metal-organic compounds
trans-Diaquabis(pyridazine-3-carboxylato-κ2N2,O)cobalt(II) dihydrate
aDepartamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad de País Vasco UPV/EHU, PO Box 644, E-48080 Bilbao, Spain
*Correspondence e-mail: juanma.zorrilla@ehu.es
The title compound, [Co(C5H3N2O2)2(H2O)2]·2H2O, contains a CoII ion on an inversion center, exhibiting an octahedral coordination geometry. The equatorial plane is formed by two trans-related N,O-bidentate pyridazine-3-carboxylate ligands and the axial positions are occupied by two water molecules. The CoII complex molecules are stacked in a column along the a-axis direction by an O—H⋯N hydrogen bond between the non-coordinating pyridazine N atom and the coordinating water molecule. These columns are further connected into a layer parallel to the ac plane by additional hydrogen bonds involving the coordinating and non-coordinating water molecules, and the non-coordinating carboxylate O atom. The crystal packing is completed by interlayer weak C—H⋯O interactions.
Related literature
For the isotypic zinc(II) and manganese(II) complexes, see: Gryz et al. (2003); Ardiwlnata et al. (1989). For a related zinc(II) complex which does not contain non-coordinating water molecules, see: Gryz et al. (2004).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536813017340/is5284sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813017340/is5284Isup2.hkl
To a solution of CoCl2.6H2O (71 mg, 0.3 mmol) in water (15 ml) 3-pyridazine carboxylic acid (74 mg, 0.6 mmol) was added and the resulting solution was stirred for 30 min at 90 °C. Prismatic orange crystals were obtained by slow evaporation after two days.
H atoms of the water molecules were located in a Fourier difference map and refined isotropically with O—H bond lengths restrained to 0.84 (2) Å. All H atoms of the pyridazine ring were positioned geometrically and refined using a riding model with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).
The title compound, trans-[Co(C4H3N2O2)2(H2O)2].2H2O, crystallizes in the triclinic
P-1, and it is isostructural with the zinc and manganese complexes previously reported by Gryz et al. (2003) and Ardiwlnata et al. (1989). As expected, the Co—O and Co—N distances (Table 1) are similar to those of the Zn(II) and Mn(II) analogues. Table 2 summarizes the geometrical parameters of the O—H···O and N—H···O hydrogen bonding interactions.For the isotypic zinc(II) and manganese(II) complexes, see: Gryz et al. (2003); Ardiwlnata et al. (1989). For a related zinc(II) complex which does not contain non-coordinating water molecules, see: Gryz et al. (2004).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).Fig. 1. Molecular structure of the title compound, showing atom labelling and 50% probability displacement ellipsoids. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.] | |
Fig. 2. Left: View of the crystal packing along the crystallographic a axis. Right: Projection of a layer along the [110] direction (O—H···O and O—H···N hydrogen bonds represented as dotted red lines and C—H···O weak interactions as dotted green lines). |
[Co(C5H3N2O2)2(H2O)2]·2H2O | Z = 1 |
Mr = 377.18 | F(000) = 193 |
Triclinic, P1 | Dx = 1.805 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.2934 (4) Å | Cell parameters from 1404 reflections |
b = 7.2817 (8) Å | θ = 2.2–27.8° |
c = 9.6196 (9) Å | µ = 1.29 mm−1 |
α = 79.673 (8)° | T = 100 K |
β = 89.875 (7)° | Prism, orange |
γ = 72.321 (8)° | 0.09 × 0.07 × 0.05 mm |
V = 347.01 (6) Å3 |
Agilent SuperNova Single source at offset diffractometer | 1369 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 1309 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.018 |
Detector resolution: 16.2439 pixels mm-1 | θmax = 26°, θmin = 2.2° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −8→7 |
Tmin = 0.907, Tmax = 0.967 | l = −11→11 |
2202 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.058 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0165P)2 + 0.2394P] where P = (Fo2 + 2Fc2)/3 |
1369 reflections | (Δ/σ)max < 0.001 |
122 parameters | Δρmax = 0.28 e Å−3 |
4 restraints | Δρmin = −0.31 e Å−3 |
[Co(C5H3N2O2)2(H2O)2]·2H2O | γ = 72.321 (8)° |
Mr = 377.18 | V = 347.01 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.2934 (4) Å | Mo Kα radiation |
b = 7.2817 (8) Å | µ = 1.29 mm−1 |
c = 9.6196 (9) Å | T = 100 K |
α = 79.673 (8)° | 0.09 × 0.07 × 0.05 mm |
β = 89.875 (7)° |
Agilent SuperNova Single source at offset diffractometer | 1369 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 1309 reflections with I > 2σ(I) |
Tmin = 0.907, Tmax = 0.967 | Rint = 0.018 |
2202 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 4 restraints |
wR(F2) = 0.058 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.28 e Å−3 |
1369 reflections | Δρmin = −0.31 e Å−3 |
122 parameters |
Experimental. IR (cm-1): 3500(s), 3320(s), 3229(s), 3075(s), 1626(s), 1580(m), 1559(s), 1451(w), 1385(w), 1227(w), 1163(w), 1090(w), 1074(w), 1034(w), 988(m), 851(m), 783(m), 721(m), 675(m), 536(w), 440(w). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.5 | 0.5 | 0.5 | 0.00870 (12) | |
O1W | 0.3333 (3) | 0.3129 (2) | 0.41228 (15) | 0.0114 (3) | |
N1 | −0.0009 (3) | 0.8482 (2) | 0.40078 (17) | 0.0106 (3) | |
O1 | 0.7179 (3) | 0.52521 (19) | 0.32270 (14) | 0.0108 (3) | |
O2 | 0.7178 (3) | 0.7107 (2) | 0.11041 (14) | 0.0134 (3) | |
N2 | 0.2411 (3) | 0.7466 (2) | 0.36752 (17) | 0.0097 (3) | |
O2W | 0.2458 (3) | 0.4748 (2) | 0.13080 (16) | 0.0164 (3) | |
C5 | −0.0299 (4) | 1.0868 (3) | 0.1892 (2) | 0.0143 (4) | |
H5 | −0.1268 | 1.2074 | 0.1306 | 0.017* | |
C7 | 0.6162 (4) | 0.6691 (3) | 0.2244 (2) | 0.0105 (4) | |
C3 | 0.3458 (4) | 0.8063 (3) | 0.2481 (2) | 0.0098 (4) | |
C6 | −0.1312 (4) | 1.0140 (3) | 0.3137 (2) | 0.0123 (4) | |
H6 | −0.3022 | 1.0865 | 0.3375 | 0.015* | |
C4 | 0.2144 (4) | 0.9783 (3) | 0.1543 (2) | 0.0130 (4) | |
H4 | 0.2908 | 1.0191 | 0.0695 | 0.016* | |
H2WA | 0.086 (3) | 0.541 (3) | 0.122 (3) | 0.029 (7)* | |
H1WA | 0.291 (5) | 0.359 (3) | 0.3285 (18) | 0.024 (7)* | |
H2WB | 0.281 (5) | 0.420 (4) | 0.062 (2) | 0.032 (8)* | |
H1WB | 0.214 (4) | 0.281 (4) | 0.454 (3) | 0.031 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0088 (2) | 0.0093 (2) | 0.00666 (19) | −0.00195 (15) | 0.00114 (14) | 0.00030 (14) |
O1W | 0.0119 (7) | 0.0136 (7) | 0.0087 (7) | −0.0048 (6) | 0.0012 (6) | −0.0001 (6) |
N1 | 0.0095 (8) | 0.0113 (8) | 0.0114 (8) | −0.0029 (7) | 0.0008 (6) | −0.0036 (7) |
O1 | 0.0104 (7) | 0.0111 (7) | 0.0088 (7) | −0.0019 (6) | 0.0010 (5) | 0.0012 (5) |
O2 | 0.0161 (7) | 0.0143 (7) | 0.0089 (7) | −0.0045 (6) | 0.0051 (6) | −0.0002 (6) |
N2 | 0.0091 (8) | 0.0116 (8) | 0.0096 (8) | −0.0040 (7) | 0.0008 (6) | −0.0035 (7) |
O2W | 0.0148 (8) | 0.0210 (8) | 0.0127 (8) | −0.0029 (7) | 0.0002 (6) | −0.0060 (6) |
C5 | 0.0163 (10) | 0.0095 (10) | 0.0146 (11) | −0.0021 (8) | −0.0025 (8) | 0.0009 (8) |
C7 | 0.0114 (9) | 0.0104 (9) | 0.0119 (10) | −0.0053 (8) | 0.0002 (8) | −0.0046 (8) |
C3 | 0.0103 (9) | 0.0105 (9) | 0.0097 (9) | −0.0037 (8) | 0.0009 (7) | −0.0037 (8) |
C6 | 0.0106 (10) | 0.0127 (10) | 0.0138 (10) | −0.0024 (8) | 0.0005 (8) | −0.0049 (8) |
C4 | 0.0160 (10) | 0.0129 (10) | 0.0102 (10) | −0.0057 (8) | 0.0012 (8) | 0.0002 (8) |
Co1—O1 | 2.0689 (13) | O2—C7 | 1.249 (2) |
Co1—O1i | 2.0689 (13) | N2—C3 | 1.334 (2) |
Co1—N2i | 2.1023 (16) | O2W—H2WA | 0.835 (17) |
Co1—N2 | 2.1023 (16) | O2W—H2WB | 0.824 (17) |
Co1—O1W | 2.1199 (14) | C5—C4 | 1.372 (3) |
Co1—O1Wi | 2.1199 (14) | C5—C6 | 1.395 (3) |
O1W—H1WA | 0.819 (16) | C5—H5 | 0.95 |
O1W—H1WB | 0.822 (17) | C7—C3 | 1.520 (3) |
N1—C6 | 1.330 (2) | C3—C4 | 1.391 (3) |
N1—N2 | 1.341 (2) | C6—H6 | 0.95 |
O1—C7 | 1.259 (2) | C4—H4 | 0.95 |
O1—Co1—O1i | 180 | C3—N2—N1 | 121.11 (16) |
O1—Co1—N2i | 101.76 (6) | C3—N2—Co1 | 113.96 (13) |
O1i—Co1—N2i | 78.24 (6) | N1—N2—Co1 | 124.73 (12) |
O1—Co1—N2 | 78.24 (6) | H2WA—O2W—H2WB | 108 (3) |
O1i—Co1—N2 | 101.76 (6) | C4—C5—C6 | 117.74 (18) |
N2i—Co1—N2 | 180 | C4—C5—H5 | 121.1 |
O1—Co1—O1W | 89.54 (5) | C6—C5—H5 | 121.1 |
O1i—Co1—O1W | 90.46 (5) | O2—C7—O1 | 126.21 (18) |
N2i—Co1—O1W | 89.58 (6) | O2—C7—C3 | 117.09 (17) |
N2—Co1—O1W | 90.42 (6) | O1—C7—C3 | 116.69 (16) |
O1—Co1—O1Wi | 90.46 (5) | N2—C3—C4 | 122.10 (18) |
O1i—Co1—O1Wi | 89.54 (5) | N2—C3—C7 | 114.00 (16) |
N2i—Co1—O1Wi | 90.42 (6) | C4—C3—C7 | 123.89 (17) |
N2—Co1—O1Wi | 89.58 (6) | N1—C6—C5 | 123.38 (18) |
O1W—Co1—O1Wi | 180.00 (4) | N1—C6—H6 | 118.3 |
Co1—O1W—H1WA | 109.3 (17) | C5—C6—H6 | 118.3 |
Co1—O1W—H1WB | 117.4 (18) | C5—C4—C3 | 117.37 (18) |
H1WA—O1W—H1WB | 112 (2) | C5—C4—H4 | 121.3 |
C6—N1—N2 | 118.24 (16) | C3—C4—H4 | 121.3 |
C7—O1—Co1 | 116.67 (12) | ||
N2i—Co1—O1—C7 | −176.98 (13) | Co1—O1—C7—C3 | −0.1 (2) |
N2—Co1—O1—C7 | 3.02 (13) | N1—N2—C3—C4 | 1.8 (3) |
O1W—Co1—O1—C7 | 93.54 (13) | Co1—N2—C3—C4 | −173.40 (14) |
O1Wi—Co1—O1—C7 | −86.46 (13) | N1—N2—C3—C7 | −177.51 (15) |
C6—N1—N2—C3 | −2.1 (3) | Co1—N2—C3—C7 | 7.27 (19) |
C6—N1—N2—Co1 | 172.59 (13) | O2—C7—C3—N2 | 175.85 (16) |
O1—Co1—N2—C3 | −5.73 (12) | O1—C7—C3—N2 | −5.0 (2) |
O1i—Co1—N2—C3 | 174.27 (12) | O2—C7—C3—C4 | −3.5 (3) |
O1W—Co1—N2—C3 | −95.18 (13) | O1—C7—C3—C4 | 175.72 (17) |
O1Wi—Co1—N2—C3 | 84.82 (13) | N2—N1—C6—C5 | 0.4 (3) |
O1—Co1—N2—N1 | 179.25 (15) | C4—C5—C6—N1 | 1.5 (3) |
O1i—Co1—N2—N1 | −0.75 (15) | C6—C5—C4—C3 | −1.7 (3) |
O1W—Co1—N2—N1 | 89.80 (14) | N2—C3—C4—C5 | 0.2 (3) |
O1Wi—Co1—N2—N1 | −90.20 (14) | C7—C3—C4—C5 | 179.45 (17) |
Co1—O1—C7—O2 | 179.04 (15) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H2WA···O2ii | 0.83 (2) | 1.96 (2) | 2.787 (2) | 175 (2) |
O1W—H1WA···O2W | 0.82 (2) | 1.92 (2) | 2.732 (2) | 171 (3) |
O2W—H2WB···O2iii | 0.83 (2) | 2.05 (2) | 2.865 (2) | 168 (3) |
O1W—H1WB···N1iv | 0.82 (2) | 2.07 (3) | 2.862 (2) | 164 (3) |
C4—H4···O2v | 0.95 | 2.37 | 3.188 (2) | 145 |
C6—H6···O1Wvi | 0.95 | 2.33 | 3.264 (3) | 166 |
Symmetry codes: (ii) x−1, y, z; (iii) −x+1, −y+1, −z; (iv) −x, −y+1, −z+1; (v) −x+1, −y+2, −z; (vi) x−1, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Co(C5H3N2O2)2(H2O)2]·2H2O |
Mr | 377.18 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 5.2934 (4), 7.2817 (8), 9.6196 (9) |
α, β, γ (°) | 79.673 (8), 89.875 (7), 72.321 (8) |
V (Å3) | 347.01 (6) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.29 |
Crystal size (mm) | 0.09 × 0.07 × 0.05 |
Data collection | |
Diffractometer | Agilent SuperNova Single source at offset |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.907, 0.967 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2202, 1369, 1309 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.058, 1.08 |
No. of reflections | 1369 |
No. of parameters | 122 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.28, −0.31 |
Computer programs: CrysAlis PRO (Agilent, 2011), OLEX2 (Dolomanov et al., 2009), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H2WA···O2i | 0.833 (19) | 1.956 (19) | 2.787 (2) | 175.3 (17) |
O1W—H1WA···O2W | 0.819 (18) | 1.921 (17) | 2.732 (2) | 171 (3) |
O2W—H2WB···O2ii | 0.83 (2) | 2.05 (2) | 2.865 (2) | 168 (3) |
O1W—H1WB···N1iii | 0.82 (2) | 2.07 (3) | 2.862 (2) | 164 (3) |
C4—H4···O2iv | 0.95 | 2.37 | 3.188 (2) | 145 |
C6—H6···O1Wv | 0.95 | 2.33 | 3.264 (3) | 166 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+2, −z; (v) x−1, y+1, z. |
Acknowledgements
This work has been supported financially by Eusko Jaurlaritza/Gobierno Vasco (grants IT477–10 and S–PE11UN062) and the Universidad de País Vasco UPV/EHU (UFI11/53). BA thanks EJ/GV for his predoctoral fellowship.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Ardiwlnata, E. S., Craig, C. D. & Phillips, D. J. (1989). Inorg. Chim. Acta, 166, 233–238. CSD CrossRef Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gryz, M., Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, m1481–m1483. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Gryz, M., Starosta, W., Ptasiewicz, H. & Leciejewicz, J. (2003). J. Coord. Chem. 56, 1505–1511. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, trans-[Co(C4H3N2O2)2(H2O)2].2H2O, crystallizes in the triclinic crystal system, space group P-1, and it is isostructural with the zinc and manganese complexes previously reported by Gryz et al. (2003) and Ardiwlnata et al. (1989). As expected, the Co—O and Co—N distances (Table 1) are similar to those of the Zn(II) and Mn(II) analogues. Table 2 summarizes the geometrical parameters of the O—H···O and N—H···O hydrogen bonding interactions.