organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Nitro­phenol–1,3,5-triazine-2,4,6-tri­amine (2/1)

aDepartment of Physics, D.G. Vaishnav College, Chennai 600 106, India, bDepartment of Physics, Vel Tech Multi Tech Dr Rangarajan Dr Sakunthala Engineering College, Chennai 600 062, India, cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, dInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wrocław, 2, PO Box 937, Poland, and eDepartment of Physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, anbu_24663@yahoo.co.in

(Received 29 March 2013; accepted 24 April 2013; online 4 May 2013)

The asymmetric unit of the title compound, C3H6N6·2C6H5NO3, contains one melamine and two 3-nitro­phenol mol­ecules. The mean planes of the 3-nitro­phenol mol­ecules are almost orthogonal to the plane of melamine, making dihedral angles of 82.77 (4) and 88.36 (5)°. In the crystal, mol­ecules are linked via O—H⋯N, N—H⋯N and N—H⋯O hydrogen bonds, forming a three-dimensional network. The crystal also features weak C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.9823 (9) Å].

Related literature

For general background to melamine derivatives, see: Desiraju et al. (1990[Desiraju, G. R. (1990). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]); Krische & Lehn (2000[Krische, M. J. & Lehn, J.-M. (2000). Struct. Bond. 96, 3-29.]). For related structures, see: Kanagathara et al. (2012[Kanagathara, N., Chakkaravarthi, G., Marchewka, M. K., Gunasekaran, S. & Anbalagan, G. (2012). Acta Cryst. E68, o2286.]); Wang et al. (2007[Wang, G., Wu, W. & Zhuang, L. (2007). Acta Cryst. E63, m2552-m2553.]).

[Scheme 1]

Experimental

Crystal data
  • C3H6N6·2C6H5NO3

  • Mr = 404.36

  • Orthorhombic, P b c a

  • a = 15.5150 (6) Å

  • b = 12.9137 (6) Å

  • c = 17.8323 (6) Å

  • V = 3572.8 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 295 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.977

  • 19568 measured reflections

  • 4447 independent reflections

  • 3352 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.03

  • 4447 reflections

  • 295 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the melamine tri­amine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3i 0.84 (1) 1.86 (1) 2.6907 (14) 176 (2)
O4—H4A⋯N2ii 0.83 (1) 1.87 (1) 2.6876 (14) 170 (2)
N5—H5A⋯N4iii 0.89 (1) 2.17 (1) 3.0594 (18) 178 (17)
N5—H5B⋯O1iv 0.87 (1) 2.25 (1) 2.9613 (16) 138 (15)
N7—H7A⋯O1v 0.88 (1) 2.32 (1) 3.1600 (17) 159 (14)
N7—H7B⋯O4vi 0.88 (1) 2.13 (1) 2.9180 (16) 149 (15)
C6—H6⋯Cg3vii 0.93 2.95 3.7504 (18) 145
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (vii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Melamine (1,3,5-triazine-2,4,6-triamine) and its derivatives can develop well defined non-covalent supramolecular nanoarchitectures via multiple hydrogen bonds by self-assembly of components containing complementary arrays of hydrogen-bonding sites (Desiraju, 1990; Krische & Lehn, 2000). The geometric parameters of the title compound (Fig. 1) are comparable to those reported for similar structures (Kanagathara et al., 2012; Wang et al., 2007). The mean planes of the two nitrophenol molecules (C1···C6) and (C10···C15) are almost orthogonal to the melamine (N2/C7/N4/C9/N3/C8) molecule, with dihedral angles of 82.77 (4) and 88.36 (5)°, respectively.

The crystal packing of the title compound is influenced by intermolecular O—H···N, N—H···N and N—H···O hydrogen bonds, as well as weak C—H···π (Table 1 and Fig. 2) and ππ interactions: Cg1···Cg2 (x, 1/2-y, 3/2+z) distance of 3.9823 (9) Å; Cg2···Cg1 (-1/2+x, 1/2-y, 1-z) distance of 3.9823 (9) Å; Cg1···Cg2 (-x, 1-y, 1-z) distance of 4.2397 (9) Å; Cg3···Cg1 (1/2-x, 1/2+y, z) distance of 5.0406 (8) Å; where Cg1, Cg2 and Cg3 are the centroids of the rings C1···C6, C10···C15, and N2/C7/N4/C9/N3/C8, respectively.

Related literature top

For general background to melamine derivatives, see: Desiraju et al. (1990); Krische & Lehn (2000). For related structures, see: Kanagathara et al. (2012); Wang et al. (2007).

Experimental top

Melamine (1.261 g, 10 mmol) was dissolved in 200 ml of hot distilled water. 3-Nitrophenol (1.391 g, 10 mmol) was dissolved in 100 ml of distilled water, separately. The 3-nitrophenol solution was added gently to the hot solution of melamine, and the mixture stirred well for nearly five hours to get an homogeneous solution. Water was then allowed to evaporate. Within few days, tiny transparent, yellowish crystals were formed.

Refinement top

H atoms of aromatic CH groups were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms bound to O and N atoms were found in a difference map and refined isotropically, with distances restrained to N—H = 0.88 (1) Å and O—H = 0.82 (1) Å (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines.
3-Nitrophenol–1,3,5-triazine-2,4,6-triamine (2/1) top
Crystal data top
C3H6N6·2C6H5NO3F(000) = 1680
Mr = 404.36Dx = 1.503 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4327 reflections
a = 15.5150 (6) Åθ = 2.3–28.3°
b = 12.9137 (6) ŵ = 0.12 mm1
c = 17.8323 (6) ÅT = 295 K
V = 3572.8 (2) Å3Block, yellow
Z = 80.28 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4447 independent reflections
Radiation source: fine-focus sealed tube3352 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2013
Tmin = 0.967, Tmax = 0.977k = 177
19568 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.7906P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4447 reflectionsΔρmax = 0.24 e Å3
295 parametersΔρmin = 0.20 e Å3
8 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0028 (5)
Primary atom site location: structure-invariant direct methods
Crystal data top
C3H6N6·2C6H5NO3V = 3572.8 (2) Å3
Mr = 404.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.5150 (6) ŵ = 0.12 mm1
b = 12.9137 (6) ÅT = 295 K
c = 17.8323 (6) Å0.28 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4447 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3352 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.977Rint = 0.028
19568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0428 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
4447 reflectionsΔρmin = 0.20 e Å3
295 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20295 (11)0.13223 (11)0.30457 (8)0.0472 (4)
C20.18602 (9)0.11918 (10)0.22906 (8)0.0406 (3)
H20.13050.10480.21230.049*
C30.25379 (9)0.12802 (10)0.17907 (8)0.0365 (3)
C40.33676 (9)0.14713 (12)0.20566 (9)0.0475 (4)
H40.38260.15210.17230.057*
C50.35064 (12)0.15871 (14)0.28162 (10)0.0597 (5)
H50.40620.17120.29890.072*
C60.28408 (13)0.15216 (13)0.33219 (9)0.0586 (5)
H60.29350.16090.38330.070*
C70.01234 (8)0.66741 (10)0.47227 (7)0.0337 (3)
C80.08123 (8)0.82016 (10)0.49038 (7)0.0337 (3)
C90.14073 (8)0.67001 (10)0.53192 (7)0.0322 (3)
C100.15540 (9)0.60489 (10)0.68536 (8)0.0383 (3)
C110.07322 (10)0.59736 (15)0.65597 (9)0.0546 (4)
H110.06430.58510.60520.066*
C120.00506 (10)0.60861 (16)0.70459 (10)0.0595 (5)
H120.05100.60400.68640.071*
C130.01848 (9)0.62665 (13)0.78025 (9)0.0464 (4)
H130.02830.63400.81240.056*
C140.10170 (8)0.63378 (10)0.80810 (8)0.0365 (3)
C150.17126 (8)0.62232 (10)0.76020 (8)0.0369 (3)
H150.22740.62630.77820.044*
N10.13017 (13)0.12490 (12)0.35762 (9)0.0659 (4)
N20.01376 (7)0.77043 (9)0.46051 (6)0.0361 (3)
N30.14703 (7)0.77395 (8)0.52606 (6)0.0354 (2)
N40.07430 (6)0.61329 (8)0.50739 (6)0.0345 (3)
N50.05479 (8)0.61359 (11)0.44621 (8)0.0461 (3)
N60.08276 (9)0.92415 (10)0.48582 (8)0.0457 (3)
N70.20470 (8)0.61983 (10)0.56654 (8)0.0445 (3)
N80.22955 (8)0.59341 (10)0.63461 (7)0.0459 (3)
O10.23651 (6)0.11610 (8)0.10455 (6)0.0433 (3)
O20.14494 (13)0.13811 (14)0.42402 (8)0.1006 (6)
O30.05950 (11)0.10386 (16)0.33363 (10)0.0968 (5)
O40.11865 (7)0.65065 (10)0.88192 (6)0.0537 (3)
O50.30194 (7)0.60094 (10)0.66114 (7)0.0583 (3)
O60.21580 (9)0.57499 (12)0.56836 (6)0.0716 (4)
H10.2744 (10)0.1481 (14)0.0807 (10)0.068 (6)*
H4A0.0754 (9)0.6682 (15)0.9062 (9)0.064 (6)*
H6A0.0446 (9)0.9511 (14)0.4564 (9)0.065 (5)*
H6B0.1328 (8)0.9538 (13)0.4931 (10)0.061 (5)*
H7A0.2051 (10)0.5516 (7)0.5665 (9)0.048 (4)*
H7B0.2525 (8)0.6534 (12)0.5769 (9)0.050 (5)*
H5A0.0593 (11)0.5475 (8)0.4593 (10)0.061 (5)*
H5B0.1003 (8)0.6483 (13)0.4321 (10)0.058 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0631 (10)0.0362 (7)0.0423 (8)0.0015 (7)0.0035 (7)0.0051 (6)
C20.0372 (7)0.0385 (7)0.0461 (7)0.0032 (6)0.0005 (6)0.0041 (6)
C30.0350 (7)0.0346 (6)0.0398 (7)0.0048 (5)0.0051 (5)0.0045 (5)
C40.0369 (8)0.0514 (8)0.0542 (8)0.0108 (6)0.0080 (7)0.0107 (7)
C50.0587 (10)0.0596 (10)0.0608 (10)0.0195 (8)0.0260 (9)0.0123 (8)
C60.0849 (13)0.0476 (9)0.0433 (8)0.0136 (8)0.0168 (9)0.0063 (7)
C70.0258 (6)0.0459 (7)0.0293 (6)0.0013 (5)0.0018 (5)0.0003 (5)
C80.0298 (6)0.0419 (7)0.0295 (6)0.0021 (5)0.0051 (5)0.0018 (5)
C90.0252 (6)0.0416 (7)0.0300 (6)0.0001 (5)0.0010 (5)0.0011 (5)
C100.0370 (7)0.0373 (6)0.0405 (7)0.0007 (5)0.0052 (6)0.0000 (5)
C110.0469 (9)0.0779 (11)0.0391 (7)0.0020 (8)0.0061 (7)0.0013 (7)
C120.0330 (8)0.0935 (13)0.0520 (9)0.0002 (8)0.0107 (7)0.0027 (9)
C130.0281 (7)0.0632 (9)0.0479 (8)0.0024 (6)0.0015 (6)0.0034 (7)
C140.0300 (7)0.0396 (6)0.0399 (7)0.0037 (5)0.0012 (5)0.0049 (5)
C150.0271 (6)0.0389 (6)0.0447 (7)0.0028 (5)0.0000 (5)0.0056 (5)
N10.0904 (13)0.0530 (8)0.0543 (9)0.0022 (8)0.0230 (9)0.0047 (7)
N20.0293 (6)0.0447 (6)0.0342 (5)0.0039 (5)0.0022 (4)0.0046 (4)
N30.0287 (5)0.0406 (6)0.0370 (6)0.0036 (4)0.0031 (4)0.0018 (4)
N40.0259 (5)0.0399 (6)0.0377 (6)0.0000 (4)0.0052 (4)0.0012 (4)
N50.0306 (6)0.0515 (7)0.0561 (7)0.0013 (6)0.0156 (6)0.0033 (6)
N60.0431 (8)0.0406 (6)0.0535 (7)0.0022 (6)0.0009 (6)0.0055 (5)
N70.0294 (6)0.0457 (7)0.0585 (8)0.0017 (5)0.0150 (6)0.0062 (6)
N80.0481 (8)0.0436 (6)0.0460 (7)0.0003 (6)0.0104 (6)0.0007 (5)
O10.0350 (5)0.0563 (6)0.0386 (5)0.0122 (5)0.0010 (4)0.0022 (4)
O20.1446 (16)0.1092 (13)0.0480 (8)0.0043 (11)0.0257 (9)0.0016 (8)
O30.0729 (10)0.1297 (15)0.0876 (11)0.0121 (10)0.0340 (9)0.0054 (10)
O40.0298 (5)0.0893 (8)0.0421 (6)0.0117 (5)0.0014 (4)0.0207 (5)
O50.0396 (6)0.0704 (8)0.0648 (7)0.0011 (5)0.0132 (5)0.0101 (6)
O60.0719 (9)0.1012 (10)0.0417 (6)0.0024 (8)0.0125 (6)0.0077 (6)
Geometric parameters (Å, º) top
C1—C61.376 (2)C10—N81.4712 (18)
C1—C21.382 (2)C11—C121.375 (2)
C1—N11.476 (2)C11—H110.9300
C2—C31.383 (2)C12—C131.385 (2)
C2—H20.9300C12—H120.9300
C3—O11.3644 (16)C13—C141.3865 (19)
C3—C41.3938 (19)C13—H130.9300
C4—C51.380 (2)C14—O41.3599 (16)
C4—H40.9300C14—C151.3842 (18)
C5—C61.374 (3)C15—H150.9300
C5—H50.9300N1—O31.208 (2)
C6—H60.9300N1—O21.218 (2)
C7—N51.3356 (17)N5—H5A0.888 (9)
C7—N41.3434 (16)N5—H5B0.874 (9)
C7—N21.3469 (18)N6—H6A0.863 (9)
C8—N21.3385 (16)N6—H6B0.875 (9)
C8—N31.3429 (16)N7—H7A0.881 (9)
C8—N61.3456 (19)N7—H7B0.878 (9)
C9—N71.3364 (17)N8—O51.2226 (16)
C9—N41.3380 (16)N8—O61.2238 (17)
C9—N31.3498 (17)O1—H10.835 (9)
C10—C151.3756 (19)O4—H4A0.830 (9)
C10—C111.382 (2)
C6—C1—C2123.05 (15)C11—C12—C13121.09 (14)
C6—C1—N1118.84 (15)C11—C12—H12119.5
C2—C1—N1118.10 (15)C13—C12—H12119.5
C1—C2—C3118.25 (14)C12—C13—C14120.01 (14)
C1—C2—H2120.9C12—C13—H13120.0
C3—C2—H2120.9C14—C13—H13120.0
O1—C3—C2117.97 (12)O4—C14—C15117.63 (12)
O1—C3—C4122.19 (13)O4—C14—C13122.51 (12)
C2—C3—C4119.83 (13)C15—C14—C13119.86 (13)
C5—C4—C3119.82 (15)C10—C15—C14118.47 (12)
C5—C4—H4120.1C10—C15—H15120.8
C3—C4—H4120.1C14—C15—H15120.8
C6—C5—C4121.37 (15)O3—N1—O2123.13 (18)
C6—C5—H5119.3O3—N1—C1118.81 (16)
C4—C5—H5119.3O2—N1—C1118.04 (19)
C5—C6—C1117.66 (15)C8—N2—C7115.13 (11)
C5—C6—H6121.2C8—N3—C9115.05 (11)
C1—C6—H6121.2C9—N4—C7114.76 (11)
N5—C7—N4116.71 (12)C7—N5—H5A118.0 (12)
N5—C7—N2118.20 (12)C7—N5—H5B117.7 (12)
N4—C7—N2125.08 (11)H5A—N5—H5B120.4 (17)
N2—C8—N3124.74 (12)C8—N6—H6A115.2 (13)
N2—C8—N6117.95 (12)C8—N6—H6B116.3 (12)
N3—C8—N6117.30 (12)H6A—N6—H6B121.5 (19)
N7—C9—N4117.24 (12)C9—N7—H7A119.3 (11)
N7—C9—N3117.65 (12)C9—N7—H7B119.0 (11)
N4—C9—N3125.09 (11)H7A—N7—H7B119.2 (15)
C15—C10—C11122.99 (13)O5—N8—O6123.30 (13)
C15—C10—N8118.25 (12)O5—N8—C10118.19 (12)
C11—C10—N8118.76 (13)O6—N8—C10118.50 (13)
C12—C11—C10117.58 (14)C3—O1—H1107.5 (14)
C12—C11—H11121.2C14—O4—H4A113.1 (13)
C10—C11—H11121.2
C6—C1—C2—C30.9 (2)C6—C1—N1—O3177.46 (17)
N1—C1—C2—C3178.75 (12)C2—C1—N1—O32.9 (2)
C1—C2—C3—O1179.35 (12)C6—C1—N1—O20.8 (2)
C1—C2—C3—C41.5 (2)C2—C1—N1—O2178.81 (16)
O1—C3—C4—C5179.91 (14)N3—C8—N2—C73.86 (18)
C2—C3—C4—C51.0 (2)N6—C8—N2—C7174.73 (12)
C3—C4—C5—C60.2 (3)N5—C7—N2—C8177.70 (12)
C4—C5—C6—C10.8 (3)N4—C7—N2—C83.47 (18)
C2—C1—C6—C50.3 (2)N2—C8—N3—C91.28 (18)
N1—C1—C6—C5179.92 (14)N6—C8—N3—C9177.32 (12)
C15—C10—C11—C120.4 (3)N7—C9—N3—C8179.61 (12)
N8—C10—C11—C12179.86 (15)N4—C9—N3—C82.16 (18)
C10—C11—C12—C130.1 (3)N7—C9—N4—C7179.26 (12)
C11—C12—C13—C140.1 (3)N3—C9—N4—C72.50 (18)
C12—C13—C14—O4179.52 (15)N5—C7—N4—C9179.35 (12)
C12—C13—C14—C150.3 (2)N2—C7—N4—C90.50 (18)
C11—C10—C15—C140.6 (2)C15—C10—N8—O50.72 (19)
N8—C10—C15—C14179.63 (12)C11—C10—N8—O5179.50 (14)
O4—C14—C15—C10179.81 (12)C15—C10—N8—O6177.97 (14)
C13—C14—C15—C100.6 (2)C11—C10—N8—O61.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the melamine triamine ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N3i0.84 (1)1.86 (1)2.6907 (14)176 (2)
O4—H4A···N2ii0.83 (1)1.87 (1)2.6876 (14)170 (2)
N5—H5A···N4iii0.89 (1)2.17 (1)3.0594 (18)178 (17)
N5—H5B···O1iv0.87 (1)2.25 (1)2.9613 (16)138 (15)
N7—H7A···O1v0.88 (1)2.32 (1)3.1600 (17)159 (14)
N7—H7B···O4vi0.88 (1)2.13 (1)2.9180 (16)149 (15)
C6—H6···Cg3vii0.932.953.7504 (18)145
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1/2, y, z+3/2; (vii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC3H6N6·2C6H5NO3
Mr404.36
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)15.5150 (6), 12.9137 (6), 17.8323 (6)
V3)3572.8 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
19568, 4447, 3352
Rint0.028
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.03
No. of reflections4447
No. of parameters295
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the melamine triamine ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N3i0.835 (9)1.857 (10)2.6907 (14)176 (2)
O4—H4A···N2ii0.830 (9)1.865 (10)2.6876 (14)170 (2)
N5—H5A···N4iii0.888 (9)2.172 (10)3.0594 (18)178 (17)
N5—H5B···O1iv0.874 (9)2.250 (14)2.9613 (16)138 (15)
N7—H7A···O1v0.881 (9)2.321 (10)3.1600 (17)159 (14)
N7—H7B···O4vi0.878 (9)2.131 (12)2.9180 (16)149 (15)
C6—H6···Cg3vii0.932.9533.7504 (18)145
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1/2, y, z+3/2; (vii) x+1/2, y1/2, z.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT Madras (India), for the data collection.

References

First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1990). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationKanagathara, N., Chakkaravarthi, G., Marchewka, M. K., Gunasekaran, S. & Anbalagan, G. (2012). Acta Cryst. E68, o2286.  CSD CrossRef IUCr Journals Google Scholar
First citationKrische, M. J. & Lehn, J.-M. (2000). Struct. Bond. 96, 3–29.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G., Wu, W. & Zhuang, L. (2007). Acta Cryst. E63, m2552–m2553.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds