organic compounds
r-2,c-6-Diphenylpiperidine
aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com
In the title compound, C17H19N, the piperidine ring adopts a chair conformation. The phenyl rings substituted at the 2- and 6-positions of the piperidine ring subtend dihedral angles of 81.04 (7) and 81.10 (7)° with the best plane of the piperidine ring. The crystal packing features C—H⋯π interactions.
Related literature
For the biological activity of piperidine derivatives, see: Aridoss et al. (2009); Boehringer & Söhne GmbH (1961); Jain et al. (2005); Kubota et al. (1998); Mobio et al. (1989); Rubiralta et al. (1991). For the synthesis of the title compound, see: Ponnuswamy et al. (2002). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813020382/bt6919sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813020382/bt6919Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813020382/bt6919Isup3.cml
A mixture of piperidin-4-one (10 mM) and 80% hydrazine hydrate (3.1 ml) in diethylene glycol (100 ml) was heated on a steam bath for 2 hrs (Ponnuswamy et al., 2002). Potassium hydroxide pellets (2.8 g) were added to the mixture and the contents were allowed to reflux vigorously on a heating mantle for another 2 hrs and the reaction mixture was cooled. The product formed was filtered and recrystallized from ethanol.
All H atoms were found in a difference map. Nevertheless, those bonded to C were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The H atom bonded to N was freely refined.
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level. | |
Fig. 2. The crystal packing of the molecules viewed down a-axis. |
C17H19N | Z = 2 |
Mr = 237.33 | F(000) = 256 |
Triclinic, P1 | Dx = 1.136 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.6450 (9) Å | Cell parameters from 2113 reflections |
b = 11.2255 (17) Å | θ = 1.8–26.6° |
c = 11.5281 (17) Å | µ = 0.07 mm−1 |
α = 73.911 (9)° | T = 293 K |
β = 89.898 (9)° | Block, white |
γ = 81.466 (9)° | 0.21 × 0.19 × 0.18 mm |
V = 693.53 (18) Å3 |
Bruker SMART APEXII CCD diffractometer | 2813 independent reflections |
Radiation source: fine-focus sealed tube | 2113 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ω and ϕ scans | θmax = 26.6°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −7→7 |
Tmin = 0.986, Tmax = 0.988 | k = −13→14 |
9781 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0582P)2 + 0.0755P] where P = (Fo2 + 2Fc2)/3 |
2813 reflections | (Δ/σ)max < 0.001 |
167 parameters | Δρmax = 0.11 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C17H19N | γ = 81.466 (9)° |
Mr = 237.33 | V = 693.53 (18) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.6450 (9) Å | Mo Kα radiation |
b = 11.2255 (17) Å | µ = 0.07 mm−1 |
c = 11.5281 (17) Å | T = 293 K |
α = 73.911 (9)° | 0.21 × 0.19 × 0.18 mm |
β = 89.898 (9)° |
Bruker SMART APEXII CCD diffractometer | 2813 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2113 reflections with I > 2σ(I) |
Tmin = 0.986, Tmax = 0.988 | Rint = 0.032 |
9781 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.11 e Å−3 |
2813 reflections | Δρmin = −0.20 e Å−3 |
167 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.3110 (2) | 0.28559 (11) | 0.14071 (11) | 0.0526 (3) | |
H2 | 0.4718 | 0.2820 | 0.1084 | 0.063* | |
C3 | 0.1318 (3) | 0.28661 (13) | 0.04187 (13) | 0.0649 (4) | |
H3A | −0.0288 | 0.2927 | 0.0720 | 0.078* | |
H3B | 0.1375 | 0.3595 | −0.0264 | 0.078* | |
C4 | 0.1868 (3) | 0.16823 (14) | 0.00071 (13) | 0.0762 (4) | |
H4A | 0.3376 | 0.1680 | −0.0398 | 0.091* | |
H4B | 0.0619 | 0.1672 | −0.0565 | 0.091* | |
C5 | 0.2026 (3) | 0.05172 (13) | 0.10787 (13) | 0.0680 (4) | |
H5A | 0.2539 | −0.0222 | 0.0809 | 0.082* | |
H5B | 0.0452 | 0.0454 | 0.1407 | 0.082* | |
C6 | 0.3782 (2) | 0.05592 (11) | 0.20619 (12) | 0.0547 (3) | |
H6 | 0.5379 | 0.0580 | 0.1730 | 0.066* | |
C7 | 0.3915 (2) | −0.05597 (11) | 0.31576 (12) | 0.0525 (3) | |
C8 | 0.5902 (3) | −0.14804 (13) | 0.34202 (13) | 0.0643 (4) | |
H8 | 0.7197 | −0.1406 | 0.2919 | 0.077* | |
C9 | 0.5997 (3) | −0.25123 (14) | 0.44165 (15) | 0.0737 (4) | |
H9 | 0.7353 | −0.3123 | 0.4580 | 0.088* | |
C10 | 0.4108 (3) | −0.26438 (14) | 0.51663 (13) | 0.0699 (4) | |
H10 | 0.4176 | −0.3341 | 0.5835 | 0.084* | |
C11 | 0.2118 (3) | −0.17362 (14) | 0.49196 (15) | 0.0747 (4) | |
H11 | 0.0829 | −0.1816 | 0.5425 | 0.090* | |
C12 | 0.2023 (3) | −0.07085 (13) | 0.39271 (14) | 0.0685 (4) | |
H12 | 0.0662 | −0.0101 | 0.3769 | 0.082* | |
C13 | 0.2607 (2) | 0.39961 (11) | 0.18678 (11) | 0.0501 (3) | |
C14 | 0.0632 (3) | 0.41659 (13) | 0.25525 (13) | 0.0618 (4) | |
H14 | −0.0411 | 0.3577 | 0.2714 | 0.074* | |
C15 | 0.0190 (3) | 0.51912 (14) | 0.29970 (15) | 0.0735 (4) | |
H15 | −0.1140 | 0.5289 | 0.3459 | 0.088* | |
C16 | 0.1715 (3) | 0.60761 (14) | 0.27597 (15) | 0.0754 (4) | |
H16 | 0.1422 | 0.6768 | 0.3063 | 0.090* | |
C17 | 0.3659 (3) | 0.59283 (14) | 0.20757 (15) | 0.0734 (4) | |
H17 | 0.4680 | 0.6527 | 0.1908 | 0.088* | |
C18 | 0.4119 (3) | 0.48965 (12) | 0.16320 (12) | 0.0604 (4) | |
H18 | 0.5453 | 0.4804 | 0.1172 | 0.072* | |
N1 | 0.30501 (19) | 0.17179 (9) | 0.24060 (10) | 0.0527 (3) | |
H1 | 0.397 (3) | 0.1732 (13) | 0.3027 (14) | 0.066 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0521 (7) | 0.0509 (7) | 0.0556 (7) | −0.0122 (5) | 0.0034 (6) | −0.0143 (6) |
C3 | 0.0785 (9) | 0.0594 (8) | 0.0559 (8) | −0.0142 (7) | −0.0073 (7) | −0.0128 (6) |
C4 | 0.1052 (12) | 0.0700 (9) | 0.0583 (8) | −0.0204 (8) | −0.0091 (8) | −0.0225 (7) |
C5 | 0.0859 (10) | 0.0597 (8) | 0.0655 (9) | −0.0183 (7) | −0.0016 (7) | −0.0255 (7) |
C6 | 0.0543 (7) | 0.0504 (7) | 0.0614 (8) | −0.0093 (5) | 0.0064 (6) | −0.0183 (6) |
C7 | 0.0547 (7) | 0.0476 (7) | 0.0595 (7) | −0.0083 (5) | 0.0012 (6) | −0.0217 (6) |
C8 | 0.0604 (8) | 0.0652 (9) | 0.0672 (9) | −0.0004 (7) | 0.0016 (7) | −0.0231 (7) |
C9 | 0.0791 (10) | 0.0627 (9) | 0.0734 (10) | 0.0087 (7) | −0.0137 (8) | −0.0192 (8) |
C10 | 0.0935 (11) | 0.0570 (8) | 0.0580 (8) | −0.0140 (8) | −0.0090 (8) | −0.0130 (7) |
C11 | 0.0819 (11) | 0.0673 (9) | 0.0728 (10) | −0.0147 (8) | 0.0162 (8) | −0.0145 (8) |
C12 | 0.0646 (9) | 0.0564 (8) | 0.0788 (10) | −0.0017 (6) | 0.0114 (7) | −0.0134 (7) |
C13 | 0.0523 (7) | 0.0469 (7) | 0.0489 (7) | −0.0089 (5) | −0.0042 (5) | −0.0093 (5) |
C14 | 0.0610 (8) | 0.0571 (8) | 0.0674 (8) | −0.0119 (6) | 0.0053 (7) | −0.0160 (7) |
C15 | 0.0747 (10) | 0.0723 (10) | 0.0744 (10) | −0.0002 (8) | 0.0043 (8) | −0.0277 (8) |
C16 | 0.0932 (12) | 0.0606 (9) | 0.0760 (10) | −0.0017 (8) | −0.0151 (9) | −0.0300 (8) |
C17 | 0.0845 (11) | 0.0602 (9) | 0.0810 (10) | −0.0244 (8) | −0.0089 (9) | −0.0215 (8) |
C18 | 0.0621 (8) | 0.0595 (8) | 0.0618 (8) | −0.0179 (6) | −0.0014 (6) | −0.0162 (6) |
N1 | 0.0583 (6) | 0.0468 (6) | 0.0540 (6) | −0.0091 (5) | −0.0049 (5) | −0.0154 (5) |
C2—N1 | 1.4685 (16) | C9—C10 | 1.370 (2) |
C2—C13 | 1.5064 (17) | C9—H9 | 0.9300 |
C2—C3 | 1.5217 (19) | C10—C11 | 1.372 (2) |
C2—H2 | 0.9800 | C10—H10 | 0.9300 |
C3—C4 | 1.5211 (19) | C11—C12 | 1.376 (2) |
C3—H3A | 0.9700 | C11—H11 | 0.9300 |
C3—H3B | 0.9700 | C12—H12 | 0.9300 |
C4—C5 | 1.521 (2) | C13—C14 | 1.3857 (18) |
C4—H4A | 0.9700 | C13—C18 | 1.3881 (17) |
C4—H4B | 0.9700 | C14—C15 | 1.375 (2) |
C5—C6 | 1.522 (2) | C14—H14 | 0.9300 |
C5—H5A | 0.9700 | C15—C16 | 1.380 (2) |
C5—H5B | 0.9700 | C15—H15 | 0.9300 |
C6—N1 | 1.4648 (16) | C16—C17 | 1.367 (2) |
C6—C7 | 1.5072 (18) | C16—H16 | 0.9300 |
C6—H6 | 0.9800 | C17—C18 | 1.382 (2) |
C7—C8 | 1.3789 (19) | C17—H17 | 0.9300 |
C7—C12 | 1.3867 (19) | C18—H18 | 0.9300 |
C8—C9 | 1.381 (2) | N1—H1 | 0.891 (16) |
C8—H8 | 0.9300 | ||
N1—C2—C13 | 109.73 (10) | C9—C8—H8 | 119.5 |
N1—C2—C3 | 108.14 (10) | C10—C9—C8 | 120.55 (14) |
C13—C2—C3 | 113.09 (11) | C10—C9—H9 | 119.7 |
N1—C2—H2 | 108.6 | C8—C9—H9 | 119.7 |
C13—C2—H2 | 108.6 | C9—C10—C11 | 119.28 (14) |
C3—C2—H2 | 108.6 | C9—C10—H10 | 120.4 |
C4—C3—C2 | 111.00 (12) | C11—C10—H10 | 120.4 |
C4—C3—H3A | 109.4 | C10—C11—C12 | 120.17 (15) |
C2—C3—H3A | 109.4 | C10—C11—H11 | 119.9 |
C4—C3—H3B | 109.4 | C12—C11—H11 | 119.9 |
C2—C3—H3B | 109.4 | C11—C12—C7 | 121.37 (14) |
H3A—C3—H3B | 108.0 | C11—C12—H12 | 119.3 |
C3—C4—C5 | 110.73 (12) | C7—C12—H12 | 119.3 |
C3—C4—H4A | 109.5 | C14—C13—C18 | 118.18 (12) |
C5—C4—H4A | 109.5 | C14—C13—C2 | 120.72 (11) |
C3—C4—H4B | 109.5 | C18—C13—C2 | 121.09 (12) |
C5—C4—H4B | 109.5 | C15—C14—C13 | 121.03 (13) |
H4A—C4—H4B | 108.1 | C15—C14—H14 | 119.5 |
C4—C5—C6 | 111.35 (11) | C13—C14—H14 | 119.5 |
C4—C5—H5A | 109.4 | C14—C15—C16 | 120.15 (15) |
C6—C5—H5A | 109.4 | C14—C15—H15 | 119.9 |
C4—C5—H5B | 109.4 | C16—C15—H15 | 119.9 |
C6—C5—H5B | 109.4 | C17—C16—C15 | 119.52 (14) |
H5A—C5—H5B | 108.0 | C17—C16—H16 | 120.2 |
N1—C6—C7 | 110.02 (10) | C15—C16—H16 | 120.2 |
N1—C6—C5 | 108.40 (11) | C16—C17—C18 | 120.58 (14) |
C7—C6—C5 | 112.75 (10) | C16—C17—H17 | 119.7 |
N1—C6—H6 | 108.5 | C18—C17—H17 | 119.7 |
C7—C6—H6 | 108.5 | C17—C18—C13 | 120.54 (14) |
C5—C6—H6 | 108.5 | C17—C18—H18 | 119.7 |
C8—C7—C12 | 117.66 (13) | C13—C18—H18 | 119.7 |
C8—C7—C6 | 121.30 (12) | C6—N1—C2 | 113.14 (10) |
C12—C7—C6 | 121.04 (11) | C6—N1—H1 | 110.1 (9) |
C7—C8—C9 | 120.97 (14) | C2—N1—H1 | 109.7 (9) |
C7—C8—H8 | 119.5 | ||
N1—C2—C3—C4 | −56.90 (15) | C6—C7—C12—C11 | 179.08 (13) |
C13—C2—C3—C4 | −178.62 (11) | N1—C2—C13—C14 | −50.66 (15) |
C2—C3—C4—C5 | 53.73 (18) | C3—C2—C13—C14 | 70.16 (15) |
C3—C4—C5—C6 | −53.20 (18) | N1—C2—C13—C18 | 128.55 (12) |
C4—C5—C6—N1 | 55.84 (15) | C3—C2—C13—C18 | −110.63 (14) |
C4—C5—C6—C7 | 177.89 (12) | C18—C13—C14—C15 | −0.6 (2) |
N1—C6—C7—C8 | −130.46 (12) | C2—C13—C14—C15 | 178.63 (13) |
C5—C6—C7—C8 | 108.40 (14) | C13—C14—C15—C16 | 0.3 (2) |
N1—C6—C7—C12 | 50.58 (15) | C14—C15—C16—C17 | 0.3 (2) |
C5—C6—C7—C12 | −70.56 (16) | C15—C16—C17—C18 | −0.6 (2) |
C12—C7—C8—C9 | −0.1 (2) | C16—C17—C18—C13 | 0.4 (2) |
C6—C7—C8—C9 | −179.06 (12) | C14—C13—C18—C17 | 0.25 (19) |
C7—C8—C9—C10 | 0.1 (2) | C2—C13—C18—C17 | −178.98 (12) |
C8—C9—C10—C11 | −0.2 (2) | C7—C6—N1—C2 | 174.32 (10) |
C9—C10—C11—C12 | 0.2 (2) | C5—C6—N1—C2 | −61.97 (13) |
C10—C11—C12—C7 | −0.2 (2) | C13—C2—N1—C6 | −173.66 (10) |
C8—C7—C12—C11 | 0.1 (2) | C3—C2—N1—C6 | 62.57 (14) |
Cg1 and Cg2 are the centroids of the C13–C18 and C7–C12 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···Cg1i | 0.97 | 3.00 | 3.719 (2) | 132 |
C10—H10···Cg1ii | 0.93 | 3.01 | 3.760 (2) | 139 |
C16—H16···Cg2iii | 0.93 | 3.03 | 3.799 (2) | 141 |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+1, −y+2, −z+1; (iii) x, y−1, z. |
Cg1 and Cg2 are the centroids of the C13–C18 and C7–C12 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···Cg1i | 0.97 | 3.00 | 3.719 (2) | 131.97 |
C10—H10···Cg1ii | 0.93 | 3.01 | 3.760 (2) | 138.49 |
C16—H16···Cg2iii | 0.93 | 3.03 | 3.799 (2) | 141.22 |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+1, −y+2, −z+1; (iii) x, y−1, z. |
Acknowledgements
SP thanks the UGC, New Delhi, for financial assistance in the form of a Major Research Project.
References
Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577–592. Web of Science CrossRef PubMed CAS Google Scholar
Boehringer & Söhne GmbH (1961). Chem. Abstr. 55, 24796g. Google Scholar
Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jain, R., Chen, D., White, R. J., Patel, D. V. & Yuan, Z. (2005). Curr. Med. Chem. 12, 1607–1627. Web of Science CrossRef PubMed CAS Google Scholar
Kubota, H., Fujii, M., Ikeda, K., Takeuchi, M., Shibanuma, T. & Isomura, Y. (1998). Chem. Pharm. Bull. 46, 351–354. CrossRef CAS PubMed Google Scholar
Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421–427. CAS Google Scholar
Nardelli, M. (1983). Acta Cryst. C39, 1141–1142. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ponnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614–627. Google Scholar
Rubiralta, M., Giralt, E. & Diez, A. (1991). Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives, pp. 225–312. Amsterdam: Elsevier. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Piperidines are valuable heterocyclic compounds found in natural substances and pharmaceutical products (Rubiralta et al., 1991; Jain et al., 2005; Kubota et al., 1998). Several 2,6-substituted piperidine derivatives were found to be useful as tranquilisers (Boehringer & Söhne GmbH, 1961) and possess a wide range of biological activities such as antiviral, antimalarial, antibacterial and antifungal activities (Aridoss et al., 2009, Mobio et al., 1989). In view of the above importance, the crystallographic study of the title compound has been carried out to establish its molecular structure.
The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983): q2=0.0420 (15) Å, q3 = -0.5799 (15) Å, ϕ2 = 190 (2)° and Δs (N1& C4)= 0.75 (12)°. The phenyl rings at 2,6-positions of the piperidine ring occupy equatorial positions. The corresponding torsion angles are [C13—C2—C3—C4] -178.62 (11)° & [C4—C5—C6—C7] 177.89 (12)°, respectively. The dihedral angle between the two phenyl rings is 60.0 (7)°. The phenyl rings [C7—C12 & C13—C18] are twisted away from the best plane of the piperidine moiety by 81.04 (7)° & 81.10 (7)°, respectively. The molecules in the unit cell are connected by C—H ···π interactions (Fig. 2 & Table. 1; Cg1 is the centroid of the ring C13 to C18 and Cg2 is the centroid of the ring C7 to C12).