metal-organic compounds
Dichloridobis[3-(4-chlorophenyl)-2,N,N-trimethyl-2,3-dihydro-1,2,4-oxadiazole-5-amine-κN4]platinum(II)–4-chlorobenzaldehyde (1/1)
aDepartment of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, bDepartment of Geology, Saint Petersburg State University, Universitetskaya Avenue 7/9, 199034, Saint Petersburg, Russian Federation, and cO.O. Bohomolets National Medical University, Department of General Chemistry, Shevchenko blvd 13, 01004 Kiev, Ukraine
*Correspondence e-mail: bokach@nb17701.spb.edu_kalibabchuk@ukr.net
In the title 1:1 2(C11H14ClN3O)2]·C7H5ClO, the of the PtII atom is slightly distorted square-planar with the chloride and 2,3-dihydro-1,2,4-oxadiazole ligands mutually trans, as the Pt atom lies on an inversion center. The 4-chlorobenzaldehyde molecules are statistically disordered about an inversion centre with equal occupancies for the two positions. The PtII complex forms a three-dimensional structure through C—H⋯Cl and weaker C—H⋯O interactions with the 4-chlorobenzaldehyde molecule.
[PtClRelated literature
For the synthesis of platinum complexes with 2,3-dihydro-1,2,4-oxadiazole ligands, see: Bokach et al. (2011); Kritchenkov et al. (2011). For related structures, see: Bokach et al. (2003, 2011); Kritchenkov et al. (2011); Bokach & Kukushkin (2006); Gushchin et al. (2008); Kuznetsov & Kukushkin (2006); Fritsky et al. (2006); Penkova et al. (2009). For standard bond lengths, see: see: Allen et al. (1987).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536813017376/sj5329sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813017376/sj5329Isup2.hkl
The platinum complex was synthesized by a
reaction between the complex trans-[PtCl2(NCNMe2)2] and the nitrone p-ClC6H4C(H)=N(O)Me as described previously (Kritchenkov et al., 2011). Crystals of 1 were obtained from the reaction mixture by slow evaporation of the solvent (dichloromethane) at room temperature; p-chlorobenzaldehyde was generated in the reaction mixture by hydration of the nitrone in the undried solvent.The carbon- and nitrogen-bound H atoms were placed in calculated positions and were included in the
in the riding model approximation, with Uiso(H) set to 1.5Ueq(C) and C–H 0.96 Å for the methyl groups, 1.2Ueq(C) and C–H 0.98 Å for the tertiary CH groups, 1.2Ueq(C) and C–H 0.93 Å for the carbon atoms of the benzene rings and aldehyde group, and 1.2Ueq(N) and N–H 0.91 Å for the tertiary NH groups.Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[PtCl2(C11H15ClN3O)2]·C7H5ClO | Z = 1 |
Mr = 887.97 | F(000) = 438 |
Triclinic, P1 | Dx = 1.737 Mg m−3 |
a = 8.46436 (18) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.38481 (19) Å | Cell parameters from 9801 reflections |
c = 11.4373 (3) Å | θ = 2.5–31.7° |
α = 101.0381 (18)° | µ = 4.57 mm−1 |
β = 104.9553 (19)° | T = 100 K |
γ = 96.3847 (17)° | Prism, colourless |
V = 849.07 (3) Å3 | 0.17 × 0.11 × 0.09 mm |
Agilent Xcalibur Eos diffractometer | 3892 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3888 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 16.2096 pixels mm-1 | θmax = 27.5°, θmin = 2.5° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | k = −12→12 |
Tmin = 0.933, Tmax = 1.000 | l = −14→14 |
13908 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0326P)2] where P = (Fo2 + 2Fc2)/3 |
3892 reflections | (Δ/σ)max < 0.001 |
211 parameters | Δρmax = 1.63 e Å−3 |
0 restraints | Δρmin = −1.21 e Å−3 |
[PtCl2(C11H15ClN3O)2]·C7H5ClO | γ = 96.3847 (17)° |
Mr = 887.97 | V = 849.07 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.46436 (18) Å | Mo Kα radiation |
b = 9.38481 (19) Å | µ = 4.57 mm−1 |
c = 11.4373 (3) Å | T = 100 K |
α = 101.0381 (18)° | 0.17 × 0.11 × 0.09 mm |
β = 104.9553 (19)° |
Agilent Xcalibur Eos diffractometer | 3892 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 3888 reflections with I > 2σ(I) |
Tmin = 0.933, Tmax = 1.000 | Rint = 0.036 |
13908 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 1.06 | Δρmax = 1.63 e Å−3 |
3892 reflections | Δρmin = −1.21 e Å−3 |
211 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pt1 | 0.5000 | 0.5000 | 0.0000 | 0.01562 (5) | |
O1 | 0.8747 (3) | 0.5755 (3) | 0.34126 (19) | 0.0321 (5) | |
N2 | 0.9212 (3) | 0.4486 (3) | 0.2650 (2) | 0.0290 (6) | |
H2 | 0.9972 | 0.4786 | 0.2273 | 0.035* | |
C3 | 0.7596 (4) | 0.3810 (3) | 0.1742 (3) | 0.0243 (6) | |
H3 | 0.6936 | 0.3203 | 0.2112 | 0.029* | |
N4 | 0.6856 (3) | 0.5130 (3) | 0.1552 (2) | 0.0209 (5) | |
C5 | 0.7499 (4) | 0.6134 (3) | 0.2577 (3) | 0.0240 (6) | |
N6 | 0.7135 (3) | 0.7450 (3) | 0.2956 (2) | 0.0281 (6) | |
C7 | 0.5711 (4) | 0.8001 (4) | 0.2268 (3) | 0.0334 (7) | |
H7A | 0.6050 | 0.8552 | 0.1723 | 0.050* | |
H7B | 0.5293 | 0.8627 | 0.2843 | 0.050* | |
H7C | 0.4856 | 0.7186 | 0.1788 | 0.050* | |
C8 | 0.8131 (5) | 0.8425 (4) | 0.4142 (3) | 0.0451 (10) | |
H8A | 0.7642 | 0.8272 | 0.4788 | 0.068* | |
H8B | 0.8163 | 0.9432 | 0.4077 | 0.068* | |
H8C | 0.9239 | 0.8209 | 0.4338 | 0.068* | |
C9 | 0.9849 (5) | 0.3574 (4) | 0.3496 (3) | 0.0452 (10) | |
H9A | 1.0813 | 0.4129 | 0.4134 | 0.068* | |
H9B | 1.0142 | 0.2721 | 0.3045 | 0.068* | |
H9C | 0.9012 | 0.3272 | 0.3869 | 0.068* | |
C10 | 0.7869 (4) | 0.2884 (3) | 0.0606 (3) | 0.0230 (6) | |
C11 | 0.7575 (5) | 0.1367 (4) | 0.0400 (3) | 0.0342 (7) | |
H11 | 0.7156 | 0.0919 | 0.0941 | 0.041* | |
C12 | 0.7907 (5) | 0.0506 (4) | −0.0617 (3) | 0.0434 (9) | |
H12 | 0.7705 | −0.0516 | −0.0765 | 0.052* | |
C13 | 0.8532 (5) | 0.1191 (4) | −0.1391 (3) | 0.0365 (8) | |
Cl14 | 0.89823 (18) | 0.01398 (12) | −0.26699 (9) | 0.0619 (3) | |
C15 | 0.8828 (4) | 0.2708 (4) | −0.1219 (3) | 0.0306 (7) | |
H15 | 0.9243 | 0.3150 | −0.1764 | 0.037* | |
C16 | 0.8483 (4) | 0.3547 (3) | −0.0206 (3) | 0.0257 (6) | |
H16 | 0.8667 | 0.4569 | −0.0070 | 0.031* | |
Cl17 | 0.34015 (9) | 0.32493 (9) | 0.05713 (7) | 0.03003 (16) | |
C19 | 0.5885 (5) | 0.4816 (5) | 0.6159 (4) | 0.0510 (11) | |
H19 | 0.6474 | 0.4686 | 0.6927 | 0.061* | |
C20 | 0.5665 (6) | 0.3740 (5) | 0.5084 (4) | 0.0493 (11) | |
C18 | 0.4783 (5) | 0.3921 (5) | 0.3929 (4) | 0.0479 (10) | |
H18 | 0.4643 | 0.3190 | 0.3217 | 0.057* | |
Cl21 | 0.6390 (5) | 0.2036 (3) | 0.5142 (4) | 0.0640 (9) | 0.50 |
C21 | 0.659 (3) | 0.2527 (18) | 0.522 (2) | 0.081 (2) | 0.50 |
H21 | 0.7255 | 0.2501 | 0.6005 | 0.097* | 0.50 |
O2 | 0.6509 (12) | 0.1563 (8) | 0.4337 (7) | 0.081 (2) | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.01892 (8) | 0.01346 (8) | 0.01130 (7) | 0.00185 (5) | 0.00020 (5) | 0.00142 (5) |
O1 | 0.0370 (12) | 0.0334 (13) | 0.0173 (10) | 0.0180 (10) | −0.0050 (9) | −0.0037 (9) |
N2 | 0.0311 (13) | 0.0305 (15) | 0.0193 (12) | 0.0135 (11) | −0.0004 (10) | −0.0033 (10) |
C3 | 0.0280 (14) | 0.0236 (15) | 0.0188 (13) | 0.0079 (12) | 0.0013 (11) | 0.0045 (11) |
N4 | 0.0246 (12) | 0.0176 (12) | 0.0159 (11) | 0.0040 (9) | −0.0003 (9) | 0.0011 (9) |
C5 | 0.0251 (14) | 0.0276 (16) | 0.0151 (13) | 0.0071 (12) | 0.0000 (11) | 0.0017 (11) |
N6 | 0.0340 (14) | 0.0236 (13) | 0.0170 (11) | 0.0097 (11) | −0.0048 (10) | −0.0049 (10) |
C7 | 0.0394 (18) | 0.0260 (17) | 0.0250 (15) | 0.0147 (14) | −0.0038 (13) | −0.0047 (13) |
C8 | 0.045 (2) | 0.040 (2) | 0.0297 (17) | 0.0138 (16) | −0.0096 (15) | −0.0164 (15) |
C9 | 0.053 (2) | 0.048 (2) | 0.0264 (17) | 0.0291 (19) | −0.0062 (16) | 0.0022 (16) |
C10 | 0.0247 (14) | 0.0207 (15) | 0.0178 (13) | 0.0064 (11) | −0.0022 (11) | 0.0006 (11) |
C11 | 0.051 (2) | 0.0262 (17) | 0.0257 (15) | 0.0055 (15) | 0.0084 (15) | 0.0094 (13) |
C12 | 0.074 (3) | 0.0135 (16) | 0.0358 (18) | 0.0094 (16) | 0.0061 (18) | 0.0007 (14) |
C13 | 0.054 (2) | 0.0323 (19) | 0.0212 (15) | 0.0222 (16) | 0.0059 (15) | −0.0002 (13) |
Cl14 | 0.1140 (10) | 0.0441 (6) | 0.0333 (5) | 0.0409 (6) | 0.0248 (6) | 0.0019 (4) |
C15 | 0.0342 (16) | 0.0305 (17) | 0.0308 (16) | 0.0112 (13) | 0.0120 (14) | 0.0087 (13) |
C16 | 0.0235 (14) | 0.0187 (15) | 0.0309 (15) | 0.0017 (11) | 0.0043 (12) | 0.0022 (12) |
Cl17 | 0.0284 (4) | 0.0283 (4) | 0.0350 (4) | 0.0005 (3) | 0.0072 (3) | 0.0162 (3) |
C19 | 0.067 (3) | 0.069 (3) | 0.037 (2) | 0.037 (2) | 0.027 (2) | 0.028 (2) |
C20 | 0.071 (3) | 0.058 (3) | 0.044 (2) | 0.042 (2) | 0.037 (2) | 0.028 (2) |
C18 | 0.067 (3) | 0.058 (3) | 0.0366 (19) | 0.031 (2) | 0.0315 (19) | 0.0178 (18) |
Cl21 | 0.100 (2) | 0.059 (2) | 0.0583 (16) | 0.0507 (19) | 0.0399 (15) | 0.0301 (19) |
C21 | 0.145 (7) | 0.062 (5) | 0.059 (4) | 0.064 (5) | 0.043 (4) | 0.023 (4) |
O2 | 0.145 (7) | 0.062 (5) | 0.059 (4) | 0.064 (5) | 0.043 (4) | 0.023 (4) |
Pt1—N4 | 2.018 (2) | C9—H9B | 0.9600 |
Pt1—N4i | 2.018 (2) | C9—H9C | 0.9600 |
Pt1—Cl17 | 2.3087 (7) | C10—C11 | 1.381 (4) |
Pt1—Cl17i | 2.3087 (7) | C10—C16 | 1.385 (4) |
O1—N2 | 1.490 (3) | C11—H11 | 0.9300 |
O1—C5 | 1.360 (3) | C11—C12 | 1.394 (5) |
N2—H2 | 0.9100 | C12—H12 | 0.9300 |
N2—C3 | 1.474 (4) | C12—C13 | 1.364 (5) |
N2—C9 | 1.452 (4) | C13—Cl14 | 1.754 (3) |
C3—H3 | 0.9800 | C13—C15 | 1.385 (5) |
C3—N4 | 1.476 (4) | C15—H15 | 0.9300 |
C3—C10 | 1.505 (4) | C15—C16 | 1.387 (4) |
N4—C5 | 1.301 (4) | C16—H16 | 0.9300 |
C5—N6 | 1.325 (4) | C19—H19 | 0.9300 |
N6—C7 | 1.464 (4) | C19—C20 | 1.389 (6) |
N6—C8 | 1.467 (4) | C19—C18ii | 1.378 (6) |
C7—H7A | 0.9600 | C20—C18 | 1.391 (5) |
C7—H7B | 0.9600 | C20—Cl21 | 1.782 (5) |
C7—H7C | 0.9600 | C20—C21 | 1.465 (18) |
C8—H8A | 0.9600 | C18—C19ii | 1.378 (6) |
C8—H8B | 0.9600 | C18—H18 | 0.9300 |
C8—H8C | 0.9600 | C21—H21 | 0.9300 |
C9—H9A | 0.9600 | C21—O2 | 1.20 (2) |
N4—Pt1—N4i | 180.0 | N2—C9—H9A | 109.5 |
N4i—Pt1—Cl17 | 90.47 (7) | N2—C9—H9B | 109.5 |
N4—Pt1—Cl17 | 89.53 (7) | N2—C9—H9C | 109.5 |
N4i—Pt1—Cl17i | 89.53 (7) | H9A—C9—H9B | 109.5 |
N4—Pt1—Cl17i | 90.47 (7) | H9A—C9—H9C | 109.5 |
Cl17—Pt1—Cl17i | 180.0 | H9B—C9—H9C | 109.5 |
C5—O1—N2 | 103.2 (2) | C11—C10—C3 | 119.9 (3) |
O1—N2—H2 | 111.8 | C11—C10—C16 | 119.8 (3) |
C3—N2—O1 | 101.1 (2) | C16—C10—C3 | 120.2 (3) |
C3—N2—H2 | 111.8 | C10—C11—H11 | 119.9 |
C9—N2—O1 | 106.0 (2) | C10—C11—C12 | 120.1 (3) |
C9—N2—H2 | 111.8 | C12—C11—H11 | 119.9 |
C9—N2—C3 | 113.6 (3) | C11—C12—H12 | 120.6 |
N2—C3—H3 | 110.1 | C13—C12—C11 | 118.8 (3) |
N2—C3—N4 | 101.0 (2) | C13—C12—H12 | 120.6 |
N2—C3—C10 | 109.5 (2) | C12—C13—Cl14 | 119.9 (3) |
N4—C3—H3 | 110.1 | C12—C13—C15 | 122.6 (3) |
N4—C3—C10 | 115.5 (2) | C15—C13—Cl14 | 117.5 (3) |
C10—C3—H3 | 110.1 | C13—C15—H15 | 121.1 |
C3—N4—Pt1 | 119.50 (17) | C13—C15—C16 | 117.8 (3) |
C5—N4—Pt1 | 133.5 (2) | C16—C15—H15 | 121.1 |
C5—N4—C3 | 106.5 (2) | C10—C16—C15 | 120.9 (3) |
N4—C5—O1 | 114.1 (3) | C10—C16—H16 | 119.6 |
N4—C5—N6 | 131.3 (3) | C15—C16—H16 | 119.6 |
N6—C5—O1 | 114.5 (2) | C20—C19—H19 | 120.4 |
C5—N6—C7 | 123.4 (2) | C18ii—C19—H19 | 120.4 |
C5—N6—C8 | 120.6 (3) | C18ii—C19—C20 | 119.1 (4) |
C7—N6—C8 | 115.9 (3) | C19—C20—C18 | 121.0 (4) |
N6—C7—H7A | 109.5 | C19—C20—Cl21 | 121.3 (3) |
N6—C7—H7B | 109.5 | C19—C20—C21 | 116.0 (9) |
N6—C7—H7C | 109.5 | C18—C20—Cl21 | 117.5 (4) |
H7A—C7—H7B | 109.5 | C18—C20—C21 | 122.5 (9) |
H7A—C7—H7C | 109.5 | C21—C20—Cl21 | 11.6 (10) |
H7B—C7—H7C | 109.5 | C19ii—C18—C20 | 119.9 (4) |
N6—C8—H8A | 109.5 | C19ii—C18—H18 | 120.1 |
N6—C8—H8B | 109.5 | C20—C18—H18 | 120.1 |
N6—C8—H8C | 109.5 | C20—C21—H21 | 119.7 |
H8A—C8—H8B | 109.5 | O2—C21—C20 | 120.5 (17) |
H8A—C8—H8C | 109.5 | O2—C21—H21 | 119.7 |
H8B—C8—H8C | 109.5 | ||
Pt1—N4—C5—O1 | 179.0 (2) | C9—N2—C3—C10 | −88.6 (3) |
Pt1—N4—C5—N6 | 0.1 (5) | C10—C3—N4—Pt1 | 41.0 (3) |
O1—N2—C3—N4 | 36.0 (3) | C10—C3—N4—C5 | −146.2 (3) |
O1—N2—C3—C10 | 158.3 (2) | C10—C11—C12—C13 | 0.5 (5) |
O1—C5—N6—C7 | −172.6 (3) | C11—C10—C16—C15 | −0.7 (4) |
O1—C5—N6—C8 | 4.9 (5) | C11—C12—C13—Cl14 | 179.4 (3) |
N2—O1—C5—N4 | 16.2 (3) | C11—C12—C13—C15 | −1.1 (6) |
N2—O1—C5—N6 | −164.7 (3) | C12—C13—C15—C16 | 0.7 (5) |
N2—C3—N4—Pt1 | 159.05 (18) | C13—C15—C16—C10 | 0.2 (5) |
N2—C3—N4—C5 | −28.1 (3) | Cl14—C13—C15—C16 | −179.7 (2) |
N2—C3—C10—C11 | 105.8 (3) | C16—C10—C11—C12 | 0.4 (5) |
N2—C3—C10—C16 | −71.3 (3) | Cl17—Pt1—N4—C3 | 61.0 (2) |
C3—N4—C5—O1 | 7.6 (3) | Cl17i—Pt1—N4—C3 | −119.0 (2) |
C3—N4—C5—N6 | −171.3 (3) | Cl17i—Pt1—N4—C5 | 70.5 (3) |
C3—C10—C11—C12 | −176.7 (3) | Cl17—Pt1—N4—C5 | −109.5 (3) |
C3—C10—C16—C15 | 176.4 (3) | C19—C20—C18—C19ii | 0.1 (8) |
N4i—Pt1—N4—C3 | 15 (24) | C19—C20—C21—O2 | −178.3 (15) |
N4i—Pt1—N4—C5 | −155 (24) | C18ii—C19—C20—C18 | −0.1 (7) |
N4—C3—C10—C11 | −141.0 (3) | C18ii—C19—C20—Cl21 | −176.3 (4) |
N4—C3—C10—C16 | 41.9 (4) | C18ii—C19—C20—C21 | 172.0 (11) |
N4—C5—N6—C7 | 6.3 (6) | C18—C20—C21—O2 | −6 (3) |
N4—C5—N6—C8 | −176.2 (4) | Cl21—C20—C18—C19ii | 176.4 (4) |
C5—O1—N2—C3 | −32.6 (3) | Cl21—C20—C21—O2 | 61 (4) |
C5—O1—N2—C9 | −151.3 (3) | C21—C20—C18—C19ii | −171.4 (11) |
C9—N2—C3—N4 | 149.1 (3) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O2iii | 0.96 | 2.58 | 3.378 (9) | 141 |
C12—H12···Cl17iv | 0.93 | 2.70 | 3.589 (4) | 160 |
Symmetry codes: (iii) x, y+1, z; (iv) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [PtCl2(C11H15ClN3O)2]·C7H5ClO |
Mr | 887.97 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 8.46436 (18), 9.38481 (19), 11.4373 (3) |
α, β, γ (°) | 101.0381 (18), 104.9553 (19), 96.3847 (17) |
V (Å3) | 849.07 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 4.57 |
Crystal size (mm) | 0.17 × 0.11 × 0.09 |
Data collection | |
Diffractometer | Agilent Xcalibur Eos diffractometer |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.933, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13908, 3892, 3888 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.054, 1.06 |
No. of reflections | 3892 |
No. of parameters | 211 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.63, −1.21 |
Computer programs: CrysAlis PRO (Agilent, 2012), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O2i | 0.96 | 2.58 | 3.378 (9) | 141 |
C12—H12···Cl17ii | 0.93 | 2.70 | 3.589 (4) | 160 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z. |
Acknowledgements
This work was supported by Saint Petersburg State University research grant (2013–2015, 12.38.781.2013) and RFBR 12–03-33071. The XRD study was performed at the X-ray Diffraction Centre of Saint Petersburg State University.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bokach, N. A., Balova, I. A., Haukka, M. & Kukushkin, V. Y. (2011). Organometallics, 30, 595–602. Web of Science CSD CrossRef CAS Google Scholar
Bokach, N. A. & Kukushkin, V. Y. (2006). Russ. Chem. Bull. 55, 1869–1882. Web of Science CrossRef CAS Google Scholar
Bokach, N. A., Pakhomova, T. B. & Kukushkin, V. Y. (2003). Inorg. Chem. 42, 7560–7568. Web of Science CSD CrossRef PubMed CAS Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. Web of Science CSD CrossRef Google Scholar
Gushchin, P. V., Tyan, M. R., Bokach, N. A., Revenco, V. D., Haukka, M., Wang, M. J., Lai, C. H. & Kukushkin, V. Y. (2008). Inorg. Chem. 47, 11487–11500. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kritchenkov, A. S., Bokach, N. A., Haukka, M. & Kukushkin, V. Y. (2011). Dalton Trans. 40, 4175–4182. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kuznetsov, M. L. & Kukushkin, V. Y. (2006). J. Org. Chem. 71, 582–592. Web of Science CrossRef PubMed CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Penkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the past decade, a great attention has been paid to metal-mediated cycloaddition (CA) of various dipoles to nitriles. Indeed, the activation of nitrile substrates by a metal center often results in promotion of CAs, which are not feasible in the so-called pure organic chemistry. In addition, metal-mediated CA represents an efficient route to free and/or coordinated heterocycles that could be either difficult to obtain or even inaccessible via metal-free protocols (Bokach et al., 2011; Bokach & Kukushkin, 2006). Furthermore, an interest in platinum complexes with 2,3-dihydro-1,2,4-oxadiazole as a ligand is caused by their potential applications in medicine.
While 2,3-dihydro-1,2,4-oxadiazoles are known, examples of 5-dialkylamino-2,3-dihydro-1,2,4-oxadiazoles and, in particular, their metal complexes are still rare. Therefore, the synthesis of new complexes with 5-dialkylamino-2,3-dihydro-1,2,4-oxadiazole ligands and studies of their properties represent important tasks. As an amplification of our investigations of metal-mediated CA (Bokach et al., 2011; Kuznetsov & Kukushkin, 2006) and the reactivity of metal-bound dialkylcyanamides (Kritchenkov et al., 2011; Bokach et al., 2003; Gushchin et al., 2008), we have synthesized and characterized the title co-crystal and report its molecular and crystal structure here.
In 1, the complex molecule contains one crystallographically independent Pt atom that lies on an inversion center and is coordinated by two equivalent Cl- anions and two N atoms (Fig. 1) of the heterocyclic ligands each of which are mutually trans. The Pt(1)–N(1) bond length is typical for (imine)PtII species (Allen et al., 1987). The N(4)–C(5) (1.301 (4) Å) distance is characteristic for the N=C double bond (Fritsky et al., 2006; Penkova et al., 2009), while the N(4)–C(3) and N(2)–C(3) (1.476 (4) and 1.474 (4), respectively) are specific for the N–C single bonds (Allen et al., 1987). Both asymmetric C(3) atoms in the heterocyclic ligands exhibit the same configuration (RR/SS). The p-chlorobenzaldehyde molecules are statistically disordered about an inversion centre with equal occupancies for the two half-occupied positions.
The platinum complexes are arranged in layers parallel to the (001) plane (Fig. 2). The p-chlorobenzaldehyde molecules occupy sites in between the layers of platinum(II) complexes.