inorganic compounds
Pentazirconium copper tribismuth
aInstitute of Chemistry, Environment Protection and Biotechnology, Jan Dlugosz University, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland, and bDepartment of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005, Lviv, Ukraine
*Correspondence e-mail: tarasiuk.i@gmail.com
Pentazirconium copper tribismuth, Zr5CuBi3, crystallizes in the hexagonal Hf5CuSn3 structure type. The contains two Zr sites (site symmetries 3.2 and m2m), one Cu site (site symmetry 3.m) and one Bi site (site symmetry m2m). The environment of the Bi atoms is a tetragonal antiprism with one added atom and a (CN) of 9. The polyhedron around the Zr1 atom is a defective cubooctahedron with CN = 11. The bicapped hexagonal antiprism (CN = 14) is typical for Zr2 atoms. The Cu atom is enclosed in a eight-vertex polyhedron (octahedron with two centered faces). The metallic type of bonding was indicated by an analysis of the interatomic distances and electronic structure calculation data.
Related literature
For general background, see: Dolotko et al. (2003); Giza et al. (2001, 2009); Zatorska et al. (2002a,b, 2004). For isotypic structures, see: Garcia & Corbett (1990); Pöttgen (1997); Rieger & Parthé (1965); Stetskiv et al. (2011). For calculation of the electronic structure using the tight-binding linear muffin-tin orbital (TB–LMTO) method in the atomic spheres approximation, see: Andersen (1975); Andersen & Jepsen (1984); Andersen et al. (1985, 1986).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536813019235/ff2112sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813019235/ff2112Isup2.hkl
The title compound was prepared from elemental zirconium (foil, 0.25 mm thick 99.8 at.%, Aldrich), copper (powder, pure, POCH) and bismuth (granules, 99.5 at.%, POCH). The pieces of the pure metals with a stoichiometry Zr50Cu20Bi30 were pressed into pellet. The sample was melted in arc furnace under continuous argon flow. The losses in alloy composition during melting were checked by weight comparison of the initial mixtures and the alloys. Metallic grey prismatic crystals were found in a crushed alloy using a conventional light microscope.
The structure was solved after the analytical absorption correction. In the first stage of the
the positions of the Zr, Cu and Bi atoms were obtained correctly by After the last cycle of the highest peak of 1.915 e/Å3 is at (0; 0.4552; 1/4) and 0.76 Å away from the Bi atom. The deepest hole -1.539 e/Å3 is at (0.2424; 0; 1/4) and 1.12 Å away from the same atom.Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Zr5CuBi3 | Dx = 9.274 Mg m−3 |
Mr = 1146.58 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P63/mcm | Cell parameters from 185 reflections |
Hall symbol: -P 6c 2 | θ = 2.7–27.4° |
a = 8.8712 (4) Å | µ = 72.54 mm−1 |
c = 6.0246 (3) Å | T = 293 K |
V = 410.60 (3) Å3 | Prism, metallic grey |
Z = 2 | 0.08 × 0.04 × 0.02 mm |
F(000) = 956 |
Oxford Diffraction Xcalibur3 CCD diffractometer | 193 independent reflections |
Radiation source: fine-focus sealed tube | 185 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.136 |
Detector resolution: 0 pixels mm-1 | θmax = 27.4°, θmin = 2.7° |
ω scans | h = −11→11 |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) | k = −11→11 |
Tmin = 0.231, Tmax = 0.654 | l = 0→7 |
1713 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.023 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.041 | w = 1/[σ2(Fo2) + (0.010P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.87 | (Δ/σ)max < 0.001 |
193 reflections | Δρmax = 1.92 e Å−3 |
13 parameters | Δρmin = −1.54 e Å−3 |
Zr5CuBi3 | Z = 2 |
Mr = 1146.58 | Mo Kα radiation |
Hexagonal, P63/mcm | µ = 72.54 mm−1 |
a = 8.8712 (4) Å | T = 293 K |
c = 6.0246 (3) Å | 0.08 × 0.04 × 0.02 mm |
V = 410.60 (3) Å3 |
Oxford Diffraction Xcalibur3 CCD diffractometer | 193 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) | 185 reflections with I > 2σ(I) |
Tmin = 0.231, Tmax = 0.654 | Rint = 0.136 |
1713 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 13 parameters |
wR(F2) = 0.041 | 0 restraints |
S = 0.87 | Δρmax = 1.92 e Å−3 |
193 reflections | Δρmin = −1.54 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Bi1 | 0.63082 (6) | 0.63082 (6) | 0.2500 | 0.00715 (19) | |
Zr1 | 0.26831 (17) | 0.26831 (17) | 0.2500 | 0.0083 (3) | |
Zr2 | 0.6667 | 0.3333 | 0.0000 | 0.0103 (4) | |
Cu1 | 0.0000 | 0.0000 | 0.0000 | 0.0102 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Bi1 | 0.0060 (2) | 0.0060 (2) | 0.0098 (3) | 0.0033 (2) | 0.000 | 0.000 |
Zr1 | 0.0075 (4) | 0.0075 (4) | 0.0102 (8) | 0.0039 (5) | 0.000 | 0.000 |
Zr2 | 0.0132 (7) | 0.0132 (7) | 0.0045 (11) | 0.0066 (3) | 0.000 | 0.000 |
Cu1 | 0.0106 (14) | 0.0106 (14) | 0.009 (3) | 0.0053 (7) | 0.000 | 0.000 |
Bi1—Zr1i | 2.9319 (6) | Zr2—Zr2ii | 3.0123 (2) |
Bi1—Zr1ii | 2.9319 (6) | Zr2—Zr2viii | 3.0123 (2) |
Bi1—Zr1iii | 3.1424 (5) | Zr2—Bi1ix | 3.1896 (2) |
Bi1—Zr1iv | 3.1424 (5) | Zr2—Bi1ii | 3.1896 (2) |
Bi1—Zr2v | 3.1896 (2) | Zr2—Bi1vi | 3.1896 (2) |
Bi1—Zr2ii | 3.1896 (2) | Zr2—Bi1x | 3.1896 (2) |
Bi1—Zr2 | 3.1896 (2) | Zr2—Bi1iv | 3.1896 (2) |
Bi1—Zr2iv | 3.1896 (2) | Zr2—Zr1ii | 3.6126 (9) |
Bi1—Zr1 | 3.2159 (17) | Zr2—Zr1vi | 3.6126 (9) |
Zr1—Cu1 | 2.8167 (13) | Zr2—Zr1ix | 3.6126 (9) |
Zr1—Cu1v | 2.8167 (13) | Zr2—Zr1x | 3.6126 (9) |
Zr1—Bi1vi | 2.9319 (6) | Cu1—Zr1xi | 2.8167 (13) |
Zr1—Bi1vii | 2.9319 (6) | Cu1—Zr1ix | 2.8167 (13) |
Zr1—Bi1iii | 3.1424 (5) | Cu1—Zr1xii | 2.8167 (13) |
Zr1—Bi1iv | 3.1424 (5) | Cu1—Zr1xiii | 2.8167 (13) |
Zr1—Zr2ii | 3.6126 (9) | Cu1—Zr1xiv | 2.8167 (13) |
Zr1—Zr2v | 3.6126 (9) | Cu1—Cu1v | 3.0123 (2) |
Zr1—Zr2 | 3.6126 (9) | Cu1—Cu1xii | 3.0123 (2) |
Zr1—Zr2iv | 3.6126 (9) | ||
Zr1i—Bi1—Zr1ii | 89.35 (6) | Zr2viii—Zr2—Bi1ix | 61.822 (2) |
Zr1i—Bi1—Zr1iii | 78.32 (3) | Zr2ii—Zr2—Bi1ii | 61.822 (2) |
Zr1ii—Bi1—Zr1iii | 78.32 (3) | Zr2viii—Zr2—Bi1ii | 118.178 (2) |
Zr1i—Bi1—Zr1iv | 78.32 (3) | Bi1ix—Zr2—Bi1ii | 88.460 (16) |
Zr1ii—Bi1—Zr1iv | 78.32 (3) | Zr2ii—Zr2—Bi1vi | 61.822 (2) |
Zr1iii—Bi1—Zr1iv | 146.91 (6) | Zr2viii—Zr2—Bi1vi | 118.178 (2) |
Zr1i—Bi1—Zr2v | 72.20 (3) | Bi1ix—Zr2—Bi1vi | 73.185 (10) |
Zr1ii—Bi1—Zr2v | 145.409 (19) | Bi1ii—Zr2—Bi1vi | 99.528 (3) |
Zr1iii—Bi1—Zr2v | 69.571 (14) | Zr2ii—Zr2—Bi1x | 118.178 (2) |
Zr1iv—Bi1—Zr2v | 123.798 (7) | Zr2viii—Zr2—Bi1x | 61.822 (2) |
Zr1i—Bi1—Zr2ii | 145.409 (19) | Bi1ix—Zr2—Bi1x | 99.528 (3) |
Zr1ii—Bi1—Zr2ii | 72.20 (3) | Bi1ii—Zr2—Bi1x | 73.185 (10) |
Zr1iii—Bi1—Zr2ii | 69.571 (14) | Bi1vi—Zr2—Bi1x | 170.093 (17) |
Zr1iv—Bi1—Zr2ii | 123.798 (7) | Zr2ii—Zr2—Bi1iv | 118.178 (2) |
Zr2v—Bi1—Zr2ii | 106.815 (9) | Zr2viii—Zr2—Bi1iv | 61.822 (2) |
Zr1i—Bi1—Zr2 | 145.409 (19) | Bi1ix—Zr2—Bi1iv | 99.528 (3) |
Zr1ii—Bi1—Zr2 | 72.20 (3) | Bi1ii—Zr2—Bi1iv | 170.093 (17) |
Zr1iii—Bi1—Zr2 | 123.798 (7) | Bi1vi—Zr2—Bi1iv | 88.460 (16) |
Zr1iv—Bi1—Zr2 | 69.571 (14) | Bi1x—Zr2—Bi1iv | 99.528 (3) |
Zr2v—Bi1—Zr2 | 137.327 (18) | Zr2ii—Zr2—Bi1 | 61.822 (2) |
Zr2ii—Bi1—Zr2 | 56.356 (5) | Zr2viii—Zr2—Bi1 | 118.178 (2) |
Zr1i—Bi1—Zr2iv | 72.20 (3) | Bi1ix—Zr2—Bi1 | 170.093 (17) |
Zr1ii—Bi1—Zr2iv | 145.409 (19) | Bi1ii—Zr2—Bi1 | 99.528 (3) |
Zr1iii—Bi1—Zr2iv | 123.798 (7) | Bi1vi—Zr2—Bi1 | 99.528 (3) |
Zr1iv—Bi1—Zr2iv | 69.571 (14) | Bi1x—Zr2—Bi1 | 88.460 (16) |
Zr2v—Bi1—Zr2iv | 56.356 (5) | Bi1iv—Zr2—Bi1 | 73.185 (9) |
Zr2ii—Bi1—Zr2iv | 137.327 (18) | Zr2ii—Zr2—Zr1ii | 65.360 (7) |
Zr2—Bi1—Zr2iv | 106.815 (10) | Zr2viii—Zr2—Zr1ii | 114.640 (7) |
Zr1i—Bi1—Zr1 | 135.33 (3) | Bi1ix—Zr2—Zr1ii | 139.216 (18) |
Zr1ii—Bi1—Zr1 | 135.33 (3) | Bi1ii—Zr2—Zr1ii | 56.01 (2) |
Zr1iii—Bi1—Zr1 | 106.55 (3) | Bi1vi—Zr2—Zr1ii | 127.097 (6) |
Zr1iv—Bi1—Zr1 | 106.55 (3) | Bi1x—Zr2—Zr1ii | 54.600 (5) |
Zr2v—Bi1—Zr1 | 68.664 (9) | Bi1iv—Zr2—Zr1ii | 114.38 (2) |
Zr2ii—Bi1—Zr1 | 68.664 (9) | Bi1—Zr2—Zr1ii | 50.598 (19) |
Zr2—Bi1—Zr1 | 68.664 (9) | Zr2ii—Zr2—Zr1vi | 65.360 (7) |
Zr2iv—Bi1—Zr1 | 68.664 (9) | Zr2viii—Zr2—Zr1vi | 114.640 (7) |
Cu1—Zr1—Cu1v | 64.65 (3) | Bi1ix—Zr2—Zr1vi | 54.600 (5) |
Cu1—Zr1—Bi1vi | 77.64 (3) | Bi1ii—Zr2—Zr1vi | 50.598 (19) |
Cu1v—Zr1—Bi1vi | 77.64 (3) | Bi1vi—Zr2—Zr1vi | 56.01 (2) |
Cu1—Zr1—Bi1vii | 77.64 (3) | Bi1x—Zr2—Zr1vi | 114.38 (2) |
Cu1v—Zr1—Bi1vii | 77.64 (3) | Bi1iv—Zr2—Zr1vi | 139.216 (18) |
Bi1vi—Zr1—Bi1vii | 150.65 (6) | Bi1—Zr2—Zr1vi | 127.097 (6) |
Cu1—Zr1—Bi1iii | 138.87 (4) | Zr1ii—Zr2—Zr1vi | 103.844 (8) |
Cu1v—Zr1—Bi1iii | 74.221 (13) | Zr2ii—Zr2—Zr1ix | 114.640 (7) |
Bi1vi—Zr1—Bi1iii | 94.137 (2) | Zr2viii—Zr2—Zr1ix | 65.360 (7) |
Bi1vii—Zr1—Bi1iii | 94.137 (2) | Bi1ix—Zr2—Zr1ix | 56.01 (2) |
Cu1—Zr1—Bi1iv | 74.221 (13) | Bi1ii—Zr2—Zr1ix | 139.216 (18) |
Cu1v—Zr1—Bi1iv | 138.87 (4) | Bi1vi—Zr2—Zr1ix | 54.600 (5) |
Bi1vi—Zr1—Bi1iv | 94.137 (2) | Bi1x—Zr2—Zr1ix | 127.097 (6) |
Bi1vii—Zr1—Bi1iv | 94.137 (2) | Bi1iv—Zr2—Zr1ix | 50.598 (19) |
Bi1iii—Zr1—Bi1iv | 146.91 (6) | Bi1—Zr2—Zr1ix | 114.38 (2) |
Cu1—Zr1—Bi1 | 147.675 (17) | Zr1ii—Zr2—Zr1ix | 164.10 (4) |
Cu1v—Zr1—Bi1 | 147.675 (17) | Zr1vi—Zr2—Zr1ix | 89.71 (3) |
Bi1vi—Zr1—Bi1 | 104.67 (3) | Zr2ii—Zr2—Zr1x | 114.640 (7) |
Bi1vii—Zr1—Bi1 | 104.67 (3) | Zr2viii—Zr2—Zr1x | 65.360 (7) |
Bi1iii—Zr1—Bi1 | 73.45 (3) | Bi1ix—Zr2—Zr1x | 50.598 (19) |
Bi1iv—Zr1—Bi1 | 73.45 (3) | Bi1ii—Zr2—Zr1x | 54.600 (5) |
Cu1—Zr1—Zr2ii | 134.725 (16) | Bi1vi—Zr2—Zr1x | 114.38 (2) |
Cu1v—Zr1—Zr2ii | 104.942 (7) | Bi1x—Zr2—Zr1x | 56.01 (2) |
Bi1vi—Zr1—Zr2ii | 57.205 (10) | Bi1iv—Zr2—Zr1x | 127.097 (6) |
Bi1vii—Zr1—Zr2ii | 146.09 (3) | Bi1—Zr2—Zr1x | 139.216 (18) |
Bi1iii—Zr1—Zr2ii | 55.829 (13) | Zr1ii—Zr2—Zr1x | 89.71 (3) |
Bi1iv—Zr1—Zr2ii | 103.75 (3) | Zr1vi—Zr2—Zr1x | 64.19 (4) |
Bi1—Zr1—Zr2ii | 55.32 (2) | Zr1ix—Zr2—Zr1x | 103.844 (8) |
Cu1—Zr1—Zr2v | 134.725 (16) | Zr1—Cu1—Zr1xi | 180.00 (6) |
Cu1v—Zr1—Zr2v | 104.942 (7) | Zr1—Cu1—Zr1ix | 85.92 (2) |
Bi1vi—Zr1—Zr2v | 146.09 (3) | Zr1xi—Cu1—Zr1ix | 94.08 (2) |
Bi1vii—Zr1—Zr2v | 57.205 (11) | Zr1—Cu1—Zr1xii | 85.92 (2) |
Bi1iii—Zr1—Zr2v | 55.829 (13) | Zr1xi—Cu1—Zr1xii | 94.08 (2) |
Bi1iv—Zr1—Zr2v | 103.75 (3) | Zr1ix—Cu1—Zr1xii | 94.08 (2) |
Bi1—Zr1—Zr2v | 55.32 (2) | Zr1—Cu1—Zr1xiii | 94.08 (2) |
Zr2ii—Zr1—Zr2v | 90.29 (3) | Zr1xi—Cu1—Zr1xiii | 85.92 (2) |
Cu1—Zr1—Zr2 | 104.942 (7) | Zr1ix—Cu1—Zr1xiii | 85.92 (2) |
Cu1v—Zr1—Zr2 | 134.725 (16) | Zr1xii—Cu1—Zr1xiii | 180.00 (3) |
Bi1vi—Zr1—Zr2 | 57.205 (10) | Zr1—Cu1—Zr1xiv | 94.08 (2) |
Bi1vii—Zr1—Zr2 | 146.09 (3) | Zr1xi—Cu1—Zr1xiv | 85.92 (2) |
Bi1iii—Zr1—Zr2 | 103.75 (3) | Zr1ix—Cu1—Zr1xiv | 180.00 (3) |
Bi1iv—Zr1—Zr2 | 55.829 (13) | Zr1xii—Cu1—Zr1xiv | 85.92 (2) |
Bi1—Zr1—Zr2 | 55.32 (2) | Zr1xiii—Cu1—Zr1xiv | 94.08 (2) |
Zr2ii—Zr1—Zr2 | 49.279 (13) | Zr1—Cu1—Cu1v | 57.675 (17) |
Zr2v—Zr1—Zr2 | 110.65 (4) | Zr1xi—Cu1—Cu1v | 122.325 (17) |
Cu1—Zr1—Zr2iv | 104.942 (7) | Zr1ix—Cu1—Cu1v | 122.325 (17) |
Cu1v—Zr1—Zr2iv | 134.725 (16) | Zr1xii—Cu1—Cu1v | 122.325 (17) |
Bi1vi—Zr1—Zr2iv | 146.09 (3) | Zr1xiii—Cu1—Cu1v | 57.675 (17) |
Bi1vii—Zr1—Zr2iv | 57.205 (10) | Zr1xiv—Cu1—Cu1v | 57.675 (17) |
Bi1iii—Zr1—Zr2iv | 103.75 (3) | Zr1—Cu1—Cu1xii | 122.325 (17) |
Bi1iv—Zr1—Zr2iv | 55.829 (13) | Zr1xi—Cu1—Cu1xii | 57.675 (17) |
Bi1—Zr1—Zr2iv | 55.32 (2) | Zr1ix—Cu1—Cu1xii | 57.675 (17) |
Zr2ii—Zr1—Zr2iv | 110.65 (4) | Zr1xii—Cu1—Cu1xii | 57.675 (17) |
Zr2v—Zr1—Zr2iv | 49.279 (13) | Zr1xiii—Cu1—Cu1xii | 122.325 (17) |
Zr2—Zr1—Zr2iv | 90.29 (3) | Zr1xiv—Cu1—Cu1xii | 122.325 (17) |
Zr2ii—Zr2—Zr2viii | 180.0 | Cu1v—Cu1—Cu1xii | 180.0 |
Zr2ii—Zr2—Bi1ix | 118.178 (2) |
Symmetry codes: (i) −y+1, x−y+1, z; (ii) −x+y+1, −x+1, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+1, −z; (v) x−y, x, z+1/2; (vi) −y+1, x−y, z; (vii) −x+y, −x+1, −z+1/2; (viii) −x+y+1, −x+1, −z−1/2; (ix) y, −x+y, −z; (x) x−y+1, x, z−1/2; (xi) −x, −y, −z; (xii) x−y, x, z−1/2; (xiii) −x+y, −x, −z+1/2; (xiv) −y, x−y, z. |
Experimental details
Crystal data | |
Chemical formula | Zr5CuBi3 |
Mr | 1146.58 |
Crystal system, space group | Hexagonal, P63/mcm |
Temperature (K) | 293 |
a, c (Å) | 8.8712 (4), 6.0246 (3) |
V (Å3) | 410.60 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 72.54 |
Crystal size (mm) | 0.08 × 0.04 × 0.02 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur3 CCD diffractometer |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.231, 0.654 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1713, 193, 185 |
Rint | 0.136 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.041, 0.87 |
No. of reflections | 193 |
No. of parameters | 13 |
Δρmax, Δρmin (e Å−3) | 1.92, −1.54 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).
Acknowledgements
Financial support from the Ministry of Education and Science of Ukraine is acknowledged.
References
Andersen, O. K. (1975). Phys. Rev. B, 12, 3060–3083. CrossRef CAS Web of Science Google Scholar
Andersen, O. K. & Jepsen, O. (1984). Phys. Rev. Lett. 53, 2571–2574. CrossRef CAS Web of Science Google Scholar
Andersen, O. K., Jepsen, O. & Glötzel, D. (1985). Highlights of Condensed Matter Theory, edited by F. Bassani, F. Fumi & M. P. Tosi, pp. 59–176. New York: North-Holland. Google Scholar
Andersen, O. K., Pawlowska, Z. & Jepsen, O. (1986). Phys. Rev. B, 34, 5253–5269. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dolotko, O. V., Dmytriv, G. S. & Pavlyuk, V. V. (2003). J. Alloys Compd, 349, 180–184. Web of Science CrossRef CAS Google Scholar
Garcia, E. & Corbett, J. D. (1990). Inorg. Chem. 29(18), 3274–3282. CrossRef Web of Science Google Scholar
Giza, K., Bala, H. & Pavlyuk, V. (2009). Mater. Chem. Phys. 114, 742–745. Web of Science CrossRef CAS Google Scholar
Giza, K., Iwasieczko, W., Drulis, H., Pavlyuk, V. & Bala, H. (2001). Mater. Sci. Eng. A, 303, 158–162. CrossRef Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Pöttgen, R. (1997). Z. Naturforsch. Teil B, 52, 141–144. Google Scholar
Rieger, W. & Parthé, E. (1965). Monatsh. Chem. 96, 232–241. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stetskiv, A., Tarasiuk, I., Misztal, R. & Pavlyuk, V. (2011). Acta Cryst. E67, i61. Web of Science CrossRef IUCr Journals Google Scholar
Zatorska, G. M., Dmytriv, G. S., Pavlyuk, V. V., Bartoszak-Adamska, E. & Jaskolski, M. (2002b). J. Alloys Compd, 346, 154–157. Web of Science CrossRef CAS Google Scholar
Zatorska, G. M., Pavlyuk, V. V. & Davydov, V. M. (2002a). J. Alloys Compd, 333, 138–142. Web of Science CrossRef CAS Google Scholar
Zatorska, G. M., Pavlyuk, V. V. & Davydov, V. M. (2004). J. Alloys Compd, 367, 80–84. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Zirconium intermetallic compounds are extensively investigated for the last 40 years as possible hydrogen storage materials. The results that we present in this paper is a continuation of the systematic study that we carried out for zirconium alloys with transition metals (Giza et al., 2001; Dolotko et al., 2003) as well as s-and p-elements (Zatorska et al., 2002a,b; 2004; Giza et al., 2009). So far, in the literature no data on ternary intermetallic compounds of Zr—Cu—Bi system has been found. However, it is known that closely related systems such as Zr—Cu—Sn (Pöttgen, 1997), Zr—Cu—Pb (Rieger & Parthé, 1965) and Zr—Cu—Sb (Garcia & Corbett, 1990) form Zr5CuX3 (where X=Sn, Pb, Sb) compounds with hexagonal Hf5CuSn3 structure type (superstructure to Ti5Ga4-type) with space group P63/mcm. Studying alloys of the Zr—Cu—Bi system we found the existence of isostructural Zr5CuBi3 compound and investigated its structure by single-crystal method. The projection of the unit cell and coordination polyhedra of the atoms are shown in Fig. 1. The environment of the Bi atoms is a tetragonal antiprism with one added atom and a coordination number equal 9. The polyhedron of Zr1 atom is a defective cubooctahedron with a coordination number equal 11. The bicapped hexagonal antiprism (c.n.=14) is typical for Zr2 atom. The Cu atom is enclosed in a 8-vertex polyhedron (octahedron with two centered faces). The distribution of zirconium and copper atoms in three-dimensional-nets consisted of Bi atoms are shown in Fig. 2a and distribution of bismuth and copper atoms in three-dimensional-nets consisted of Zr atoms are shown in Fig. 2b. In the first case the Bi atoms form a 63 corrugated nets and the Zr atoms (second case) form a 3246 nets. The similar atomic nets was described for Tb5LiSn3 isostructural compound (Stetskiv et al., 2011).
The electronic structure of the Zr5CuBi3 compound was calculated using the tight-binding linear muffin-tin orbital (TB–LMTO) method in the atomic spheres approximation (TB– LMTO–ASA; Andersen, 1975; Andersen & Jepsen, 1984; Andersen et al., 1985, 1986), using the experimental crystallographic data which are presented here. The Zr and Cu atoms donate their electrons to the Bi atoms. Therefore positive charge density can be observed around the atoms of transition elements (Zr and Cu) and negative charge density is around the bismuth atoms. The electron localization function (ELF) mapping and isosurfaces (ISO) are presented in Fig. 3a and Fig. 3b, respectively. The total and partial densities of states (DOS) of Zr5CuBi3 compound calculated by the TB–LMTO–ASA method are shown in Fig. 4. The Fermi level (EF) lies in a continuous DOS region indicating a metallic character for the title compound. The metallic type of bonding was confirmed also by an analysis of the interatomic distances.