organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2-(3-Meth­­oxy­phen­yl)eth­yl]pyrroli­dine-2,5-dione

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 19 August 2013; accepted 22 August 2013; online 31 August 2013)

In the title compound, C13H15NO3, the pyrrolidine ring makes a dihedral angle of 4.69 (9)° with the 3-meth­oxy-phenyl ring. In the crystal, hydrogen-bonded chains running along [101] are generated by connecting neighbouring mol­ecules via C—H⋯O hydrogen bonds. Parallel chains are linked by further C—H⋯O hydrogen bonds, forming a three-dimensional structure.

Related literature

For the bioactivity of pyrrolidine-2,5-dione derivatives, see: Obniska et al. (2012[Obniska, J., Rzepka, S. & Kamin' ski, K. (2012). Bioorg. Med. Chem. 20, 4872-4880.]); Ha et al. (2011[Ha, Y. M., Kim, J., Parkl, Y. J., Park, D., Choi, Y. J., Kim, J. M., Chung, K. W., Han, Y. K., Park, J. Y., Lee, J. Y., Moon, H. R. & Chung, H. Y. (2011). Med. Chem. Commun. 2, 542-549.]); Kaminski et al. (2011[Kaminski, K., Rzepka, S. & Obniska, J. (2011). Bioorg. Med. Chem. Lett. 21, 5800-5803.]). For related structures, see: Khorasani & Fernandes (2012[Khorasani, S. & Fernandes, M. A. (2012). Acta Cryst. E68, o1503.]); Mayes et al. (2008[Mayes, B. A., McGarry, P., Moussa, A. & Watkin, D. J. (2008). Acta Cryst. E64, o1355.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15NO3

  • Mr = 233.26

  • Monoclinic, C c

  • a = 12.8719 (9) Å

  • b = 12.5878 (8) Å

  • c = 7.4523 (5) Å

  • β = 90.831 (3)°

  • V = 1207.36 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]) Tmin = 0.964, Tmax = 0.982

  • 5692 measured reflections

  • 2615 independent reflections

  • 2328 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.02

  • 2615 reflections

  • 156 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O3i 0.96 2.54 3.418 (3) 151
C8—H8B⋯O1ii 0.97 2.54 3.469 (2) 161
C12—H12A⋯O2iii 0.97 2.57 3.456 (3) 152
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrrolidine-2,5-dione derivates are an important class of heterocylic compounds with essential applications in medicinal chemistry and organic synthesis. They exhibit numerous bioactivities, for example anticonvulsant (Obniska et al., 2012; Kaminski et al., 2011) and tyrosinase inhibitory activity (Ha et al., 2011). In the field of organic chemistry derivates, like 1-bromopyrrolidine-2,5-dione (NBS), are the most commonly used halogenation reagents. In view of the different applications of this class of compounds, we have synthesized the title derivative and report herein on its crystal structure.

In the title compound, Fig. 1, the pyrrolidine ring (N1/C10—C13) makes a dihedral angle of 4.69 (9)° with the benzene ring (C2—C7).

In the crystal, hydrogen-bonded chains running along [101] are generated by connecting neighbouring molecules via C—H···O hydrogen bonds (Table 1 and Fig. 2). Parallel chains are linked by further C—H···O hydrogen bonds forming a three-dimensional structure (Table 1 and Fig. 2).

Related literature top

For the bioactivity of pyrrolidine-2,5-dione derivatives, see: Obniska et al. (2012); Ha et al. (2011); Kaminski et al. (2011). For related structures, see: Khorasani & Fernandes (2012); Mayes et al. (2008).

Experimental top

3-methoxy phenethylamine (1.51 g, 10 mmol) and succinic anhydride (1.2 g, 12 mmol) were stirred at room temperature in dry ethyl acetate for 30 min. Ethyl acetate was removed under reduced pressure, and the resulting residue was dissolved in toluene. Acetyl chloride (5 equiv) was then added and the mixture refluxed for 1 h. The reaction mixture was washed with aqueous Na2CO3 and dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure followed by silica gel column purification using hexane ethyl acetate (30:70) as eluent to afford the title compound as a colourless solid. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution of the title compound in ethanol at room temperature.

Refinement top

The H atoms were placed in calculated positions and treated as riding atoms: C—H = 0.93 Å to 0.97 Å, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
1-[2-(3-Methoxyphenyl)ethyl]pyrrolidine-2,5-dione top
Crystal data top
C13H15NO3F(000) = 496
Mr = 233.26Dx = 1.283 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2615 reflections
a = 12.8719 (9) Åθ = 2.3–28.4°
b = 12.5878 (8) ŵ = 0.09 mm1
c = 7.4523 (5) ÅT = 293 K
β = 90.831 (3)°Block, colourless
V = 1207.36 (14) Å30.40 × 0.35 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2615 independent reflections
Radiation source: fine-focus sealed tube2328 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 28.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1717
Tmin = 0.964, Tmax = 0.982k = 1516
5692 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.1677P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2615 reflectionsΔρmax = 0.12 e Å3
156 parametersΔρmin = 0.16 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0149 (15)
Crystal data top
C13H15NO3V = 1207.36 (14) Å3
Mr = 233.26Z = 4
Monoclinic, CcMo Kα radiation
a = 12.8719 (9) ŵ = 0.09 mm1
b = 12.5878 (8) ÅT = 293 K
c = 7.4523 (5) Å0.40 × 0.35 × 0.20 mm
β = 90.831 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2615 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2328 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.982Rint = 0.024
5692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 0.12 e Å3
2615 reflectionsΔρmin = 0.16 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.95763 (19)0.43725 (18)1.0655 (3)0.0832 (6)
H1A0.98060.44940.94520.125*
H1B1.00430.47161.14870.125*
H1C0.88900.46571.07890.125*
C20.90109 (11)0.26275 (13)0.9852 (2)0.0485 (3)
C30.91325 (14)0.15484 (15)1.0131 (2)0.0633 (4)
H30.95820.13001.10250.076*
C40.85800 (17)0.08476 (14)0.9071 (3)0.0695 (5)
H40.86520.01210.92610.083*
C50.79213 (14)0.12096 (13)0.7730 (2)0.0609 (4)
H50.75520.07260.70260.073*
C60.78069 (11)0.22844 (13)0.74273 (18)0.0472 (3)
C70.83541 (11)0.29992 (12)0.85029 (19)0.0450 (3)
H70.82800.37260.83170.054*
C80.70939 (12)0.26805 (15)0.5942 (2)0.0564 (4)
H8A0.68930.34080.61930.068*
H8B0.64680.22510.59070.068*
C90.76102 (13)0.26346 (15)0.4132 (2)0.0565 (4)
H9A0.81610.31590.40940.068*
H9B0.79200.19390.39720.068*
C100.63151 (13)0.20320 (14)0.1850 (2)0.0573 (4)
C110.56115 (15)0.25110 (19)0.0462 (3)0.0737 (6)
H11A0.48910.23520.07120.088*
H11B0.57740.22470.07240.088*
C120.58151 (16)0.36961 (19)0.0592 (3)0.0777 (6)
H12A0.60660.39690.05400.093*
H12B0.51850.40730.08960.093*
C130.66250 (15)0.38270 (13)0.2046 (2)0.0609 (4)
N10.68700 (9)0.28356 (10)0.26754 (15)0.0475 (3)
O10.95629 (10)0.32628 (11)1.10049 (17)0.0690 (3)
O20.70187 (17)0.46337 (11)0.2584 (2)0.0967 (5)
O30.64082 (15)0.11124 (11)0.2245 (2)0.0906 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0866 (14)0.0787 (13)0.0843 (14)0.0200 (11)0.0031 (11)0.0264 (11)
C20.0412 (7)0.0623 (8)0.0421 (7)0.0004 (7)0.0000 (6)0.0038 (7)
C30.0629 (10)0.0683 (10)0.0585 (10)0.0098 (8)0.0075 (8)0.0138 (8)
C40.0825 (12)0.0484 (9)0.0773 (12)0.0001 (8)0.0032 (10)0.0119 (8)
C50.0636 (10)0.0534 (9)0.0658 (11)0.0099 (7)0.0003 (8)0.0074 (7)
C60.0405 (7)0.0586 (8)0.0425 (7)0.0008 (6)0.0019 (6)0.0018 (6)
C70.0429 (7)0.0486 (7)0.0437 (7)0.0016 (6)0.0014 (6)0.0002 (6)
C80.0444 (7)0.0769 (10)0.0478 (8)0.0049 (7)0.0064 (6)0.0044 (8)
C90.0434 (7)0.0776 (11)0.0483 (8)0.0044 (7)0.0084 (6)0.0034 (8)
C100.0570 (9)0.0649 (11)0.0502 (8)0.0133 (7)0.0058 (7)0.0053 (7)
C110.0508 (9)0.1229 (19)0.0473 (8)0.0130 (10)0.0052 (7)0.0007 (10)
C120.0687 (12)0.1047 (16)0.0596 (10)0.0264 (11)0.0000 (9)0.0204 (10)
C130.0717 (11)0.0584 (9)0.0529 (10)0.0049 (8)0.0093 (8)0.0062 (7)
N10.0448 (6)0.0538 (7)0.0439 (7)0.0009 (5)0.0041 (5)0.0004 (5)
O10.0654 (7)0.0838 (9)0.0573 (7)0.0055 (6)0.0185 (5)0.0104 (6)
O20.1454 (15)0.0532 (7)0.0917 (10)0.0170 (9)0.0081 (10)0.0025 (7)
O30.1184 (13)0.0569 (8)0.0962 (12)0.0184 (7)0.0033 (10)0.0054 (7)
Geometric parameters (Å, º) top
C1—O11.421 (3)C8—H8A0.9700
C1—H1A0.9600C8—H8B0.9700
C1—H1B0.9600C9—N11.4562 (19)
C1—H1C0.9600C9—H9A0.9700
C2—O11.3654 (19)C9—H9B0.9700
C2—C31.383 (2)C10—O31.200 (2)
C2—C71.386 (2)C10—N11.378 (2)
C3—C41.376 (3)C10—C111.492 (3)
C3—H30.9300C11—C121.517 (3)
C4—C51.379 (3)C11—H11A0.9700
C4—H40.9300C11—H11B0.9700
C5—C61.379 (2)C12—C131.502 (3)
C5—H50.9300C12—H12A0.9700
C6—C71.390 (2)C12—H12B0.9700
C6—C81.512 (2)C13—O21.201 (2)
C7—H70.9300C13—N11.368 (2)
C8—C91.513 (2)
O1—C1—H1A109.5H8A—C8—H8B107.9
O1—C1—H1B109.5N1—C9—C8111.51 (13)
H1A—C1—H1B109.5N1—C9—H9A109.3
O1—C1—H1C109.5C8—C9—H9A109.3
H1A—C1—H1C109.5N1—C9—H9B109.3
H1B—C1—H1C109.5C8—C9—H9B109.3
O1—C2—C3115.10 (14)H9A—C9—H9B108.0
O1—C2—C7124.41 (14)O3—C10—N1123.31 (18)
C3—C2—C7120.48 (14)O3—C10—C11128.13 (18)
C4—C3—C2119.16 (15)N1—C10—C11108.56 (15)
C4—C3—H3120.4C10—C11—C12104.51 (15)
C2—C3—H3120.4C10—C11—H11A110.8
C3—C4—C5120.78 (16)C12—C11—H11A110.9
C3—C4—H4119.6C10—C11—H11B110.8
C5—C4—H4119.6C12—C11—H11B110.9
C4—C5—C6120.39 (16)H11A—C11—H11B108.9
C4—C5—H5119.8C13—C12—C11105.73 (15)
C6—C5—H5119.8C13—C12—H12A110.6
C5—C6—C7119.25 (14)C11—C12—H12A110.6
C5—C6—C8120.36 (14)C13—C12—H12B110.6
C7—C6—C8120.39 (15)C11—C12—H12B110.6
C2—C7—C6119.91 (14)H12A—C12—H12B108.7
C2—C7—H7120.0O2—C13—N1124.25 (18)
C6—C7—H7120.0O2—C13—C12128.20 (19)
C6—C8—C9111.72 (12)N1—C13—C12107.54 (16)
C6—C8—H8A109.3C13—N1—C10113.65 (14)
C9—C8—H8A109.3C13—N1—C9123.99 (15)
C6—C8—H8B109.3C10—N1—C9122.31 (15)
C9—C8—H8B109.3C2—O1—C1117.90 (14)
O1—C2—C3—C4177.92 (17)C10—C11—C12—C130.1 (2)
C7—C2—C3—C41.1 (3)C11—C12—C13—O2179.5 (2)
C2—C3—C4—C50.8 (3)C11—C12—C13—N10.5 (2)
C3—C4—C5—C60.1 (3)O2—C13—N1—C10179.95 (18)
C4—C5—C6—C70.7 (3)C12—C13—N1—C100.94 (19)
C4—C5—C6—C8179.27 (16)O2—C13—N1—C92.7 (3)
O1—C2—C7—C6178.43 (15)C12—C13—N1—C9178.33 (15)
C3—C2—C7—C60.4 (2)O3—C10—N1—C13178.52 (19)
C5—C6—C7—C20.5 (2)C11—C10—N1—C131.00 (19)
C8—C6—C7—C2179.55 (14)O3—C10—N1—C91.1 (2)
C5—C6—C8—C980.96 (19)C11—C10—N1—C9178.43 (16)
C7—C6—C8—C999.05 (18)C8—C9—N1—C1387.3 (2)
C6—C8—C9—N1169.92 (15)C8—C9—N1—C1089.88 (19)
O3—C10—C11—C12178.89 (19)C3—C2—O1—C1172.27 (18)
N1—C10—C11—C120.6 (2)C7—C2—O1—C18.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O3i0.962.543.418 (3)151
C8—H8B···O1ii0.972.543.469 (2)161
C12—H12A···O2iii0.972.573.456 (3)152
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O3i0.962.543.418 (3)151
C8—H8B···O1ii0.972.543.469 (2)161
C12—H12A···O2iii0.972.573.456 (3)152
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z1/2.
 

Acknowledgements

We are grateful to Dr C. R. Ramanathan, Department of Chemistry, Pondicherry University for support of this research. The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. ZF and DV acknowledge the UGC (SAP–CAS) for departmental facilities. ZF also thanks the UGC for a meritorious fellowship.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHa, Y. M., Kim, J., Parkl, Y. J., Park, D., Choi, Y. J., Kim, J. M., Chung, K. W., Han, Y. K., Park, J. Y., Lee, J. Y., Moon, H. R. & Chung, H. Y. (2011). Med. Chem. Commun. 2, 542–549.  Web of Science CrossRef CAS Google Scholar
First citationKaminski, K., Rzepka, S. & Obniska, J. (2011). Bioorg. Med. Chem. Lett. 21, 5800–5803.  Web of Science CAS PubMed Google Scholar
First citationKhorasani, S. & Fernandes, M. A. (2012). Acta Cryst. E68, o1503.  CSD CrossRef IUCr Journals Google Scholar
First citationMayes, B. A., McGarry, P., Moussa, A. & Watkin, D. J. (2008). Acta Cryst. E64, o1355.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationObniska, J., Rzepka, S. & Kamin' ski, K. (2012). Bioorg. Med. Chem. 20, 4872–4880.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds