metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m506-m507

Bis(1,10-phenanthroline-κ2N,N′)(sulfato-κ2O,O′)nickel(II) propane-1,2-diol monosolvate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing, 210048, People's Republic of China, and bAVIC Hefei Jianghang Aircraft Equipment Corporation Ltd, Hefei, 230051, People's Republic of China
*Correspondence e-mail: zklong76@163.com

(Received 14 August 2013; accepted 15 August 2013; online 21 August 2013)

In the title compound, [Ni(SO4)(C12H8N2)2]·C3H8O2, the NiII atom exhibits a distorted octa­hedral coordination by four N atoms from two chelating 1,10-phenanthroline ligands and two O atoms from an O,O′-bidentate sulfate group. A twofold rotation axis passes through the Ni and S atoms and the mid-point of the hydroxyl C—C bond of the propane-1,2-diol solvent mol­ecule. The dihedral angle between the two chelating N2C2 groups is 85.61 (8)°. The [NiSO4(C10H8N2)2] and propane-1,2-diol units are held together by a pair of symmetry-related inter­molecular O—H⋯O hydrogen bonds involving the uncoordinating O atoms of the sulfate ion. Due to symmetry, the solvent mol­ecule is equally disordered over two positions.

Related literature

For the ethane-1,2-diol solvate of the title complex, see: Zhong et al. (2009[Zhong, K.-L., Ni, C. & Wang, J.-M. (2009). Acta Cryst. E65, m911.]). For the propane-1,3-diol solvate of the title complex, see: Ni et al. (2010[Ni, C., Zhong, K.-L. & Cui, J.-D. (2010). Acta Cryst. E66, m746-m747.]). For the butane-2,3-diol solvate of the title complex, see: Zhong & Ni (2012[Zhong, K.-L. & Ni, C. (2012). Acta Cryst. E68, m1519.]). For an isotypic compound, see: Zhong (2013[Zhong, K.-L. (2013). Acta Cryst. E69, m26.]). For background to coordination polymers, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Chem. Commun. pp. 1067-1068.]); Zhang et al. (2010[Zhang, L.-P., Ma, J.-F., Yang, J., Pang, Y.-Y. & Ma, J.-C. (2010). Inorg. Chem. 49, 1535-1550.]); Zhong et al. (2011[Zhong, K.-L., Chen, L. & Chen, L. (2011). Acta Cryst. C67, m62-m64.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(SO4)(C12H8N2)2]·C3H8O2

  • Mr = 591.27

  • Monoclinic, C 2/c

  • a = 18.0277 (10) Å

  • b = 13.0448 (5) Å

  • c = 12.8070 (5) Å

  • β = 121.738 (5)°

  • V = 2561.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 223 K

  • 0.30 × 0.25 × 0.15 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.876, Tmax = 1.000

  • 7993 measured reflections

  • 2602 independent reflections

  • 2311 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.01

  • 2602 reflections

  • 191 parameters

  • 26 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 2.0762 (19)
Ni1—N2 2.082 (2)
Ni1—O1 2.1074 (16)
S1—O2 1.4587 (17)
S1—O1 1.4942 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O2 0.82 1.97 2.705 (6) 148
O3′—H3′A⋯O2 0.82 2.00 2.767 (8) 155

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The self-assembly of coordination polymers and the crystal engineering of metal-organic coordination frameworks have recently attracted great interest, owing to their interesting structural topologies and potential application as functional materials (Batten & Robson, 1998; Zhang et al., 2010; Zhong et al., 2011). The neutral bidentate ligand 1,10-phenanthroline (phen) as an auxiliary ligand has been widely applied in constructing interesting coordination polymers. Recently, we have obtained unexpectedly some nickel-phen complexes (Zhong et al., 2009; Ni et al., 2010; Zhong & Ni, 2012) with interesting four-membered chelating rings during attempts to synthesize mixed-ligand coordination polymers with phen as auxiliary ligand via an alcohol-solvothermal reaction. We here report the title compound, [NiSO4(C12H8N2)2]. C3H8O2, which is the part of our systematic investigation of transition metal nickel complexes with bidentate bridging sulfate ligands. It is isostructural to the previously reported cobalt(II) analog (Zhong, 2013).

The single-crystal X-ray diffraction experiment revealed that the crystal structure of the the title compound consists of a neutral monomeric [NiSO4(C10H8N2)2] complex and a solvent propane-1,2-diol molecule. A two-fold rotation axis (symmetry code: -x + 1, y, -z + 1/2) passes through the Ni and S atoms, and the mid-point of the hydroxyl C—C bond of the propane-1,2-diol solvent molecule is likewise located on a the same crystallographic axis. The NiII metal ion has a distorted NiN4O2 octahedral geometry, with four N atoms from two chelating phenanthroline ligands and two O atoms from an O,O'-bidentate sulfate anion (Fig. 1). The Ni—O bond distance of 2.107 (2) Å, the O—Ni—O bite angle of 67.95 (9)°, the Ni—N bond distances in the range of 2.076 (2)–2.082 (2) Å, the N—Ni—N bite angle of 80.09 (7)° and the dihedral angle of 85.61 (8)° between the two chelating NCCN groups are in good agreement with those observed in the previously reported nickel complexes (Zhong et al., 2009; Ni et al., 2010; Zhong & Ni, 2012) (Table 1).

The solvent molecule is disordered over two positions and was refined with a site-occupancy ratio of 0.50:0.50. The metal complex and the solvent molecules are held together by a pair of intermolecular O—H···O hydrogen bonds, which help to further stabilize the crystal structure (Fig.1 and Table 2).

Related literature top

For the ethane-1,2-diol solvate of the title complex, see: Zhong et al. (2009). For the propane-1,3-diol solvate of the title complex, see: Ni et al. (2010). For the butane-2,3-diol solvate of the title complex, see: Zhong & Ni (2012). For an isotypic compound, see: Zhong (2013). For background to coordination polymers, see: Batten & Robson (1998); Zhang et al. (2010); Zhong et al. (2011).

Experimental top

Green block-shaped crystals of the title compound were obtained by a procedure similar to that described previously (Zhong, 2013), but with NiSO4·7H2O in place of CoSO4·7H2O.

Refinement top

The non-hydrogen atoms were refined anisotropically. The H atoms of phen were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of propane-1,2-diol were placed in geometrically idealized positions and refined as riding atoms, with C—H(CH3) = 0.96 Å, C—H(CH2) = 0.97 Å, C—H(CH) = 0.98 Å and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The solvent molecule butane-2,3-diol is disordered over two positions and was refined with 0.50 and 0.50 site occupancies.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-numbering scheme and with displacement ellipsoids drawn at the 30% probability level. The light broken lines depict O—H···O interactions. Unlabeled atoms are related to the labelled atoms by the symmetry operator (-x, y, -z + 1/2).
Bis(1,10-phenanthroline-κ2N,N')(sulfato-κ2O,O')nickel(II) propane-1,2-diol monosolvate top
Crystal data top
[Ni(SO4)(C12H8N2)2]·C3H8O2F(000) = 1224
Mr = 591.27Dx = 1.533 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3439 reflections
a = 18.0277 (10) Åθ = 3.6–28.8°
b = 13.0448 (5) ŵ = 0.89 mm1
c = 12.8070 (5) ÅT = 223 K
β = 121.738 (5)°Block, green
V = 2561.4 (2) Å30.30 × 0.25 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2602 independent reflections
Radiation source: fine-focus sealed tube2311 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.031
Detector resolution: 28.5714 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 2122
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1616
Tmin = 0.876, Tmax = 1.000l = 1614
7993 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0343P)2 + 4.7899P]
where P = (Fo2 + 2Fc2)/3
2602 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.32 e Å3
26 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ni(SO4)(C12H8N2)2]·C3H8O2V = 2561.4 (2) Å3
Mr = 591.27Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.0277 (10) ŵ = 0.89 mm1
b = 13.0448 (5) ÅT = 223 K
c = 12.8070 (5) Å0.30 × 0.25 × 0.15 mm
β = 121.738 (5)°
Data collection top
Rigaku Mercury CCD
diffractometer
2602 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2311 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 1.000Rint = 0.031
7993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03426 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.01Δρmax = 0.32 e Å3
2602 reflectionsΔρmin = 0.42 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.00000.18120 (3)0.25000.02136 (14)
S10.00000.02326 (6)0.25000.02110 (19)
O10.05906 (10)0.04723 (12)0.35253 (14)0.0273 (4)
O20.05048 (12)0.08688 (14)0.28419 (17)0.0364 (4)
O30.0543 (5)0.2918 (4)0.3137 (6)0.0602 (19)0.50
H3B0.04400.23790.29070.090*0.50
O3'0.0830 (5)0.2955 (5)0.2536 (7)0.083 (3)0.50
H3'A0.05800.23990.26940.124*0.50
N10.08057 (13)0.19506 (14)0.18013 (17)0.0236 (4)
N20.09201 (13)0.28362 (15)0.37649 (18)0.0245 (4)
C10.07474 (16)0.14850 (19)0.0836 (2)0.0288 (5)
H1A0.03100.10010.04110.035*
C20.13188 (18)0.1696 (2)0.0438 (2)0.0358 (6)
H2A0.12580.13600.02440.043*
C30.19674 (17)0.2399 (2)0.1056 (2)0.0373 (6)
H3A0.23520.25420.07990.045*
C40.20528 (16)0.2908 (2)0.2082 (2)0.0285 (5)
C50.27283 (17)0.3631 (2)0.2805 (2)0.0361 (6)
H5A0.31170.38190.25690.043*
C60.28081 (17)0.4044 (2)0.3826 (2)0.0340 (6)
H6A0.32590.45030.42910.041*
C70.22142 (16)0.37889 (19)0.4206 (2)0.0277 (5)
C80.22877 (17)0.41661 (19)0.5286 (2)0.0331 (6)
H8A0.27380.46120.57960.040*
C90.16923 (19)0.3871 (2)0.5578 (2)0.0363 (6)
H9A0.17360.41100.62930.044*
C100.10143 (18)0.32078 (19)0.4793 (2)0.0318 (6)
H10A0.06110.30190.50030.038*
C110.15246 (15)0.31125 (16)0.3486 (2)0.0218 (5)
C120.14502 (14)0.26499 (17)0.2415 (2)0.0223 (5)
C130.0251 (5)0.3713 (3)0.2775 (7)0.133 (3)0.50
H130.07960.37350.19720.160*0.50
C13'0.0251 (5)0.3713 (3)0.2775 (7)0.133 (3)0.50
H13A0.05710.43540.25560.160*0.50
H13B0.01530.37270.36570.160*0.50
C140.0365 (6)0.4760 (5)0.3032 (10)0.088 (3)0.50
H14A0.07320.47740.33660.133*0.50
H14B0.01930.50500.36130.133*0.50
H14C0.06310.51510.22860.133*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0205 (2)0.0205 (2)0.0254 (2)0.0000.01365 (18)0.000
S10.0167 (4)0.0205 (4)0.0254 (4)0.0000.0106 (3)0.000
O10.0222 (8)0.0259 (9)0.0246 (8)0.0005 (7)0.0059 (7)0.0006 (7)
O20.0335 (10)0.0345 (10)0.0475 (11)0.0061 (8)0.0258 (9)0.0048 (8)
O30.107 (5)0.034 (3)0.082 (4)0.010 (3)0.079 (4)0.009 (3)
O3'0.106 (5)0.054 (4)0.120 (6)0.040 (4)0.082 (5)0.040 (4)
N10.0234 (10)0.0231 (10)0.0254 (10)0.0011 (8)0.0137 (9)0.0028 (8)
N20.0265 (10)0.0228 (10)0.0283 (10)0.0005 (8)0.0172 (9)0.0009 (8)
C10.0290 (13)0.0301 (13)0.0267 (12)0.0032 (11)0.0143 (11)0.0062 (10)
C20.0384 (15)0.0460 (16)0.0288 (13)0.0028 (13)0.0216 (12)0.0084 (12)
C30.0333 (14)0.0554 (18)0.0323 (13)0.0071 (13)0.0235 (12)0.0029 (13)
C40.0251 (12)0.0357 (13)0.0259 (12)0.0036 (11)0.0142 (10)0.0011 (10)
C50.0275 (13)0.0482 (16)0.0349 (14)0.0115 (12)0.0182 (12)0.0007 (12)
C60.0260 (13)0.0388 (15)0.0318 (13)0.0122 (11)0.0114 (11)0.0031 (11)
C70.0260 (12)0.0265 (12)0.0265 (11)0.0014 (10)0.0109 (10)0.0010 (10)
C80.0334 (14)0.0293 (13)0.0295 (13)0.0051 (11)0.0117 (11)0.0068 (11)
C90.0463 (16)0.0357 (14)0.0310 (13)0.0027 (13)0.0230 (13)0.0101 (11)
C100.0374 (14)0.0315 (13)0.0338 (13)0.0017 (11)0.0239 (12)0.0050 (11)
C110.0218 (11)0.0196 (11)0.0236 (11)0.0008 (9)0.0116 (10)0.0017 (9)
C120.0197 (11)0.0228 (11)0.0240 (11)0.0011 (9)0.0112 (9)0.0020 (9)
C130.227 (7)0.043 (2)0.242 (7)0.020 (4)0.201 (7)0.011 (4)
C13'0.227 (7)0.043 (2)0.242 (7)0.020 (4)0.201 (7)0.011 (4)
C140.107 (7)0.040 (4)0.155 (9)0.000 (4)0.093 (7)0.001 (5)
Geometric parameters (Å, º) top
Ni1—N12.0762 (19)C3—H3A0.9300
Ni1—N1i2.0762 (19)C4—C121.401 (3)
Ni1—N22.082 (2)C4—C51.430 (4)
Ni1—N2i2.082 (2)C5—C61.350 (4)
Ni1—O1i2.1074 (16)C5—H5A0.9300
Ni1—O12.1074 (16)C6—C71.429 (3)
S1—O2i1.4587 (17)C6—H6A0.9300
S1—O21.4587 (17)C7—C111.403 (3)
S1—O11.4942 (16)C7—C81.408 (3)
S1—O1i1.4942 (16)C8—C91.364 (4)
O3—C131.350 (4)C8—H8A0.9300
O3—H3B0.8200C9—C101.400 (4)
O3'—H3'A0.8200C9—H9A0.9300
N1—C11.331 (3)C10—H10A0.9300
N1—C121.356 (3)C11—C121.439 (3)
N2—C101.328 (3)C13—C13i1.411 (6)
N2—C111.362 (3)C13—C141.444 (7)
C1—C21.397 (4)C13—H130.9800
C1—H1A0.9300C14—H14A0.9600
C2—C31.365 (4)C14—H14B0.9600
C2—H2A0.9300C14—H14C0.9600
C3—C41.406 (3)
N1—Ni1—N1i170.01 (11)C12—C4—C5119.6 (2)
N1—Ni1—N280.09 (7)C3—C4—C5123.6 (2)
N1i—Ni1—N293.46 (7)C6—C5—C4120.7 (2)
N1—Ni1—N2i93.46 (7)C6—C5—H5A119.6
N1i—Ni1—N2i80.09 (7)C4—C5—H5A119.6
N2—Ni1—N2i100.15 (11)C5—C6—C7121.3 (2)
N1—Ni1—O1i92.43 (7)C5—C6—H6A119.3
N1i—Ni1—O1i95.86 (7)C7—C6—H6A119.3
N2—Ni1—O1i162.12 (7)C11—C7—C8117.3 (2)
N2i—Ni1—O1i96.48 (7)C11—C7—C6119.1 (2)
N1—Ni1—O195.86 (7)C8—C7—C6123.6 (2)
N1i—Ni1—O192.43 (7)C9—C8—C7119.3 (2)
N2—Ni1—O196.48 (7)C9—C8—H8A120.3
N2i—Ni1—O1162.12 (7)C7—C8—H8A120.3
O1i—Ni1—O167.95 (9)C8—C9—C10119.6 (2)
O2i—S1—O2110.65 (16)C8—C9—H9A120.2
O2i—S1—O1110.20 (10)C10—C9—H9A120.2
O2—S1—O1110.79 (10)N2—C10—C9123.0 (2)
O2i—S1—O1i110.79 (10)N2—C10—H10A118.5
O2—S1—O1i110.20 (10)C9—C10—H10A118.5
O1—S1—O1i104.03 (13)N2—C11—C7123.3 (2)
S1—O1—Ni194.01 (8)N2—C11—C12116.9 (2)
C13—O3—H3B109.5C7—C11—C12119.7 (2)
C1—N1—C12118.1 (2)N1—C12—C4123.4 (2)
C1—N1—Ni1128.99 (17)N1—C12—C11117.2 (2)
C12—N1—Ni1112.89 (14)C4—C12—C11119.4 (2)
C10—N2—C11117.4 (2)O3—C13—C13i129.8 (4)
C10—N2—Ni1129.79 (17)O3—C13—C14121.4 (5)
C11—N2—Ni1112.70 (14)C13i—C13—C14108.6 (4)
N1—C1—C2122.5 (2)O3—C13—H1391.5
N1—C1—H1A118.8C13i—C13—H1391.5
C2—C1—H1A118.8C14—C13—H1391.5
C3—C2—C1119.5 (2)C13—C14—H14A109.5
C3—C2—H2A120.3C13—C14—H14B109.5
C1—C2—H2A120.3H14A—C14—H14B109.5
C2—C3—C4119.9 (2)C13—C14—H14C109.5
C2—C3—H3A120.0H14A—C14—H14C109.5
C4—C3—H3A120.0H14B—C14—H14C109.5
C12—C4—C3116.7 (2)
O2i—S1—O1—Ni1118.81 (10)C12—C4—C5—C62.1 (4)
O2—S1—O1—Ni1118.40 (9)C3—C4—C5—C6175.7 (3)
O1i—S1—O1—Ni10.0C4—C5—C6—C71.2 (4)
N1—Ni1—O1—S190.25 (8)C5—C6—C7—C111.4 (4)
N1i—Ni1—O1—S195.34 (8)C5—C6—C7—C8177.5 (3)
N2—Ni1—O1—S1170.90 (8)C11—C7—C8—C90.6 (4)
N2i—Ni1—O1—S130.8 (3)C6—C7—C8—C9179.4 (2)
O1i—Ni1—O1—S10.0C7—C8—C9—C100.6 (4)
N2—Ni1—N1—C1178.4 (2)C11—N2—C10—C90.9 (4)
N2i—Ni1—N1—C181.9 (2)Ni1—N2—C10—C9177.70 (19)
O1i—Ni1—N1—C114.7 (2)C8—C9—C10—N20.5 (4)
O1—Ni1—N1—C182.8 (2)C10—N2—C11—C72.2 (3)
N2—Ni1—N1—C124.41 (15)Ni1—N2—C11—C7179.53 (18)
N2i—Ni1—N1—C1295.30 (16)C10—N2—C11—C12175.8 (2)
O1i—Ni1—N1—C12168.06 (15)Ni1—N2—C11—C121.5 (2)
O1—Ni1—N1—C1299.98 (15)C8—C7—C11—N22.1 (3)
N1—Ni1—N2—C10173.8 (2)C6—C7—C11—N2179.0 (2)
N1i—Ni1—N2—C1013.9 (2)C8—C7—C11—C12175.9 (2)
N2i—Ni1—N2—C1094.4 (2)C6—C7—C11—C123.0 (3)
O1i—Ni1—N2—C10107.5 (3)C1—N1—C12—C40.3 (3)
O1—Ni1—N2—C1078.9 (2)Ni1—N1—C12—C4177.28 (18)
N1—Ni1—N2—C113.16 (15)C1—N1—C12—C11177.4 (2)
N1i—Ni1—N2—C11169.16 (16)Ni1—N1—C12—C115.0 (2)
N2i—Ni1—N2—C1188.62 (15)C3—C4—C12—N10.2 (4)
O1i—Ni1—N2—C1169.5 (3)C5—C4—C12—N1178.1 (2)
O1—Ni1—N2—C1198.00 (15)C3—C4—C12—C11177.5 (2)
C12—N1—C1—C20.4 (4)C5—C4—C12—C110.4 (4)
Ni1—N1—C1—C2176.71 (19)N2—C11—C12—N12.4 (3)
N1—C1—C2—C30.4 (4)C7—C11—C12—N1175.7 (2)
C1—C2—C3—C40.3 (4)N2—C11—C12—C4179.8 (2)
C2—C3—C4—C120.2 (4)C7—C11—C12—C42.1 (3)
C2—C3—C4—C5178.0 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O20.821.972.705 (6)148
O3—H3A···O20.822.002.767 (8)155
Selected bond lengths (Å) top
Ni1—N12.0762 (19)S1—O21.4587 (17)
Ni1—N22.082 (2)S1—O11.4942 (16)
Ni1—O12.1074 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O20.821.972.705 (6)148.4
O3'—H3'A···O20.822.002.767 (8)154.8
 

Acknowledgements

This work was partially supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2013-10)

References

First citationBatten, S. R. & Robson, R. (1998). Chem. Commun. pp. 1067–1068.  Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationNi, C., Zhong, K.-L. & Cui, J.-D. (2010). Acta Cryst. E66, m746–m747.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L.-P., Ma, J.-F., Yang, J., Pang, Y.-Y. & Ma, J.-C. (2010). Inorg. Chem. 49, 1535–1550.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhong, K.-L. (2013). Acta Cryst. E69, m26.  CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L., Chen, L. & Chen, L. (2011). Acta Cryst. C67, m62–m64.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhong, K.-L. & Ni, C. (2012). Acta Cryst. E68, m1519.  CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L., Ni, C. & Wang, J.-M. (2009). Acta Cryst. E65, m911.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m506-m507
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds