organic compounds
Bis(triethylammonium) chloranilate
aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp
In the 6H16N+·C6Cl2O42−, the chloranilate anion lies on an inversion center. The triethylammonium cations are linked on both sides of the anion via bifurcated N—H⋯(O,O) and weak C—H⋯O hydrogen bonds to give a centrosymmetric 2:1 aggregate. The 2:1 aggregates are further linked by C—H⋯O hydrogen bonds into a zigzag chain running along [01-1].
of the title compound [systematic name: bis(triethylammonium) 2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-diolate], 2CRelated literature
For related structures, see: Dayananda et al. (2012); Gotoh et al. (2009, 2010); Yang (2007).
Experimental
Crystal data
|
Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813021405/lh5635sup1.cif
contains datablocks General, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813021405/lh5635Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813021405/lh5635Isup3.cml
Single crystals were obtained by slow evaporation from an acetonitrile solution (100 ml) of chloranilic acid (100 mg) and triethylamine (97 mg) at room temperature.
C-bound H atoms were positioned geometrically (C—H = 0.98 or 0.99 Å) and refined as riding, allowing for
of the methyl group. Uiso(H) values were set at 1.2Ueq(C) or 1.5Ueq(methyl C). The N-bound H atom was found in a difference Fourier map and refined isotropically. The refined N—H distance is 0.867 (18) Å.Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell
PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 30% probability level. The dashed lines indicate N—H···O and C—H···O hydrogen bonds. [Symmetry code: (i) -x + 1, -y + 2, -z.] | |
Fig. 2. A partial packing diagram of the title compound. The dashed lines indicate N—H···O and C—H···O hydrogen bonds. H atoms of the ethyl groups not involved in the C—H···O hydrogen bonds have been omitted. [Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x + 1, -y + 1, -z.] |
2C6H16N+·C6Cl2O42− | Z = 1 |
Mr = 411.37 | F(000) = 220.00 |
Triclinic, P1 | Dx = 1.318 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71075 Å |
a = 7.7347 (5) Å | Cell parameters from 8559 reflections |
b = 8.5151 (8) Å | θ = 3.1–30.1° |
c = 9.3913 (7) Å | µ = 0.34 mm−1 |
α = 64.388 (4)° | T = 180 K |
β = 68.435 (3)° | Block, brown |
γ = 79.060 (5)° | 0.65 × 0.31 × 0.21 mm |
V = 518.36 (7) Å3 |
Rigaku R-AXIS RAPID II diffractometer | 2561 reflections with I > 2σ(I) |
Detector resolution: 10.00 pixels mm-1 | Rint = 0.078 |
ω scans | θmax = 30.0°, θmin = 3.1° |
Absorption correction: numerical (NUMABS; Higashi, 1999) | h = −10→10 |
Tmin = 0.858, Tmax = 0.932 | k = −11→11 |
10264 measured reflections | l = −13→13 |
3012 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0654P)2] where P = (Fo2 + 2Fc2)/3 |
3012 reflections | (Δ/σ)max = 0.001 |
125 parameters | Δρmax = 0.48 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
2C6H16N+·C6Cl2O42− | γ = 79.060 (5)° |
Mr = 411.37 | V = 518.36 (7) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.7347 (5) Å | Mo Kα radiation |
b = 8.5151 (8) Å | µ = 0.34 mm−1 |
c = 9.3913 (7) Å | T = 180 K |
α = 64.388 (4)° | 0.65 × 0.31 × 0.21 mm |
β = 68.435 (3)° |
Rigaku R-AXIS RAPID II diffractometer | 3012 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2561 reflections with I > 2σ(I) |
Tmin = 0.858, Tmax = 0.932 | Rint = 0.078 |
10264 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.121 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.48 e Å−3 |
3012 reflections | Δρmin = −0.26 e Å−3 |
125 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.14870 (4) | 0.93266 (4) | 0.32667 (3) | 0.03021 (13) | |
O1 | 0.44257 (12) | 0.67475 (10) | 0.24001 (11) | 0.0322 (2) | |
O2 | 0.26077 (12) | 1.26690 (10) | 0.03171 (10) | 0.0326 (2) | |
N1 | 0.67048 (13) | 0.38363 (13) | 0.23709 (12) | 0.0242 (2) | |
C1 | 0.46352 (15) | 0.82853 (14) | 0.13459 (13) | 0.0237 (2) | |
C2 | 0.34397 (15) | 0.96966 (14) | 0.14976 (13) | 0.0235 (2) | |
C3 | 0.36699 (15) | 1.13964 (14) | 0.02453 (14) | 0.0235 (2) | |
C4 | 0.54491 (18) | 0.26759 (16) | 0.40054 (15) | 0.0313 (3) | |
H4A | 0.5321 | 0.3103 | 0.4868 | 0.038* | |
H4B | 0.6024 | 0.1485 | 0.4333 | 0.038* | |
C5 | 0.35317 (19) | 0.25958 (19) | 0.39536 (18) | 0.0396 (3) | |
H5A | 0.2712 | 0.1966 | 0.5086 | 0.059* | |
H5B | 0.3625 | 0.1988 | 0.3247 | 0.059* | |
H5C | 0.3018 | 0.3782 | 0.3494 | 0.059* | |
C6 | 0.69491 (17) | 0.33514 (16) | 0.09491 (15) | 0.0297 (3) | |
H6A | 0.7649 | 0.4268 | −0.0105 | 0.036* | |
H6B | 0.5708 | 0.3319 | 0.0884 | 0.036* | |
C7 | 0.7960 (2) | 0.1614 (2) | 0.1098 (2) | 0.0435 (4) | |
H7A | 0.8200 | 0.1442 | 0.0075 | 0.065* | |
H7B | 0.7191 | 0.0679 | 0.2051 | 0.065* | |
H7C | 0.9143 | 0.1595 | 0.1265 | 0.065* | |
C8 | 0.85542 (16) | 0.39642 (17) | 0.24970 (15) | 0.0295 (3) | |
H8A | 0.9018 | 0.2780 | 0.3091 | 0.035* | |
H8B | 0.9459 | 0.4451 | 0.1360 | 0.035* | |
C9 | 0.84408 (19) | 0.50912 (17) | 0.34006 (17) | 0.0342 (3) | |
H9A | 0.9693 | 0.5226 | 0.3355 | 0.051* | |
H9B | 0.7662 | 0.4542 | 0.4567 | 0.051* | |
H9C | 0.7894 | 0.6239 | 0.2868 | 0.051* | |
H1 | 0.618 (2) | 0.487 (2) | 0.209 (2) | 0.034 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.02658 (19) | 0.03015 (19) | 0.02264 (18) | 0.00392 (12) | −0.00412 (13) | −0.00561 (13) |
O1 | 0.0340 (5) | 0.0216 (4) | 0.0265 (4) | 0.0031 (3) | −0.0046 (4) | −0.0025 (3) |
O2 | 0.0326 (5) | 0.0247 (4) | 0.0290 (5) | 0.0080 (3) | −0.0055 (4) | −0.0078 (4) |
N1 | 0.0252 (5) | 0.0216 (5) | 0.0220 (4) | 0.0037 (3) | −0.0086 (4) | −0.0062 (4) |
C1 | 0.0254 (5) | 0.0227 (5) | 0.0216 (5) | 0.0019 (4) | −0.0092 (4) | −0.0072 (4) |
C2 | 0.0235 (5) | 0.0233 (5) | 0.0196 (5) | 0.0023 (4) | −0.0067 (4) | −0.0063 (4) |
C3 | 0.0246 (5) | 0.0219 (5) | 0.0230 (5) | 0.0030 (4) | −0.0094 (4) | −0.0082 (4) |
C4 | 0.0327 (6) | 0.0267 (6) | 0.0254 (6) | 0.0000 (4) | −0.0062 (5) | −0.0054 (5) |
C5 | 0.0352 (7) | 0.0392 (7) | 0.0414 (7) | −0.0081 (5) | −0.0058 (6) | −0.0159 (6) |
C6 | 0.0326 (6) | 0.0317 (6) | 0.0267 (6) | 0.0028 (5) | −0.0139 (5) | −0.0114 (5) |
C7 | 0.0479 (8) | 0.0454 (8) | 0.0561 (9) | 0.0166 (6) | −0.0296 (7) | −0.0339 (7) |
C8 | 0.0262 (6) | 0.0355 (6) | 0.0272 (6) | 0.0026 (4) | −0.0106 (5) | −0.0128 (5) |
C9 | 0.0355 (7) | 0.0370 (7) | 0.0330 (6) | −0.0009 (5) | −0.0120 (5) | −0.0159 (6) |
Cl1—C2 | 1.7390 (11) | C5—H5B | 0.9800 |
O1—C1 | 1.2502 (13) | C5—H5C | 0.9800 |
O2—C3 | 1.2403 (13) | C6—C7 | 1.5103 (18) |
N1—C4 | 1.4943 (15) | C6—H6A | 0.9900 |
N1—C6 | 1.5002 (15) | C6—H6B | 0.9900 |
N1—C8 | 1.5056 (15) | C7—H7A | 0.9800 |
N1—H1 | 0.867 (18) | C7—H7B | 0.9800 |
C1—C2 | 1.3960 (15) | C7—H7C | 0.9800 |
C1—C3i | 1.5394 (16) | C8—C9 | 1.5054 (17) |
C2—C3 | 1.4079 (15) | C8—H8A | 0.9900 |
C3—C1i | 1.5394 (16) | C8—H8B | 0.9900 |
C4—C5 | 1.517 (2) | C9—H9A | 0.9800 |
C4—H4A | 0.9900 | C9—H9B | 0.9800 |
C4—H4B | 0.9900 | C9—H9C | 0.9800 |
C5—H5A | 0.9800 | ||
C4—N1—C6 | 113.81 (10) | H5B—C5—H5C | 109.5 |
C4—N1—C8 | 111.29 (9) | N1—C6—C7 | 113.74 (10) |
C6—N1—C8 | 111.25 (9) | N1—C6—H6A | 108.8 |
C4—N1—H1 | 108.1 (10) | C7—C6—H6A | 108.8 |
C6—N1—H1 | 103.7 (10) | N1—C6—H6B | 108.8 |
C8—N1—H1 | 108.2 (10) | C7—C6—H6B | 108.8 |
O1—C1—C2 | 125.01 (10) | H6A—C6—H6B | 107.7 |
O1—C1—C3i | 116.31 (9) | C6—C7—H7A | 109.5 |
C2—C1—C3i | 118.67 (9) | C6—C7—H7B | 109.5 |
C1—C2—C3 | 123.37 (10) | H7A—C7—H7B | 109.5 |
C1—C2—Cl1 | 118.69 (8) | C6—C7—H7C | 109.5 |
C3—C2—Cl1 | 117.83 (8) | H7A—C7—H7C | 109.5 |
O2—C3—C2 | 125.12 (10) | H7B—C7—H7C | 109.5 |
O2—C3—C1i | 116.95 (9) | C9—C8—N1 | 112.57 (10) |
C2—C3—C1i | 117.93 (9) | C9—C8—H8A | 109.1 |
N1—C4—C5 | 112.84 (11) | N1—C8—H8A | 109.1 |
N1—C4—H4A | 109.0 | C9—C8—H8B | 109.1 |
C5—C4—H4A | 109.0 | N1—C8—H8B | 109.1 |
N1—C4—H4B | 109.0 | H8A—C8—H8B | 107.8 |
C5—C4—H4B | 109.0 | C8—C9—H9A | 109.5 |
H4A—C4—H4B | 107.8 | C8—C9—H9B | 109.5 |
C4—C5—H5A | 109.5 | H9A—C9—H9B | 109.5 |
C4—C5—H5B | 109.5 | C8—C9—H9C | 109.5 |
H5A—C5—H5B | 109.5 | H9A—C9—H9C | 109.5 |
C4—C5—H5C | 109.5 | H9B—C9—H9C | 109.5 |
H5A—C5—H5C | 109.5 | ||
O1—C1—C2—C3 | −176.68 (11) | Cl1—C2—C3—C1i | −178.12 (8) |
C3i—C1—C2—C3 | 1.97 (19) | C6—N1—C4—C5 | −56.62 (13) |
O1—C1—C2—Cl1 | −0.54 (17) | C8—N1—C4—C5 | 176.71 (10) |
C3i—C1—C2—Cl1 | 178.11 (8) | C4—N1—C6—C7 | −66.29 (14) |
C1—C2—C3—O2 | 177.84 (11) | C8—N1—C6—C7 | 60.39 (14) |
Cl1—C2—C3—O2 | 1.67 (17) | C4—N1—C8—C9 | −74.58 (13) |
C1—C2—C3—C1i | −1.95 (18) | C6—N1—C8—C9 | 157.36 (10) |
Symmetry code: (i) −x+1, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.867 (18) | 1.942 (18) | 2.7601 (15) | 156.9 (15) |
N1—H1···O2i | 0.867 (18) | 2.339 (17) | 2.9377 (14) | 126.4 (14) |
C5—H5C···O1 | 0.98 | 2.57 | 3.2911 (19) | 131 |
C9—H9B···O1ii | 0.98 | 2.55 | 3.5315 (17) | 177 |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.867 (18) | 1.942 (18) | 2.7601 (15) | 156.9 (15) |
N1—H1···O2i | 0.867 (18) | 2.339 (17) | 2.9377 (14) | 126.4 (14) |
C5—H5C···O1 | 0.98 | 2.57 | 3.2911 (19) | 131 |
C9—H9B···O1ii | 0.98 | 2.55 | 3.5315 (17) | 177 |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 22550013) from the Japan Society for the Promotion of Science.
References
Dayananda, A. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Narayana, B. (2012). Acta Cryst. E68, o1037–o1038. CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gotoh, K., Maruyama, S. & Ishida, H. (2010). Acta Cryst. E66, o3255. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gotoh, K., Nagoshi, H. & Ishida, H. (2009). Acta Cryst. C65, o273–o277. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, D.-J. (2007). Acta Cryst. E63, o2600. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in amine–chloranilic acid systems (Gotoh et al., 2009, 2010). For the tertiary amine–chloranilic acid systems, crystal structures of bis(hexamethylenetetraminium) chloranilate tetrahydrate (Yang, 2007), triethylammonium hydrogen chloranilate (Gotoh et al., 2010) and triprolidinium dichloranilate–chloranilic acid–methanol–water (2/1/2/2) (Dayananda et al., 2012) have been reported.
In the crystal structure of the title compound, an acid-base interaction involving proton transfer is observed between chloranilic acid and triethylamine, and one chloranilate anion and two triethylammnoium cations are linked by bifurcated N—H···O and weak C—H···O hydrogen bonds (Table 1) to afford a centrosymmetric 2:1 aggregate (Fig. 1). The 2:1 aggregates are further linked by intermolecular C—H···O hydrogen bonds, forming a zigzag chain running along the [011] direction (Fig. 2).