organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tri­ethyl­ammonium) chloranilate

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

(Received 19 July 2013; accepted 1 August 2013; online 10 August 2013)

In the crystal structure of the title compound [systematic name: bis­(tri­ethyl­ammonium) 2,5-di­chloro-3,6-dioxo­cyclo­hexa-1,4-diene-1,4-diolate], 2C6H16N+·C6Cl2O42−, the chloranilate anion lies on an inversion center. The tri­ethyl­ammonium cations are linked on both sides of the anion via bifurcated N—H⋯(O,O) and weak C—H⋯O hydrogen bonds to give a centrosymmetric 2:1 aggregate. The 2:1 aggregates are further linked by C—H⋯O hydrogen bonds into a zigzag chain running along [01-1].

Related literature

For related structures, see: Dayananda et al. (2012[Dayananda, A. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Narayana, B. (2012). Acta Cryst. E68, o1037-o1038.]); Gotoh et al. (2009[Gotoh, K., Nagoshi, H. & Ishida, H. (2009). Acta Cryst. C65, o273-o277.], 2010[Gotoh, K., Maruyama, S. & Ishida, H. (2010). Acta Cryst. E66, o3255.]); Yang (2007[Yang, D.-J. (2007). Acta Cryst. E63, o2600.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H16N+·C6Cl2O42−

  • Mr = 411.37

  • Triclinic, [P \overline 1]

  • a = 7.7347 (5) Å

  • b = 8.5151 (8) Å

  • c = 9.3913 (7) Å

  • α = 64.388 (4)°

  • β = 68.435 (3)°

  • γ = 79.060 (5)°

  • V = 518.36 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 180 K

  • 0.65 × 0.31 × 0.21 mm

Data collection
  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.858, Tmax = 0.932

  • 10264 measured reflections

  • 3012 independent reflections

  • 2561 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.121

  • S = 1.06

  • 3012 reflections

  • 125 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.867 (18) 1.942 (18) 2.7601 (15) 156.9 (15)
N1—H1⋯O2i 0.867 (18) 2.339 (17) 2.9377 (14) 126.4 (14)
C5—H5C⋯O1 0.98 2.57 3.2911 (19) 131
C9—H9B⋯O1ii 0.98 2.55 3.5315 (17) 177
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+1, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in amine–chloranilic acid systems (Gotoh et al., 2009, 2010). For the tertiary amine–chloranilic acid systems, crystal structures of bis(hexamethylenetetraminium) chloranilate tetrahydrate (Yang, 2007), triethylammonium hydrogen chloranilate (Gotoh et al., 2010) and triprolidinium dichloranilate–chloranilic acid–methanol–water (2/1/2/2) (Dayananda et al., 2012) have been reported.

In the crystal structure of the title compound, an acid-base interaction involving proton transfer is observed between chloranilic acid and triethylamine, and one chloranilate anion and two triethylammnoium cations are linked by bifurcated N—H···O and weak C—H···O hydrogen bonds (Table 1) to afford a centrosymmetric 2:1 aggregate (Fig. 1). The 2:1 aggregates are further linked by intermolecular C—H···O hydrogen bonds, forming a zigzag chain running along the [011] direction (Fig. 2).

Related literature top

For related structures, see: Dayananda et al. (2012); Gotoh et al. (2009, 2010); Yang (2007).

Experimental top

Single crystals were obtained by slow evaporation from an acetonitrile solution (100 ml) of chloranilic acid (100 mg) and triethylamine (97 mg) at room temperature.

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.98 or 0.99 Å) and refined as riding, allowing for free rotation of the methyl group. Uiso(H) values were set at 1.2Ueq(C) or 1.5Ueq(methyl C). The N-bound H atom was found in a difference Fourier map and refined isotropically. The refined N—H distance is 0.867 (18) Å.

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 30% probability level. The dashed lines indicate N—H···O and C—H···O hydrogen bonds. [Symmetry code: (i) -x + 1, -y + 2, -z.]
[Figure 2] Fig. 2. A partial packing diagram of the title compound. The dashed lines indicate N—H···O and C—H···O hydrogen bonds. H atoms of the ethyl groups not involved in the C—H···O hydrogen bonds have been omitted. [Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x + 1, -y + 1, -z.]
Bis(triethylammonium) 2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-diolate top
Crystal data top
2C6H16N+·C6Cl2O42Z = 1
Mr = 411.37F(000) = 220.00
Triclinic, P1Dx = 1.318 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.7347 (5) ÅCell parameters from 8559 reflections
b = 8.5151 (8) Åθ = 3.1–30.1°
c = 9.3913 (7) ŵ = 0.34 mm1
α = 64.388 (4)°T = 180 K
β = 68.435 (3)°Block, brown
γ = 79.060 (5)°0.65 × 0.31 × 0.21 mm
V = 518.36 (7) Å3
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
2561 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.078
ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1010
Tmin = 0.858, Tmax = 0.932k = 1111
10264 measured reflectionsl = 1313
3012 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0654P)2]
where P = (Fo2 + 2Fc2)/3
3012 reflections(Δ/σ)max = 0.001
125 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
2C6H16N+·C6Cl2O42γ = 79.060 (5)°
Mr = 411.37V = 518.36 (7) Å3
Triclinic, P1Z = 1
a = 7.7347 (5) ÅMo Kα radiation
b = 8.5151 (8) ŵ = 0.34 mm1
c = 9.3913 (7) ÅT = 180 K
α = 64.388 (4)°0.65 × 0.31 × 0.21 mm
β = 68.435 (3)°
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
3012 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2561 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.932Rint = 0.078
10264 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.48 e Å3
3012 reflectionsΔρmin = 0.26 e Å3
125 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.14870 (4)0.93266 (4)0.32667 (3)0.03021 (13)
O10.44257 (12)0.67475 (10)0.24001 (11)0.0322 (2)
O20.26077 (12)1.26690 (10)0.03171 (10)0.0326 (2)
N10.67048 (13)0.38363 (13)0.23709 (12)0.0242 (2)
C10.46352 (15)0.82853 (14)0.13459 (13)0.0237 (2)
C20.34397 (15)0.96966 (14)0.14976 (13)0.0235 (2)
C30.36699 (15)1.13964 (14)0.02453 (14)0.0235 (2)
C40.54491 (18)0.26759 (16)0.40054 (15)0.0313 (3)
H4A0.53210.31030.48680.038*
H4B0.60240.14850.43330.038*
C50.35317 (19)0.25958 (19)0.39536 (18)0.0396 (3)
H5A0.27120.19660.50860.059*
H5B0.36250.19880.32470.059*
H5C0.30180.37820.34940.059*
C60.69491 (17)0.33514 (16)0.09491 (15)0.0297 (3)
H6A0.76490.42680.01050.036*
H6B0.57080.33190.08840.036*
C70.7960 (2)0.1614 (2)0.1098 (2)0.0435 (4)
H7A0.82000.14420.00750.065*
H7B0.71910.06790.20510.065*
H7C0.91430.15950.12650.065*
C80.85542 (16)0.39642 (17)0.24970 (15)0.0295 (3)
H8A0.90180.27800.30910.035*
H8B0.94590.44510.13600.035*
C90.84408 (19)0.50912 (17)0.34006 (17)0.0342 (3)
H9A0.96930.52260.33550.051*
H9B0.76620.45420.45670.051*
H9C0.78940.62390.28680.051*
H10.618 (2)0.487 (2)0.209 (2)0.034 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02658 (19)0.03015 (19)0.02264 (18)0.00392 (12)0.00412 (13)0.00561 (13)
O10.0340 (5)0.0216 (4)0.0265 (4)0.0031 (3)0.0046 (4)0.0025 (3)
O20.0326 (5)0.0247 (4)0.0290 (5)0.0080 (3)0.0055 (4)0.0078 (4)
N10.0252 (5)0.0216 (5)0.0220 (4)0.0037 (3)0.0086 (4)0.0062 (4)
C10.0254 (5)0.0227 (5)0.0216 (5)0.0019 (4)0.0092 (4)0.0072 (4)
C20.0235 (5)0.0233 (5)0.0196 (5)0.0023 (4)0.0067 (4)0.0063 (4)
C30.0246 (5)0.0219 (5)0.0230 (5)0.0030 (4)0.0094 (4)0.0082 (4)
C40.0327 (6)0.0267 (6)0.0254 (6)0.0000 (4)0.0062 (5)0.0054 (5)
C50.0352 (7)0.0392 (7)0.0414 (7)0.0081 (5)0.0058 (6)0.0159 (6)
C60.0326 (6)0.0317 (6)0.0267 (6)0.0028 (5)0.0139 (5)0.0114 (5)
C70.0479 (8)0.0454 (8)0.0561 (9)0.0166 (6)0.0296 (7)0.0339 (7)
C80.0262 (6)0.0355 (6)0.0272 (6)0.0026 (4)0.0106 (5)0.0128 (5)
C90.0355 (7)0.0370 (7)0.0330 (6)0.0009 (5)0.0120 (5)0.0159 (6)
Geometric parameters (Å, º) top
Cl1—C21.7390 (11)C5—H5B0.9800
O1—C11.2502 (13)C5—H5C0.9800
O2—C31.2403 (13)C6—C71.5103 (18)
N1—C41.4943 (15)C6—H6A0.9900
N1—C61.5002 (15)C6—H6B0.9900
N1—C81.5056 (15)C7—H7A0.9800
N1—H10.867 (18)C7—H7B0.9800
C1—C21.3960 (15)C7—H7C0.9800
C1—C3i1.5394 (16)C8—C91.5054 (17)
C2—C31.4079 (15)C8—H8A0.9900
C3—C1i1.5394 (16)C8—H8B0.9900
C4—C51.517 (2)C9—H9A0.9800
C4—H4A0.9900C9—H9B0.9800
C4—H4B0.9900C9—H9C0.9800
C5—H5A0.9800
C4—N1—C6113.81 (10)H5B—C5—H5C109.5
C4—N1—C8111.29 (9)N1—C6—C7113.74 (10)
C6—N1—C8111.25 (9)N1—C6—H6A108.8
C4—N1—H1108.1 (10)C7—C6—H6A108.8
C6—N1—H1103.7 (10)N1—C6—H6B108.8
C8—N1—H1108.2 (10)C7—C6—H6B108.8
O1—C1—C2125.01 (10)H6A—C6—H6B107.7
O1—C1—C3i116.31 (9)C6—C7—H7A109.5
C2—C1—C3i118.67 (9)C6—C7—H7B109.5
C1—C2—C3123.37 (10)H7A—C7—H7B109.5
C1—C2—Cl1118.69 (8)C6—C7—H7C109.5
C3—C2—Cl1117.83 (8)H7A—C7—H7C109.5
O2—C3—C2125.12 (10)H7B—C7—H7C109.5
O2—C3—C1i116.95 (9)C9—C8—N1112.57 (10)
C2—C3—C1i117.93 (9)C9—C8—H8A109.1
N1—C4—C5112.84 (11)N1—C8—H8A109.1
N1—C4—H4A109.0C9—C8—H8B109.1
C5—C4—H4A109.0N1—C8—H8B109.1
N1—C4—H4B109.0H8A—C8—H8B107.8
C5—C4—H4B109.0C8—C9—H9A109.5
H4A—C4—H4B107.8C8—C9—H9B109.5
C4—C5—H5A109.5H9A—C9—H9B109.5
C4—C5—H5B109.5C8—C9—H9C109.5
H5A—C5—H5B109.5H9A—C9—H9C109.5
C4—C5—H5C109.5H9B—C9—H9C109.5
H5A—C5—H5C109.5
O1—C1—C2—C3176.68 (11)Cl1—C2—C3—C1i178.12 (8)
C3i—C1—C2—C31.97 (19)C6—N1—C4—C556.62 (13)
O1—C1—C2—Cl10.54 (17)C8—N1—C4—C5176.71 (10)
C3i—C1—C2—Cl1178.11 (8)C4—N1—C6—C766.29 (14)
C1—C2—C3—O2177.84 (11)C8—N1—C6—C760.39 (14)
Cl1—C2—C3—O21.67 (17)C4—N1—C8—C974.58 (13)
C1—C2—C3—C1i1.95 (18)C6—N1—C8—C9157.36 (10)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.867 (18)1.942 (18)2.7601 (15)156.9 (15)
N1—H1···O2i0.867 (18)2.339 (17)2.9377 (14)126.4 (14)
C5—H5C···O10.982.573.2911 (19)131
C9—H9B···O1ii0.982.553.5315 (17)177
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.867 (18)1.942 (18)2.7601 (15)156.9 (15)
N1—H1···O2i0.867 (18)2.339 (17)2.9377 (14)126.4 (14)
C5—H5C···O10.982.573.2911 (19)131
C9—H9B···O1ii0.982.553.5315 (17)177
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 22550013) from the Japan Society for the Promotion of Science.

References

First citationDayananda, A. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Narayana, B. (2012). Acta Cryst. E68, o1037–o1038.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGotoh, K., Maruyama, S. & Ishida, H. (2010). Acta Cryst. E66, o3255.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Nagoshi, H. & Ishida, H. (2009). Acta Cryst. C65, o273–o277.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-J. (2007). Acta Cryst. E63, o2600.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds