15)0.0468 (4)
H240.29410.45910.58670.056*
C250.0938 (2)0.39515 (19)0.56108 (17)0.0552 (5)
H250.06790.46260.61300.066*
C260.00309 (19)0.29610 (19)0.49947 (18)0.0568 (5)
H260.09410.29740.51110.068*
C270.03255 (17)0.19627 (17)0.42169 (17)0.0497 (4)
H270.03360.13020.38110.060*
C280.16822 (16)0.19455 (14)0.40403 (13)0.0379 (3)
C290.33824 (15)0.08335 (13)0.33603 (13)0.0359 (3)
H29A0.35300.01270.27290.043*
H29B0.35700.07820.40560.043*
C300.35466 (15)0.08938 (12)0.12151 (12)0.0337 (3)
C310.23951 (15)0.10870 (13)0.06378 (12)0.0359 (3)
C320.15924 (17)0.04013 (16)0.03783 (14)0.0480 (4)
H320.17050.03520.08320.058*
C330.05936 (18)0.0870 (2)0.07148 (16)0.0577 (5)
H330.00400.04150.14020.069*
C340.04146 (18)0.19750 (19)0.00610 (16)0.0544 (5)
H340.02590.22520.03130.065*
C350.12287 (15)0.27082 (16)0.09887 (14)0.0420 (3)
C360.22067 (14)0.22160 (13)0.13097 (12)0.0333 (3)
C370.31473 (14)0.28286 (12)0.22961 (12)0.0312 (3)
C380.31458 (16)0.39697 (13)0.29630 (14)0.0383 (3)
H380.37880.44070.36000.046*
C390.21453 (18)0.44768 (15)0.26665 (16)0.0457 (4)
H390.21230.52490.31350.055*
C400.12157 (17)0.38762 (17)0.17216 (16)0.0486 (4)
H400.05710.42390.15600.058*
N10.66387 (13)0.11021 (11)0.28216 (11)0.0369 (3)
N20.70462 (14)0.05886 (11)0.39516 (11)0.0390 (3)
N30.55049 (11)0.25684 (10)0.22935 (10)0.0310 (2)
O10.50184 (12)0.37240 (10)0.50186 (11)0.0498 (3)
O20.19856 (11)0.09458 (9)0.32322 (10)0.0406 (2)
O30.40291 (12)0.00307 (9)0.09023 (10)0.0457 (3)
S10.77092 (4)0.31491 (4)0.16018 (4)0.04985 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.152 (2)0.0546 (12)0.0414 (10)0.0537 (14)0.0089 (12)0.0153 (9)
C20.211 (4)0.0627 (15)0.0592 (14)0.080 (2)0.0104 (18)0.0172 (12)
C30.126 (2)0.0436 (11)0.0538 (12)0.0389 (13)0.0121 (13)0.0153 (9)
C40.0898 (15)0.0462 (10)0.0399 (9)0.0178 (10)0.0044 (9)0.0140 (8)
C50.0823 (13)0.0433 (9)0.0416 (9)0.0211 (9)0.0033 (9)0.0183 (8)
C60.0496 (8)0.0318 (7)0.0376 (8)0.0125 (6)0.0057 (6)0.0180 (6)
C70.0498 (8)0.0337 (7)0.0358 (7)0.0139 (6)0.0003 (6)0.0190 (6)
C80.0368 (7)0.0312 (7)0.0355 (7)0.0088 (5)0.0015 (6)0.0182 (6)
C90.0383 (7)0.0330 (7)0.0355 (7)0.0075 (6)0.0022 (6)0.0187 (6)
C100.0471 (8)0.0343 (7)0.0334 (7)0.0041 (6)0.0015 (6)0.0190 (6)
C110.0570 (10)0.0475 (10)0.0412 (9)0.0133 (8)0.0085 (7)0.0208 (8)
C120.0896 (16)0.0537 (12)0.0460 (11)0.0201 (11)0.0176 (10)0.0148 (9)
C130.1030 (19)0.0669 (14)0.0358 (10)0.0085 (13)0.0045 (11)0.0123 (9)
C140.0740 (14)0.0706 (14)0.0471 (11)0.0046 (11)0.0158 (10)0.0260 (10)
C150.0543 (10)0.0492 (10)0.0428 (9)0.0081 (8)0.0027 (7)0.0235 (8)
C160.0341 (6)0.0274 (6)0.0327 (7)0.0073 (5)0.0009 (5)0.0141 (5)
C170.0321 (6)0.0286 (7)0.0363 (7)0.0086 (5)0.0020 (5)0.0158 (6)
C180.0334 (7)0.0420 (8)0.0537 (9)0.0075 (6)0.0011 (6)0.0259 (8)
C190.0414 (8)0.0434 (8)0.0426 (8)0.0094 (6)0.0050 (6)0.0266 (7)
C200.0321 (6)0.0250 (6)0.0287 (6)0.0057 (5)0.0002 (5)0.0110 (5)
C210.0325 (6)0.0257 (6)0.0277 (6)0.0050 (5)0.0006 (5)0.0112 (5)
C220.0374 (7)0.0303 (7)0.0304 (7)0.0063 (5)0.0002 (5)0.0122 (6)
C230.0396 (7)0.0396 (8)0.0316 (7)0.0106 (6)0.0044 (6)0.0157 (6)
C240.0504 (9)0.0471 (9)0.0378 (8)0.0150 (7)0.0077 (7)0.0134 (7)
C250.0575 (11)0.0624 (12)0.0496 (10)0.0270 (9)0.0185 (8)0.0237 (9)
C260.0447 (9)0.0748 (14)0.0627 (12)0.0223 (9)0.0165 (9)0.0381 (11)
C270.0387 (8)0.0585 (11)0.0556 (10)0.0057 (7)0.0047 (7)0.0308 (9)
C280.0403 (7)0.0414 (8)0.0355 (7)0.0080 (6)0.0046 (6)0.0208 (6)
C290.0379 (7)0.0303 (7)0.0393 (8)0.0032 (6)0.0016 (6)0.0173 (6)
C300.0372 (7)0.0302 (7)0.0298 (7)0.0057 (5)0.0026 (5)0.0109 (5)
C310.0335 (7)0.0392 (8)0.0300 (7)0.0045 (6)0.0007 (5)0.0128 (6)
C320.0423 (8)0.0525 (10)0.0334 (8)0.0025 (7)0.0013 (6)0.0089 (7)
C330.0423 (9)0.0805 (14)0.0376 (9)0.0048 (9)0.0103 (7)0.0197 (9)
C340.0414 (9)0.0811 (14)0.0444 (9)0.0182 (9)0.0022 (7)0.0308 (10)
C350.0338 (7)0.0574 (10)0.0401 (8)0.0129 (7)0.0037 (6)0.0260 (8)
C360.0306 (6)0.0391 (8)0.0311 (7)0.0068 (5)0.0029 (5)0.0171 (6)
C370.0326 (6)0.0304 (7)0.0314 (7)0.0078 (5)0.0021 (5)0.0147 (5)
C380.0421 (8)0.0317 (7)0.0394 (8)0.0087 (6)0.0014 (6)0.0146 (6)
C390.0515 (9)0.0387 (8)0.0526 (10)0.0199 (7)0.0111 (8)0.0224 (7)
C400.0441 (8)0.0592 (11)0.0570 (10)0.0251 (8)0.0100 (8)0.0345 (9)
N10.0489 (7)0.0314 (6)0.0330 (6)0.0123 (5)0.0004 (5)0.0162 (5)
N20.0503 (7)0.0354 (7)0.0342 (6)0.0102 (6)0.0011 (5)0.0184 (5)
N30.0308 (5)0.0304 (6)0.0353 (6)0.0070 (4)0.0014 (5)0.0181 (5)
O10.0443 (6)0.0350 (6)0.0480 (7)0.0035 (5)0.0053 (5)0.0022 (5)
O20.0367 (5)0.0355 (6)0.0428 (6)0.0005 (4)0.0004 (4)0.0145 (5)
O30.0548 (7)0.0309 (5)0.0429 (6)0.0133 (5)0.0006 (5)0.0086 (5)
S10.0412 (2)0.0578 (3)0.0645 (3)0.00799 (19)0.01113 (19)0.0404 (2)
Geometric parameters (Å, º) top
C1—C61.360 (2)C20—N31.4561 (17)
C1—C21.382 (3)C20—C371.5199 (18)
C1—H10.9300C20—C301.5762 (19)
C2—C31.359 (3)C20—C211.5871 (18)
C2—H20.9300C21—C291.5229 (19)
C3—C41.352 (3)C21—C221.5273 (19)
C3—H30.9300C22—O11.2109 (18)
C4—C51.373 (3)C22—C231.472 (2)
C4—H40.9300C23—C281.392 (2)
C5—C61.371 (2)C23—C241.393 (2)
C5—H50.9300C24—C251.375 (3)
C6—N11.4171 (19)C24—H240.9300
C7—N11.3522 (17)C25—C261.383 (3)
C7—C81.366 (2)C25—H250.9300
C7—H70.9300C26—C271.369 (3)
C8—C91.4207 (19)C26—H260.9300
C8—C161.5031 (18)C27—C281.387 (2)
C9—N21.3337 (19)C27—H270.9300
C9—C101.471 (2)C28—O21.3619 (19)
C10—C111.385 (2)C29—O21.4367 (18)
C10—C151.387 (2)C29—H29A0.9700
C11—C121.381 (3)C29—H29B0.9700
C11—H110.9300C30—O31.2080 (17)
C12—C131.365 (3)C30—C311.473 (2)
C12—H120.9300C31—C321.370 (2)
C13—C141.379 (3)C31—C361.398 (2)
C13—H130.9300C32—C331.407 (3)
C14—C151.378 (3)C32—H320.9300
C14—H140.9300C33—C341.365 (3)
C15—H150.9300C33—H330.9300
C16—C171.5377 (19)C34—C351.414 (2)
C16—C211.5744 (18)C34—H340.9300
C16—H160.9800C35—C361.403 (2)
C17—N31.4488 (16)C35—C401.408 (3)
C17—C181.517 (2)C36—C371.404 (2)
C17—H170.9800C37—C381.362 (2)
C18—S11.8190 (17)C38—C391.418 (2)
C18—H18A0.9700C38—H380.9300
C18—H18B0.9700C39—C401.362 (3)
C19—N31.4410 (19)C39—H390.9300
C19—S11.8187 (16)C40—H400.9300
C19—H19A0.9700N1—N21.3516 (18)
C19—H19B0.9700
C6—C1—C2119.36 (19)C29—C21—C22106.27 (11)
C6—C1—H1120.3C29—C21—C16113.43 (11)
C2—C1—H1120.3C22—C21—C16110.40 (11)
C3—C2—C1121.0 (2)C29—C21—C20114.27 (11)
C3—C2—H2119.5C22—C21—C20107.39 (10)
C1—C2—H2119.5C16—C21—C20104.98 (10)
C4—C3—C2119.44 (19)O1—C22—C23122.22 (14)
C4—C3—H3120.3O1—C22—C21122.30 (13)
C2—C3—H3120.3C23—C22—C21115.47 (12)
C3—C4—C5120.17 (19)C28—C23—C24118.87 (15)
C3—C4—H4119.9C28—C23—C22120.37 (14)
C5—C4—H4119.9C24—C23—C22120.62 (14)
C6—C5—C4120.58 (16)C25—C24—C23120.63 (18)
C6—C5—H5119.7C25—C24—H24119.7
C4—C5—H5119.7C23—C24—H24119.7
C1—C6—C5119.36 (16)C24—C25—C26119.41 (18)
C1—C6—N1120.22 (15)C24—C25—H25120.3
C5—C6—N1120.37 (14)C26—C25—H25120.3
N1—C7—C8108.02 (13)C27—C26—C25121.22 (17)
N1—C7—H7126.0C27—C26—H26119.4
C8—C7—H7126.0C25—C26—H26119.4
C7—C8—C9103.96 (12)C26—C27—C28119.37 (17)
C7—C8—C16126.20 (13)C26—C27—H27120.3
C9—C8—C16129.46 (13)C28—C27—H27120.3
N2—C9—C8111.39 (13)O2—C28—C27117.43 (15)
N2—C9—C10118.23 (13)O2—C28—C23122.08 (13)
C8—C9—C10130.34 (13)C27—C28—C23120.48 (16)
C11—C10—C15118.73 (16)O2—C29—C21111.51 (11)
C11—C10—C9122.01 (15)O2—C29—H29A109.3
C15—C10—C9119.25 (15)C21—C29—H29A109.3
C12—C11—C10120.43 (18)O2—C29—H29B109.3
C12—C11—H11119.8C21—C29—H29B109.3
C10—C11—H11119.8H29A—C29—H29B108.0
C13—C12—C11120.2 (2)O3—C30—C31127.91 (14)
C13—C12—H12119.9O3—C30—C20124.41 (13)
C11—C12—H12119.9C31—C30—C20107.62 (11)
C12—C13—C14120.2 (2)C32—C31—C36120.07 (14)
C12—C13—H13119.9C32—C31—C30132.19 (15)
C14—C13—H13119.9C36—C31—C30107.71 (12)
C15—C14—C13119.8 (2)C31—C32—C33118.07 (17)
C15—C14—H14120.1C31—C32—H32121.0
C13—C14—H14120.1C33—C32—H32121.0
C14—C15—C10120.59 (19)C34—C33—C32121.84 (16)
C14—C15—H15119.7C34—C33—H33119.1
C10—C15—H15119.7C32—C33—H33119.1
C8—C16—C17111.83 (11)C33—C34—C35121.61 (16)
C8—C16—C21117.44 (11)C33—C34—H34119.2
C17—C16—C21104.14 (10)C35—C34—H34119.2
C8—C16—H16107.7C36—C35—C40116.42 (15)
C17—C16—H16107.7C36—C35—C34115.40 (16)
C21—C16—H16107.7C40—C35—C34128.12 (15)
N3—C17—C18103.38 (11)C31—C36—C35123.00 (14)
N3—C17—C16103.13 (11)C31—C36—C37113.46 (12)
C18—C17—C16119.69 (12)C35—C36—C37123.41 (14)
N3—C17—H17110.0C38—C37—C36118.75 (13)
C18—C17—H17110.0C38—C37—C20131.74 (13)
C16—C17—H17110.0C36—C37—C20109.06 (12)
C17—C18—S1103.54 (10)C37—C38—C39118.62 (15)
C17—C18—H18A111.1C37—C38—H38120.7
S1—C18—H18A111.1C39—C38—H38120.7
C17—C18—H18B111.1C40—C39—C38122.53 (15)
S1—C18—H18B111.1C40—C39—H39118.7
H18A—C18—H18B109.0C38—C39—H39118.7
N3—C19—S1103.29 (10)C39—C40—C35120.16 (14)
N3—C19—H19A111.1C39—C40—H40119.9
S1—C19—H19A111.1C35—C40—H40119.9
N3—C19—H19B111.1N2—N1—C7111.75 (12)
S1—C19—H19B111.1N2—N1—C6120.28 (11)
H19A—C19—H19B109.1C7—N1—C6127.95 (13)
N3—C20—C37109.51 (11)C9—N2—N1104.88 (11)
N3—C20—C30113.12 (11)C19—N3—C17109.17 (11)
C37—C20—C30102.09 (11)C19—N3—C20121.01 (11)
N3—C20—C2199.91 (10)C17—N3—C20108.75 (10)
C37—C20—C21120.89 (11)C28—O2—C29114.31 (12)
C30—C20—C21111.76 (10)C19—S1—C1893.45 (7)
C6—C1—C2—C30.8 (5)C22—C23—C28—C27177.10 (14)
C1—C2—C3—C40.8 (5)C22—C21—C29—O261.29 (14)
C2—C3—C4—C51.2 (4)C16—C21—C29—O2177.24 (11)
C3—C4—C5—C60.1 (4)C20—C21—C29—O256.95 (16)
C2—C1—C6—C52.1 (4)N3—C20—C30—O362.38 (18)
C2—C1—C6—N1179.7 (3)C37—C20—C30—O3179.95 (14)
C4—C5—C6—C11.8 (3)C21—C20—C30—O349.46 (19)
C4—C5—C6—N1179.35 (18)N3—C20—C30—C31114.91 (12)
N1—C7—C8—C90.38 (17)C37—C20—C30—C312.65 (14)
N1—C7—C8—C16173.16 (14)C21—C20—C30—C31133.25 (12)
C7—C8—C9—N20.50 (17)O3—C30—C31—C321.8 (3)
C16—C8—C9—N2172.75 (14)C20—C30—C31—C32175.39 (17)
C7—C8—C9—C10178.08 (15)O3—C30—C31—C36179.50 (15)
C16—C8—C9—C104.8 (3)C20—C30—C31—C362.33 (16)
N2—C9—C10—C11141.17 (16)C36—C31—C32—C330.2 (2)
C8—C9—C10—C1141.4 (2)C30—C31—C32—C33177.25 (17)
N2—C9—C10—C1537.3 (2)C31—C32—C33—C340.1 (3)
C8—C9—C10—C15140.12 (17)C32—C33—C34—C350.2 (3)
C15—C10—C11—C120.6 (3)C33—C34—C35—C360.8 (3)
C9—C10—C11—C12179.15 (17)C33—C34—C35—C40176.27 (18)
C10—C11—C12—C130.5 (3)C32—C31—C36—C350.9 (2)
C11—C12—C13—C140.5 (4)C30—C31—C36—C35177.11 (14)
C12—C13—C14—C150.5 (4)C32—C31—C36—C37177.03 (14)
C13—C14—C15—C100.7 (3)C30—C31—C36—C371.02 (17)
C11—C10—C15—C140.7 (3)C40—C35—C36—C31176.26 (15)
C9—C10—C15—C14179.25 (17)C34—C35—C36—C311.2 (2)
C7—C8—C16—C1740.1 (2)C40—C35—C36—C370.6 (2)
C9—C8—C16—C17131.79 (16)C34—C35—C36—C37176.91 (15)
C7—C8—C16—C2180.22 (19)C31—C36—C37—C38173.97 (13)
C9—C8—C16—C21107.91 (17)C35—C36—C37—C382.1 (2)
C8—C16—C17—N3151.11 (11)C31—C36—C37—C200.79 (17)
C21—C16—C17—N323.32 (13)C35—C36—C37—C20175.29 (13)
C8—C16—C17—C1894.90 (15)N3—C20—C37—C3853.9 (2)
C21—C16—C17—C18137.31 (12)C30—C20—C37—C38174.06 (15)
N3—C17—C18—S141.84 (13)C21—C20—C37—C3861.2 (2)
C16—C17—C18—S1155.70 (10)N3—C20—C37—C36118.04 (12)
C8—C16—C21—C292.85 (17)C30—C20—C37—C362.08 (14)
C17—C16—C21—C29127.10 (12)C21—C20—C37—C36126.82 (13)
C8—C16—C21—C22121.98 (13)C36—C37—C38—C393.4 (2)
C17—C16—C21—C22113.77 (12)C20—C37—C38—C39174.72 (14)
C8—C16—C21—C20122.58 (13)C37—C38—C39—C402.2 (3)
C17—C16—C21—C201.67 (13)C38—C39—C40—C350.5 (3)
N3—C20—C21—C29150.53 (11)C36—C35—C40—C391.8 (2)
C37—C20—C21—C2989.50 (15)C34—C35—C40—C39175.25 (18)
C30—C20—C21—C2930.60 (15)C8—C7—N1—N20.16 (18)
N3—C20—C21—C2291.87 (12)C8—C7—N1—C6177.99 (15)
C37—C20—C21—C2228.09 (16)C1—C6—N1—N24.8 (3)
C30—C20—C21—C22148.19 (11)C5—C6—N1—N2177.67 (16)
N3—C20—C21—C1625.63 (12)C1—C6—N1—C7173.2 (2)
C37—C20—C21—C16145.60 (12)C5—C6—N1—C74.3 (3)
C30—C20—C21—C1694.30 (12)C8—C9—N2—N10.41 (17)
C29—C21—C22—O1144.48 (15)C10—C9—N2—N1178.31 (13)
C16—C21—C22—O121.09 (19)C7—N1—N2—C90.16 (17)
C20—C21—C22—O192.82 (16)C6—N1—N2—C9178.47 (13)
C29—C21—C22—C2337.07 (15)S1—C19—N3—C1742.78 (13)
C16—C21—C22—C23160.46 (12)S1—C19—N3—C20170.07 (10)
C20—C21—C22—C2385.62 (14)C18—C17—N3—C1957.10 (15)
O1—C22—C23—C28173.95 (15)C16—C17—N3—C19177.57 (12)
C21—C22—C23—C287.6 (2)C18—C17—N3—C20168.95 (12)
O1—C22—C23—C2410.3 (2)C16—C17—N3—C2043.62 (14)
C21—C22—C23—C24168.12 (14)C37—C20—N3—C1961.20 (16)
C28—C23—C24—C250.3 (3)C30—C20—N3—C1951.93 (16)
C22—C23—C24—C25176.08 (16)C21—C20—N3—C19170.87 (12)
C23—C24—C25—C260.7 (3)C37—C20—N3—C17171.32 (11)
C24—C25—C26—C270.8 (3)C30—C20—N3—C1775.55 (14)
C25—C26—C27—C280.2 (3)C21—C20—N3—C1743.38 (13)
C26—C27—C28—O2177.88 (15)C27—C28—O2—C29158.75 (14)
C26—C27—C28—C231.3 (3)C23—C28—O2—C2922.10 (19)
C24—C23—C28—O2177.82 (14)C21—C29—O2—C2855.40 (16)
C22—C23—C28—O22.0 (2)N3—C19—S1—C1813.50 (11)
C24—C23—C28—C271.3 (2)C17—C18—S1—C1916.32 (12)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C23–C28 benzene ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O30.932.473.207 (2)136
C29—H29A···O30.972.453.074 (2)122
C17—H17···O30.982.523.091 (2)117
C38—H38···O1i0.932.403.226 (2)148
C1—H1···Cgii0.932.943.713 (3)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC40H29N3O3S
Mr631.72
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.9924 (6), 13.2317 (8), 13.2867 (8)
α, β, γ (°)116.900 (3), 92.325 (2), 98.518 (3)
V3)1537.79 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.23 × 0.21 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.966, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
36242, 9612, 6569
Rint0.029
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.154, 1.03
No. of reflections9612
No. of parameters424
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.23

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C23–C28 benzene ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O30.932.473.207 (2)136
C29—H29A···O30.972.453.074 (2)122
C17—H17···O30.982.523.091 (2)117
C38—H38···O1i0.932.403.226 (2)148
C1—H1···Cgii0.932.943.713 (3)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S. & Burke, D. S. (2005). Nature, 437, 209–214.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJagadeesan, G., Sethusankar, K., Kathirvelan, D., Haribabu, J. & Reddy, B. S. R. (2013). Acta Cryst. E69, o317.  CSD CrossRef IUCr Journals Google Scholar
First citationKilonda, A., Compernolle, F. & Hoornaert, G. J. (1995). J. Org. Chem. 60, 5820–5824.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Choon, T. S., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o1265–o1266.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o493-o494
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds