organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis{2-[(4-meth­­oxy­benzyl­­idene)amino]­phen­yl}disulfane

aKingfa Scientific & Technological Coporation Limited, Guang Zhou, China 510663, People's Republic of China
*Correspondence e-mail: xinw0408@163.com

(Received 15 April 2013; accepted 28 April 2013; online 15 May 2013)

The asymmetric unit of the title compound, C28H24N2O2S2, contains one-half mol­ecule, which is completed by twofold rotation symmetry with the twofold axis passing through the mid-point of the central S—S bond. The planes of the two benzene rings linked by the di­sulfide chain form a dihedral angle of 76.1 (1)°, while the planes of the two benzene rings in the benzyl­ideneaniline fragment form a dihedral angle of 48.9 (1)°. The crystal packing exhibits no significantly short inter­molecular contacts.

Related literature

For the crystal structures of related compounds, see: İde et al. (1997[İde, S., Öztaş, G., Ancin, N. & Tüzün, M. (1997). Acta Cryst. C53, 376-378.]); Ozbey et al. (1998[Ozbey, S., Temel, A., Ancin, N., Oztas, S. G. & Tuzun, M. (1998). Z. Kristallogr. New Cryst. Struct. 213, 207-208.]); He et al. (2011[He, Q.-P., Dai, L. & Tan, B. (2011). Acta Cryst. E67, o3240.]); Wang et al. (2011[Wang, Y., Shi, S., Han, Y. & Wei, G.-D. (2011). Acta Cryst. E67, o3364.]).

[Scheme 1]

Experimental

Crystal data
  • C28H24N2O2S2

  • Mr = 484.61

  • Orthorhombic, P b c n

  • a = 10.2657 (11) Å

  • b = 13.0675 (13) Å

  • c = 18.3415 (15) Å

  • V = 2460.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.26 × 0.22 × 0.17 mm

Data collection
  • Bruker SMART APEX CCD area-etector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.939, Tmax = 0.960

  • 9487 measured reflections

  • 2163 independent reflections

  • 1363 reflections with I > 2σ(I)

  • Rint = 0.094

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.139

  • S = 0.95

  • 2163 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a contribution to structural study of diaminodiphenyl disulfides (İde et al., 1997; Wang et al., 2011; He et al., 2011), we present here the crystal structure of the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in related compounds (İde et al., 1997; Ozbey et al.,1998; He et al., 2011). The molecule has crystallographic twofold rotation symmetry with the twofold axis passing through the midpoint of the central S—S bond. Two benzene rings connected through disulfide chain form a dihedral angle of 76.1 (1)°. Two benzene rings in two benzylideneaniline fragments form the dihedral angles of 48.9 (1)°. The crystal packing exhibits no significantly short intermolecular contacts.

Related literature top

For the crystal structures of related compounds, see: İde et al. (1997); Ozbey et al. (1998); He et al. (2011); Wang et al. (2011).

Experimental top

4-Methoxybenzaldehyde (2 mmol) in ethanol (10 ml) was added to a solution of 2,2'-diaminodiphenyl disulfide (1 mmol) in ethanol (20 ml). The solution was heated to 323 K for 4 h. The reaction mixture was cooled to room tempertature and the yellow crystalline product was obtained.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H 0.93–0.96 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 50% probabilty displacement ellipsoids. Unlabelled atoms are related with the labelled ones by symmetry operation (-x, y, 1/2 - z).
1,2-Bis{2-[(4-methoxybenzylidene)amino]phenyl}disulfane top
Crystal data top
C28H24N2O2S2Dx = 1.308 Mg m3
Mr = 484.61Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 1719 reflections
a = 10.2657 (11) Åθ = 2.5–22.9°
b = 13.0675 (13) ŵ = 0.25 mm1
c = 18.3415 (15) ÅT = 298 K
V = 2460.5 (4) Å3Block, yellow
Z = 40.26 × 0.22 × 0.17 mm
F(000) = 1016
Data collection top
Bruker SMART APEX CCD area-etector
diffractometer
2163 independent reflections
Radiation source: fine-focus sealed tube1363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 812
Tmin = 0.939, Tmax = 0.960k = 1215
9487 measured reflectionsl = 1721
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
2163 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C28H24N2O2S2V = 2460.5 (4) Å3
Mr = 484.61Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 10.2657 (11) ŵ = 0.25 mm1
b = 13.0675 (13) ÅT = 298 K
c = 18.3415 (15) Å0.26 × 0.22 × 0.17 mm
Data collection top
Bruker SMART APEX CCD area-etector
diffractometer
2163 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1363 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.960Rint = 0.094
9487 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 0.95Δρmax = 0.37 e Å3
2163 reflectionsΔρmin = 0.28 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01987 (8)0.02789 (6)0.19518 (4)0.0510 (3)
N10.1694 (2)0.02278 (17)0.06606 (11)0.0433 (6)
O10.0529 (2)0.39678 (18)0.14776 (12)0.0757 (7)
C10.1483 (3)0.0635 (2)0.18144 (14)0.0408 (7)
C20.1829 (3)0.1399 (2)0.23057 (15)0.0494 (8)
H20.13900.14590.27470.059*
C30.2830 (3)0.2067 (2)0.21360 (16)0.0574 (8)
H30.30620.25750.24670.069*
C40.3491 (3)0.1991 (2)0.14808 (16)0.0596 (9)
H40.41530.24500.13690.072*
C50.3159 (3)0.1225 (2)0.09907 (15)0.0510 (8)
H50.36050.11710.05510.061*
C60.2160 (3)0.0532 (2)0.11509 (14)0.0417 (7)
C70.2471 (3)0.0735 (2)0.02534 (14)0.0468 (7)
H70.33590.05940.02760.056*
C80.2011 (3)0.1530 (2)0.02483 (13)0.0451 (7)
C90.0684 (3)0.1658 (2)0.03945 (14)0.0483 (7)
H90.00890.11920.02050.058*
C100.0241 (3)0.2456 (2)0.08118 (15)0.0518 (8)
H100.06460.25240.09020.062*
C110.1108 (3)0.3167 (2)0.11021 (14)0.0518 (8)
C120.2432 (3)0.3044 (2)0.09884 (14)0.0541 (8)
H120.30240.35050.11870.065*
C130.2868 (3)0.2216 (2)0.05696 (14)0.0539 (8)
H130.37580.21230.05050.065*
C140.1355 (4)0.4714 (3)0.1798 (2)0.0852 (12)
H14A0.19300.49870.14340.128*
H14B0.08360.52570.19980.128*
H14C0.18590.44040.21800.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0584 (6)0.0438 (5)0.0509 (5)0.0064 (4)0.0120 (4)0.0093 (3)
N10.0474 (15)0.0441 (13)0.0383 (12)0.0016 (11)0.0033 (11)0.0047 (11)
O10.0769 (17)0.0664 (16)0.0839 (16)0.0040 (13)0.0048 (13)0.0296 (13)
C10.0446 (18)0.0362 (15)0.0415 (15)0.0036 (13)0.0016 (13)0.0014 (12)
C20.064 (2)0.0450 (18)0.0395 (15)0.0004 (15)0.0080 (14)0.0022 (13)
C30.069 (2)0.0495 (19)0.0536 (18)0.0127 (17)0.0051 (16)0.0100 (15)
C40.064 (2)0.054 (2)0.061 (2)0.0174 (16)0.0045 (16)0.0008 (16)
C50.054 (2)0.0534 (19)0.0451 (16)0.0032 (16)0.0130 (14)0.0001 (14)
C60.0428 (17)0.0428 (16)0.0395 (15)0.0035 (13)0.0009 (13)0.0001 (12)
C70.0447 (18)0.0508 (17)0.0449 (15)0.0015 (15)0.0022 (14)0.0015 (13)
C80.053 (2)0.0492 (17)0.0330 (14)0.0047 (14)0.0048 (13)0.0003 (12)
C90.0509 (19)0.0487 (18)0.0452 (16)0.0089 (15)0.0002 (14)0.0031 (13)
C100.0499 (19)0.0558 (19)0.0496 (17)0.0019 (16)0.0017 (14)0.0028 (15)
C110.063 (2)0.0533 (19)0.0389 (15)0.0033 (17)0.0038 (15)0.0040 (14)
C120.065 (2)0.0540 (19)0.0436 (16)0.0157 (17)0.0081 (15)0.0101 (14)
C130.0511 (19)0.066 (2)0.0444 (16)0.0081 (16)0.0066 (14)0.0069 (15)
C140.101 (3)0.065 (3)0.090 (3)0.011 (2)0.005 (2)0.030 (2)
Geometric parameters (Å, º) top
S1—C11.797 (3)C7—C81.466 (4)
S1—S1i2.0518 (14)C7—H70.9300
N1—C71.278 (3)C8—C131.388 (4)
N1—C61.423 (3)C8—C91.398 (4)
O1—C111.387 (4)C9—C101.372 (4)
O1—C141.420 (4)C9—H90.9300
C1—C21.390 (4)C10—C111.392 (4)
C1—C61.408 (3)C10—H100.9300
C2—C31.385 (4)C11—C121.385 (4)
C2—H20.9300C12—C131.400 (4)
C3—C41.383 (4)C12—H120.9300
C3—H30.9300C13—H130.9300
C4—C51.388 (4)C14—H14A0.9600
C4—H40.9300C14—H14B0.9600
C5—C61.398 (4)C14—H14C0.9600
C5—H50.9300
C1—S1—S1i106.46 (9)C13—C8—C9117.3 (3)
C7—N1—C6121.4 (2)C13—C8—C7121.3 (3)
C11—O1—C14117.9 (3)C9—C8—C7121.3 (3)
C2—C1—C6120.1 (3)C10—C9—C8121.4 (3)
C2—C1—S1125.0 (2)C10—C9—H9119.3
C6—C1—S1114.8 (2)C8—C9—H9119.3
C3—C2—C1119.8 (3)C9—C10—C11120.6 (3)
C3—C2—H2120.1C9—C10—H10119.7
C1—C2—H2120.1C11—C10—H10119.7
C4—C3—C2120.9 (3)C12—C11—O1125.7 (3)
C4—C3—H3119.6C12—C11—C10119.5 (3)
C2—C3—H3119.6O1—C11—C10114.8 (3)
C3—C4—C5119.7 (3)C11—C12—C13119.1 (3)
C3—C4—H4120.2C11—C12—H12120.5
C5—C4—H4120.2C13—C12—H12120.5
C4—C5—C6120.7 (3)C8—C13—C12122.0 (3)
C4—C5—H5119.7C8—C13—H13119.0
C6—C5—H5119.7C12—C13—H13119.0
C5—C6—C1118.8 (2)O1—C14—H14A109.5
C5—C6—N1124.4 (2)O1—C14—H14B109.5
C1—C6—N1116.5 (2)H14A—C14—H14B109.5
N1—C7—C8122.2 (3)O1—C14—H14C109.5
N1—C7—H7118.9H14A—C14—H14C109.5
C8—C7—H7118.9H14B—C14—H14C109.5
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H24N2O2S2
Mr484.61
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)10.2657 (11), 13.0675 (13), 18.3415 (15)
V3)2460.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.26 × 0.22 × 0.17
Data collection
DiffractometerBruker SMART APEX CCD area-etector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.939, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
9487, 2163, 1363
Rint0.094
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.139, 0.95
No. of reflections2163
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.28

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author acknowledges the financial support of the Kingfa Scientific & Technological corporation Ltd.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, Q.-P., Dai, L. & Tan, B. (2011). Acta Cryst. E67, o3240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationİde, S., Öztaş, G., Ancin, N. & Tüzün, M. (1997). Acta Cryst. C53, 376–378.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationOzbey, S., Temel, A., Ancin, N., Oztas, S. G. & Tuzun, M. (1998). Z. Kristallogr. New Cryst. Struct. 213, 207–208.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Shi, S., Han, Y. & Wei, G.-D. (2011). Acta Cryst. E67, o3364.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds