organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o977-o978

Ethyl 7-oxo-7H-benzo[de]imidazo[5,1-a]iso­quinoline-11-carboxyl­ate–tri­fluoro­acetic acid (1/1)

aDepartment of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
*Correspondence e-mail: dzsquared@aol.com

(Received 27 March 2013; accepted 20 May 2013; online 31 May 2013)

The structure of the title tri­fluoro­acetic acid adduct, C17H12N2O3·C2HF3O2, contains a tri­fluoro­acetic acid mol­ecule hydrogen bonded to the imine N atom of the imidazole ring of a nearly planar four-fused-ring system (r.m.s. deviatiation = 0.013 Å). The carb­oxy­lic acid group of the triflouro­acetic acid mol­ecule is twisted with respect to the mean plane of the four-fused-ring sytem by 75.9 (2)°. A short intra­molecular C—H⋯O hydrogen bond occurs. In the crystal, the adduct mol­ecules are arranged into stacks along the b axis via ππ inter­actions between imidazole rings and between imidazole and one of the benzene rings [centroid–centroid distances 3.352 (2) and 3.485 (2) Å, respectively]. Molecules are linked via C—H⋯O hydrogen bonds, forming an alternating polymeric head-to-head/tail-to-tail stepped chain approximately along the a-axis direction and tilted on an axis bisecting the b and c axes.

Related literature

For 19F NMR studies of related compounds, see: Stibrany (2003[Stibrany, R. T. (2003). Copper-Based Olefin Polymerization Catalysts: High-Pressure 19F NMR Catalyst Probe, ACS Symp. Series 857, Beyond Metallocenes, edited by G. G. Hlatky & A. O. Patil, pp. 210-221. Washington, DC: ACS Press.]). For polymerization studies, see: Stibrany et al. (2003[Stibrany, R. T., Schulz, D. N., Kacker, S., Patil, A. O., Baugh, L. S., Rucker, S. P., Zushma, S., Berluche, E. & Sissano, J. A. (2003). Macromolecules, 36, 8584-8586.]). For their use as agents to study electron transfer, see: Knapp et al. (1990[Knapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. & Schugar, H. J. (1990). J. Am. Chem. Soc. 112, 3452-3464.]). For related structures, see: Baugh et al. (2006[Baugh, L. S., Sissano, J. A., Kacker, S., Berluche, E., Stibrany, R. T., Schulz, D. N. & Rucker, S. P. (2006). J. Polym. Sci. Part A Polym. Chem. 44, 1817-1840.]); Stibrany (2003[Stibrany, R. T. (2003). Copper-Based Olefin Polymerization Catalysts: High-Pressure 19F NMR Catalyst Probe, ACS Symp. Series 857, Beyond Metallocenes, edited by G. G. Hlatky & A. O. Patil, pp. 210-221. Washington, DC: ACS Press.]); Stibrany et al. (2002[Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2002). Acta Cryst. E58, o1142-o1144.], 2004[Stibrany, R. T., Lobanov, M. V., Schugar, H. J. & Potenza, J. A. (2004). Inorg. Chem. 43, 1472-1480.]); Stibrany & Potenza (2008[Stibrany, R. T. & Potenza, J. A. (2008). Acta Cryst. C64, m213-m216.], 2009[Stibrany, R. T. & Potenza, J. A. (2009). Acta Cryst. C65, o406-o409.]); Gorun et al. (1996[Gorun, S. M., Stibrany, R. T., Katritzky, A. R., Slawinski, J. J., Faid-Allah, H. & Brunner, F. (1996). Inorg. Chem. 35, 3-4.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12N2O3·C2HF3O2

  • Mr = 406.31

  • Triclinic, [P \overline 1]

  • a = 7.642 (3) Å

  • b = 8.111 (4) Å

  • c = 14.043 (6) Å

  • α = 97.539 (8)°

  • β = 98.055 (8)°

  • γ = 92.695 (8)°

  • V = 852.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100 K

  • 0.48 × 0.10 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.711, Tmax = 1.00

  • 7689 measured reflections

  • 3380 independent reflections

  • 2642 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.140

  • S = 1.00

  • 3380 reflections

  • 267 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O11 0.93 2.15 2.981 (3) 148
O2—H2O⋯N13 1.03 (3) 1.58 (3) 2.597 (2) 170 (3)
C13—H13⋯O30i 0.93 2.28 3.143 (3) 154
C23—H23⋯O11ii 0.93 2.46 3.320 (3) 155
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+2, -y+2, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound, Fig. 1, was isolated as part of our long-term interest in the chemistry of bis (imidazoles), bis(benzimidazoles), and their complexes with metal ions. These species have demonstrated their usefulness as proton sponges (Stibrany et al., 2002), geometrically constraining ligands (Stibrany et al., 2004), agents to study electron transfer (Knapp et al., 1990), polymerization catalysts (Stibrany et al., 2003; Baugh et al., 2006), 19F NMR polymerization catalyst probes (Stibrany, 2003), and in the formation of metal-organic copolymers (Stibrany & Potenza, 2008). Previously, we have shown that 1-methylbenzimidazole can be used in the synthesis of bis(benzimidazole)ketones, which were found to be useful ligands for the chelation of metals (Gorun et al., 1996).

Our investigation into the synthesis of acenapthoimidazoles as building blocks for higher dentate ligands led us to attempt a similar method of preparation as for phenanthroimidazoles (Stibrany & Potenza, 2009). The title compound was isolated by chromatography as a side product of that preparation. The trifluoroacetic acid adduct [C18H12N2O3][C2HF3O2] contains trifluoroacetic acid molecule, hydrogen bonded to the imine nitrogen of the imidazole ring of a nearly-planar, four-fused-ring system (r.m.s. deviatiation = 0.013 Å). A carbonyl-centroid interaction is formed by C41-O11 to the centroid formed by C20, C25/C29 (-x+1, -y, -z+1) with a O11-Cg distance of 3.567 (2) Å and a C41-O11···Cg angle of 78.0 (1)°. In the space group P1 , the adduct molecules are centrosymmetrically disposed about the origin, and form π-π dimers through the imidazole rings along the b cell direction Fig 2. The first Cg-Cg interaction is the imidazole ring (N11, N13, C11/C13) paired to a symmetry related imidazole (-x+1, -y+1, -z+1) at a distance of 3.352 (2) Å. A second Cg-Cg interaction is formed by the imidazole ring and the centroid C21/C26 (-x+1, -y, 1-z) at a distance of 3.485 (2) Å. There are three short intermolecular hydrogen bonds and one short intramolecular hydrogen bond found in the structure and are listed in the hydrogen-bond Table 1. No additional electron density was located near N13 in the difference Fourier maps, likely due to the electron-withdrawing effect of the adjacent ethyl ester group.

Related literature top

For 19F NMR studies of related compounds, see: Stibrany (2003). For polymerization studies, see: Stibrany et al. (2003). For their use as agents to study electron transfer, see: Knapp et al. (1990). For related structures, see: Baugh et al. (2006); Stibrany (2003); Stibrany et al. (2002, 2004); Stibrany & Potenza (2008, 2009); Gorun et al. (1996).

Experimental top

The title compound was isolated as a minor side product in the condensation of acenaphthaquinone in place of phenanthroquinone (Stibrany & Potenza, 2009). A small yellow–orange band was isolated by chromatography on silica gel using ethyl acetate as the eluent. Two X-ray quality crystals were obtained by slow evaporation of a 10:1 v/v methanol/trifluoroacetic acid solution of the title compound.

Refinement top

Hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.97 (methylene), 0.96 (methyl) and 0.93 Å (aromatic), and with Uiso(H) = 1.2–1.5Ueq (C). The carboxylic hydrogen atom was freely refined.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are shown at the 40% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing of the π-π stacked imidazole dimers approximately along the b axis in the unit cell viewed approximately down the a axis.
Ethyl 7-oxo-7H-benzo[de]imidazo[5,1-a]isoquinoline-11-carboxylate–trifluoroacetic acid (1/1) top
Crystal data top
C17H12N2O3·C2HF3O2Z = 2
Mr = 406.31F(000) = 416
Triclinic, P1Dx = 1.583 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.642 (3) ÅCell parameters from 800 reflections
b = 8.111 (4) Åθ = 2.5–26.0°
c = 14.043 (6) ŵ = 0.14 mm1
α = 97.539 (8)°T = 100 K
β = 98.055 (8)°Spike, yellow
γ = 92.695 (8)°0.48 × 0.10 × 0.07 mm
V = 852.6 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3380 independent reflections
Radiation source: fine-focus sealed tube2642 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 26.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000; Blessing, 1995)
h = 99
Tmin = 0.711, Tmax = 1.00k = 1010
7689 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0934P)2 + 0.124P]
where P = (Fo2 + 2Fc2)/3
3380 reflections(Δ/σ)max < 0.001
267 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C17H12N2O3·C2HF3O2γ = 92.695 (8)°
Mr = 406.31V = 852.6 (6) Å3
Triclinic, P1Z = 2
a = 7.642 (3) ÅMo Kα radiation
b = 8.111 (4) ŵ = 0.14 mm1
c = 14.043 (6) ÅT = 100 K
α = 97.539 (8)°0.48 × 0.10 × 0.07 mm
β = 98.055 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3380 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000; Blessing, 1995)
2642 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 1.00Rint = 0.032
7689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.42 e Å3
3380 reflectionsΔρmin = 0.28 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.25760 (19)0.12397 (17)0.05463 (9)0.0435 (4)
F20.0782 (2)0.27375 (17)0.01973 (9)0.0460 (4)
F30.0070 (2)0.13711 (19)0.08785 (10)0.0550 (5)
O10.1872 (2)0.51438 (18)0.12697 (11)0.0390 (4)
O20.2409 (2)0.32127 (17)0.22686 (10)0.0300 (4)
O110.79755 (19)0.70261 (18)0.38002 (10)0.0310 (4)
O120.60779 (18)0.52898 (16)0.27167 (9)0.0242 (3)
O300.08434 (17)0.69206 (16)0.60128 (9)0.0250 (3)
N110.3148 (2)0.69116 (18)0.51474 (11)0.0185 (3)
N130.3464 (2)0.54546 (18)0.37627 (11)0.0201 (4)
C10.1900 (3)0.3743 (2)0.14513 (13)0.0242 (4)
C20.1289 (3)0.2258 (3)0.06570 (14)0.0276 (5)
C110.4856 (2)0.7380 (2)0.49858 (13)0.0183 (4)
C120.5023 (2)0.6433 (2)0.41081 (12)0.0189 (4)
C130.2372 (2)0.5763 (2)0.43870 (12)0.0199 (4)
H130.12300.52720.43250.024*
C200.5334 (3)1.1120 (2)0.80732 (13)0.0260 (5)
H200.59711.19230.85430.031*
C210.5911 (2)0.8628 (2)0.57107 (12)0.0185 (4)
C220.7608 (2)0.9217 (2)0.56293 (13)0.0217 (4)
H220.81270.87940.50960.026*
C230.8557 (3)1.0438 (2)0.63361 (14)0.0248 (4)
H230.96891.08220.62620.030*
C240.7837 (3)1.1071 (2)0.71340 (14)0.0247 (4)
H240.84831.18770.75990.030*
C250.6110 (3)1.0504 (2)0.72550 (13)0.0224 (4)
C260.5131 (2)0.9275 (2)0.65349 (13)0.0193 (4)
C270.3396 (3)0.8738 (2)0.66789 (13)0.0205 (4)
C280.2685 (3)0.9367 (2)0.74925 (13)0.0241 (4)
H280.15530.89930.75730.029*
C290.3665 (3)1.0565 (2)0.81947 (14)0.0281 (5)
H290.31881.09860.87440.034*
C300.2317 (2)0.7487 (2)0.59630 (13)0.0191 (4)
C410.6521 (2)0.6321 (2)0.35499 (13)0.0206 (4)
C420.7451 (3)0.5121 (3)0.20891 (14)0.0274 (5)
H42A0.83810.44690.23580.033*
H42B0.79700.62100.20270.033*
C430.6566 (3)0.4257 (3)0.11143 (14)0.0346 (5)
H43A0.61120.31610.11810.052*
H43B0.74130.41720.06680.052*
H43C0.56100.48860.08720.052*
H2O0.284 (4)0.419 (4)0.281 (2)0.061 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0536 (9)0.0426 (8)0.0288 (7)0.0170 (6)0.0016 (6)0.0117 (6)
F20.0704 (10)0.0429 (8)0.0192 (6)0.0082 (7)0.0094 (6)0.0009 (5)
F30.0627 (10)0.0589 (9)0.0352 (8)0.0337 (8)0.0193 (7)0.0232 (7)
O10.0595 (11)0.0267 (8)0.0269 (8)0.0030 (7)0.0062 (7)0.0029 (6)
O20.0476 (9)0.0231 (7)0.0164 (7)0.0031 (6)0.0007 (6)0.0004 (6)
O110.0297 (8)0.0378 (8)0.0236 (7)0.0072 (6)0.0089 (6)0.0049 (6)
O120.0290 (7)0.0273 (7)0.0157 (6)0.0000 (6)0.0065 (5)0.0020 (5)
O300.0243 (7)0.0270 (7)0.0231 (7)0.0040 (6)0.0063 (5)0.0000 (5)
N110.0216 (8)0.0182 (8)0.0153 (7)0.0011 (6)0.0027 (6)0.0016 (6)
N130.0258 (8)0.0189 (8)0.0149 (7)0.0004 (6)0.0013 (6)0.0025 (6)
C10.0257 (10)0.0276 (11)0.0189 (9)0.0026 (8)0.0027 (7)0.0021 (8)
C20.0310 (11)0.0327 (11)0.0188 (10)0.0023 (9)0.0038 (8)0.0023 (8)
C110.0205 (9)0.0189 (9)0.0162 (9)0.0016 (7)0.0023 (7)0.0049 (7)
C120.0228 (9)0.0183 (9)0.0149 (8)0.0000 (7)0.0002 (7)0.0027 (7)
C130.0229 (9)0.0201 (9)0.0156 (9)0.0016 (7)0.0002 (7)0.0029 (7)
C200.0382 (12)0.0202 (10)0.0166 (9)0.0002 (8)0.0010 (8)0.0023 (7)
C210.0239 (9)0.0167 (9)0.0140 (8)0.0004 (7)0.0002 (7)0.0027 (7)
C220.0254 (10)0.0217 (9)0.0179 (9)0.0017 (7)0.0024 (7)0.0036 (7)
C230.0237 (10)0.0239 (10)0.0259 (10)0.0004 (8)0.0004 (8)0.0054 (8)
C240.0291 (11)0.0193 (9)0.0225 (10)0.0035 (8)0.0042 (8)0.0009 (7)
C250.0306 (10)0.0183 (9)0.0173 (9)0.0024 (8)0.0009 (8)0.0027 (7)
C260.0249 (10)0.0167 (9)0.0160 (9)0.0012 (7)0.0010 (7)0.0038 (7)
C270.0272 (10)0.0191 (9)0.0156 (9)0.0027 (8)0.0023 (7)0.0041 (7)
C280.0291 (11)0.0244 (10)0.0201 (9)0.0025 (8)0.0064 (8)0.0045 (7)
C290.0398 (12)0.0272 (11)0.0166 (9)0.0052 (9)0.0053 (8)0.0016 (8)
C300.0222 (10)0.0209 (9)0.0153 (8)0.0029 (7)0.0046 (7)0.0039 (7)
C410.0277 (10)0.0185 (9)0.0158 (9)0.0001 (8)0.0036 (7)0.0027 (7)
C420.0315 (11)0.0321 (11)0.0209 (10)0.0041 (9)0.0109 (8)0.0038 (8)
C430.0412 (13)0.0452 (13)0.0183 (10)0.0076 (10)0.0086 (9)0.0013 (9)
Geometric parameters (Å, º) top
F1—C21.326 (3)C20—H200.9300
F2—C21.322 (2)C21—C221.386 (3)
F3—C21.332 (2)C21—C261.426 (3)
O1—C11.197 (2)C22—C231.402 (3)
O2—C11.294 (2)C22—H220.9300
O2—H2O1.03 (3)C23—C241.368 (3)
O11—C411.210 (2)C23—H230.9300
O12—C411.338 (2)C24—C251.418 (3)
O12—C421.462 (2)C24—H240.9300
O30—C301.211 (2)C25—C261.425 (3)
N11—C131.368 (2)C26—C271.425 (3)
N11—C111.399 (2)C27—C281.381 (3)
N11—C301.423 (2)C27—C301.463 (3)
N13—C131.302 (3)C28—C291.397 (3)
N13—C121.390 (2)C28—H280.9300
C1—C21.537 (3)C29—H290.9300
C11—C121.390 (3)C42—C431.506 (3)
C11—C211.461 (2)C42—H42A0.9700
C12—C411.475 (3)C42—H42B0.9700
C13—H130.9300C43—H43A0.9600
C20—C291.373 (3)C43—H43B0.9600
C20—C251.410 (3)C43—H43C0.9600
C1—O2—H2O111.3 (16)C23—C24—C25120.26 (17)
C41—O12—C42115.50 (15)C23—C24—H24119.9
C13—N11—C11108.78 (15)C25—C24—H24119.9
C13—N11—C30124.09 (15)C20—C25—C24121.70 (17)
C11—N11—C30127.13 (15)C20—C25—C26118.99 (18)
C13—N13—C12107.70 (15)C24—C25—C26119.30 (18)
O1—C1—O2129.19 (18)C25—C26—C27117.75 (17)
O1—C1—C2120.89 (18)C25—C26—C21119.44 (17)
O2—C1—C2109.92 (17)C27—C26—C21122.81 (16)
F2—C2—F1107.05 (17)C28—C27—C26121.52 (17)
F2—C2—F3107.57 (17)C28—C27—C30118.02 (18)
F1—C2—F3107.45 (18)C26—C27—C30120.46 (17)
F2—C2—C1112.15 (17)C27—C28—C29120.05 (19)
F1—C2—C1111.43 (16)C27—C28—H28120.0
F3—C2—C1110.95 (16)C29—C28—H28120.0
C12—C11—N11103.93 (15)C20—C29—C28119.86 (19)
C12—C11—C21138.42 (17)C20—C29—H29120.1
N11—C11—C21117.65 (16)C28—C29—H29120.1
C11—C12—N13109.43 (16)O30—C30—N11119.32 (16)
C11—C12—C41130.92 (17)O30—C30—C27126.38 (17)
N13—C12—C41119.64 (16)N11—C30—C27114.30 (16)
N13—C13—N11110.16 (16)O11—C41—O12123.27 (17)
N13—C13—H13124.9O11—C41—C12125.94 (17)
N11—C13—H13124.9O12—C41—C12110.78 (16)
C29—C20—C25121.82 (17)O12—C42—C43106.77 (16)
C29—C20—H20119.1O12—C42—H42A110.4
C25—C20—H20119.1C43—C42—H42A110.4
C22—C21—C26119.02 (16)O12—C42—H42B110.4
C22—C21—C11123.35 (17)C43—C42—H42B110.4
C26—C21—C11117.63 (17)H42A—C42—H42B108.6
C21—C22—C23121.24 (18)C42—C43—H43A109.5
C21—C22—H22119.4C42—C43—H43B109.5
C23—C22—H22119.4H43A—C43—H43B109.5
C24—C23—C22120.73 (19)C42—C43—H43C109.5
C24—C23—H23119.6H43A—C43—H43C109.5
C22—C23—H23119.6H43B—C43—H43C109.5
O1—C1—C2—F20.6 (3)C20—C25—C26—C270.5 (3)
O2—C1—C2—F2178.97 (17)C24—C25—C26—C27179.78 (16)
O1—C1—C2—F1120.6 (2)C20—C25—C26—C21179.23 (16)
O2—C1—C2—F159.0 (2)C24—C25—C26—C210.5 (3)
O1—C1—C2—F3119.7 (2)C22—C21—C26—C250.1 (3)
O2—C1—C2—F360.7 (2)C11—C21—C26—C25179.51 (16)
C13—N11—C11—C120.7 (2)C22—C21—C26—C27179.83 (16)
C30—N11—C11—C12178.48 (16)C11—C21—C26—C270.8 (3)
C13—N11—C11—C21179.02 (15)C25—C26—C27—C280.7 (3)
C30—N11—C11—C211.8 (3)C21—C26—C27—C28178.95 (17)
N11—C11—C12—N130.52 (19)C25—C26—C27—C30179.58 (16)
C21—C11—C12—N13179.2 (2)C21—C26—C27—C300.7 (3)
N11—C11—C12—C41178.54 (17)C26—C27—C28—C290.4 (3)
C21—C11—C12—C411.8 (4)C30—C27—C28—C29179.91 (17)
C13—N13—C12—C110.1 (2)C25—C20—C29—C280.5 (3)
C13—N13—C12—C41179.07 (16)C27—C28—C29—C200.2 (3)
C12—N13—C13—N110.4 (2)C13—N11—C30—O301.5 (3)
C11—N11—C13—N130.7 (2)C11—N11—C30—O30177.63 (16)
C30—N11—C13—N13178.53 (15)C13—N11—C30—C27179.09 (15)
C12—C11—C21—C220.7 (3)C11—N11—C30—C271.8 (3)
N11—C11—C21—C22178.98 (16)C28—C27—C30—O300.8 (3)
C12—C11—C21—C26180.0 (2)C26—C27—C30—O30178.88 (17)
N11—C11—C21—C260.4 (2)C28—C27—C30—N11179.81 (15)
C26—C21—C22—C230.5 (3)C26—C27—C30—N110.5 (2)
C11—C21—C22—C23178.86 (16)C42—O12—C41—O112.9 (3)
C21—C22—C23—C240.7 (3)C42—O12—C41—C12178.27 (15)
C22—C23—C24—C250.3 (3)C11—C12—C41—O113.7 (3)
C29—C20—C25—C24179.62 (18)N13—C12—C41—O11175.24 (18)
C29—C20—C25—C260.1 (3)C11—C12—C41—O12177.52 (18)
C23—C24—C25—C20179.44 (17)N13—C12—C41—O123.5 (2)
C23—C24—C25—C260.3 (3)C41—O12—C42—C43166.99 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O110.932.152.981 (3)148
O2—H2O···N131.03 (3)1.58 (3)2.597 (2)170 (3)
C13—H13···O30i0.932.283.143 (3)154
C23—H23···O11ii0.932.463.320 (3)155
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC17H12N2O3·C2HF3O2
Mr406.31
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.642 (3), 8.111 (4), 14.043 (6)
α, β, γ (°)97.539 (8), 98.055 (8), 92.695 (8)
V3)852.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.48 × 0.10 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000; Blessing, 1995)
Tmin, Tmax0.711, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
7689, 3380, 2642
Rint0.032
(sin θ/λ)max1)0.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.140, 1.00
No. of reflections3380
No. of parameters267
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.28

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O110.932.152.981 (3)148
O2—H2O···N131.03 (3)1.58 (3)2.597 (2)170 (3)
C13—H13···O30i0.932.283.143 (3)154
C23—H23···O11ii0.932.463.320 (3)155
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y+2, z+1.
 

References

First citationBaugh, L. S., Sissano, J. A., Kacker, S., Berluche, E., Stibrany, R. T., Schulz, D. N. & Rucker, S. P. (2006). J. Polym. Sci. Part A Polym. Chem. 44, 1817–1840.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGorun, S. M., Stibrany, R. T., Katritzky, A. R., Slawinski, J. J., Faid-Allah, H. & Brunner, F. (1996). Inorg. Chem. 35, 3–4.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationKnapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. & Schugar, H. J. (1990). J. Am. Chem. Soc. 112, 3452–3464.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T. (2003). Copper-Based Olefin Polymerization Catalysts: High-Pressure 19F NMR Catalyst Probe, ACS Symp. Series 857, Beyond Metallocenes, edited by G. G. Hlatky & A. O. Patil, pp. 210–221. Washington, DC: ACS Press.  Google Scholar
First citationStibrany, R. T., Lobanov, M. V., Schugar, H. J. & Potenza, J. A. (2004). Inorg. Chem. 43, 1472–1480.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2008). Acta Cryst. C64, m213–m216.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2009). Acta Cryst. C65, o406–o409.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Schugar, H. J. & Potenza, J. A. (2002). Acta Cryst. E58, o1142–o1144.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Schulz, D. N., Kacker, S., Patil, A. O., Baugh, L. S., Rucker, S. P., Zushma, S., Berluche, E. & Sissano, J. A. (2003). Macromolecules, 36, 8584–8586.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o977-o978
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds