metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis((E)-2-{3-[4-(1H-imidazol-1-yl-κN3)styr­yl]-5,5-di­methyl­cyclo­hex-2-enyl­­idene}malono­nitrile)­di­iodido­mercury(II)

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and bKey Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: zhpzhp@263.net

(Received 21 July 2013; accepted 11 September 2013; online 21 September 2013)

In the title compound, [HgI2(C22H20N4)2], the HgII cation is situated on a twofold rotation axis and is coordinated by two iodide anions and two imidazolyl N atoms in a distorted tetra­hedral geometry. In the crystal, C—H⋯I inter­actions link the mol­ecules into chains extending in [010], which are further linked into sheets parallel to (100) through C—H⋯N hydrogen bonding inter­actions.

Related literature

For the crystal structure of the organic ligand of the title compound, see: Zheng et al. (2013[Zheng, Z., Yu, Z. P., Yang, M. D., Jin, F., Zhang, Q., Zhou, H. P., Wu, J. Y. & Tian, Y. P. (2013). J. Org. Chem. 78, 3222-3234.]). For mercury(II) complexes in which the Hg(II) cation is four-coordinated by two terminal iodide ions and two N atoms from organic ligands in a distorted tetra­hedral geometry, see: Li (2011[Li, T.-L. (2011). Acta Cryst. E67, m1396.]); Shirvan et al. (2012[Shirvan, S. A., Asghariganjeh, M. R., Aghajeri, M., Haydari Dezfuli, S. & Hossini, F. (2012). Acta Cryst. E68, m303.]).

[Scheme 1]

Experimental

Crystal data
  • [HgI2(C22H20N4)2]

  • Mr = 1135.23

  • Monoclinic, P 2/c

  • a = 18.768 (3) Å

  • b = 6.4890 (9) Å

  • c = 18.681 (3) Å

  • β = 103.896 (10)°

  • V = 2208.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.92 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]) Tmin = 0.320, Tmax = 0.439

  • 14665 measured reflections

  • 3889 independent reflections

  • 3647 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 1.04

  • 3889 reflections

  • 251 parameters

  • H-atom parameters constrained

  • Δρmax = 2.28 e Å−3

  • Δρmin = −1.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N2i 0.93 2.70 3.541 (15) 151
C18—H18⋯I1ii 0.93 3.09 3.864 (5) 142
Symmetry codes: (i) [x, -y+3, z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The organic ligand of the title compound has previously been investigated for its optical properties (Zheng et al., 2013). In addition, some mercury(II) complexes in which the Hg(II) cation is four-coordinated by two terminal iodide ions and two nitrogen atoms from organic ligands to form distorted tetrahedral geometry have been reported (Li, 2011; Shirvan et al., 2012). In this study, we report the crystal structure of the title compound (Fig. 1). In the molecular packing structure of the compound, intermolecular C—H···I interactions link the molecules into chains. The neighboring chains are further linked into sheets through C—H···N hydrogen bonding interactions (Fig.2). Intermolecular hydrogen bonds lengths and angles are reported in Table.1.

Related literature top

For the crystal structure of the organic ligand of the title compound, see: Zheng et al. (2013). For mercury(II) complexes in which the Hg(II) cation is four-coordinated by two terminal iodide ions and two N atoms from organic ligands in a distorted tetrahedral geometry, see: Li (2011); Shirvan et al. (2012).

Experimental top

For the preparation of the title compound, a solution of HgI2 (0.1 g, 0.22 mmol) in methanol (10 mL) was carefully layered on top of the surface of the solution of (E)-2-(3-(4-(1H-imidazol-1-yl)styryl)-5,5-dimethylcyclohex-2- enylidene) malononitrile (0.15 g, 0.44 mmol) in chloroform (10 mL). Crystals were obtained after a week at about 298 K (yield 0.16 g, 64.0%).

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title molecule. [Symmetry code: #1: -x + 1,y,-z + 3/2].
[Figure 2] Fig. 2. : Packing diagram of the title compound viewed along b axis. Intermolecular C—H···I and C—H···N interactions are shown as dashed lines in pink and yellow, respectively.
Bis((E)-2-{3-[4-(1H-imidazol-1-yl-κN3)styryl]-5,5-dimethylcyclohex-2-enylidene}malononitrile)diiodidomercury(II) top
Crystal data top
[HgI2(C22H20N4)2]Z = 2
Mr = 1135.23F(000) = 1092
Monoclinic, P2/cDx = 1.707 Mg m3
Hall symbol: -P 2ycMo Kα radiation, λ = 0.71069 Å
a = 18.768 (3) ŵ = 4.92 mm1
b = 6.4890 (9) ÅT = 298 K
c = 18.681 (3) ÅBlock, red
β = 103.896 (10)°0.30 × 0.20 × 0.20 mm
V = 2208.5 (5) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3889 independent reflections
Radiation source: fine-focus sealed tube3647 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2122
Tmin = 0.320, Tmax = 0.439k = 77
14665 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0496P)2 + 4.7641P]
where P = (Fo2 + 2Fc2)/3
3889 reflections(Δ/σ)max = 0.001
251 parametersΔρmax = 2.28 e Å3
0 restraintsΔρmin = 1.86 e Å3
Crystal data top
[HgI2(C22H20N4)2]V = 2208.5 (5) Å3
Mr = 1135.23Z = 2
Monoclinic, P2/cMo Kα radiation
a = 18.768 (3) ŵ = 4.92 mm1
b = 6.4890 (9) ÅT = 298 K
c = 18.681 (3) Å0.30 × 0.20 × 0.20 mm
β = 103.896 (10)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3889 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3647 reflections with I > 2σ(I)
Tmin = 0.320, Tmax = 0.439Rint = 0.042
14665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.04Δρmax = 2.28 e Å3
3889 reflectionsΔρmin = 1.86 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.50000.05717 (4)0.75000.04225 (11)
I10.40548 (2)0.27343 (6)0.811929 (18)0.05948 (14)
N10.0943 (6)2.1499 (14)0.1997 (5)0.136 (4)
N20.2337 (6)1.6553 (14)0.1582 (5)0.125 (3)
N30.4072 (2)0.4228 (6)0.5797 (2)0.0361 (8)
N40.4591 (2)0.1711 (6)0.6528 (2)0.0393 (9)
C10.2004 (5)1.7214 (12)0.1961 (4)0.083 (2)
C20.1228 (5)1.9987 (13)0.2193 (5)0.081 (2)
C30.1591 (3)1.8091 (9)0.2440 (4)0.0589 (15)
C40.1556 (3)1.7198 (8)0.3090 (3)0.0465 (12)
C50.1146 (3)1.8174 (9)0.3589 (3)0.0541 (13)
H5A0.07271.89060.32930.065*
H5B0.14611.91790.38960.065*
C60.0875 (3)1.6647 (9)0.4086 (3)0.0521 (13)
C70.0272 (4)1.5276 (13)0.3621 (4)0.0748 (19)
H7A0.04691.44940.32770.112*
H7B0.01241.61230.33560.112*
H7C0.00921.43520.39390.112*
C80.0573 (5)1.7859 (13)0.4649 (4)0.088 (2)
H8A0.01711.87040.43960.132*
H8B0.09531.87180.49350.132*
H8C0.04061.69180.49690.132*
C90.1524 (3)1.5320 (8)0.4483 (3)0.0501 (13)
H9A0.18491.61550.48530.060*
H9B0.13411.42080.47360.060*
C100.1955 (3)1.4417 (7)0.3981 (3)0.0419 (11)
C110.1948 (3)1.5315 (8)0.3326 (3)0.0474 (12)
H110.22061.46930.30170.057*
C120.2392 (3)1.2574 (8)0.4195 (3)0.0471 (12)
H120.26191.20090.38490.057*
C130.2497 (3)1.1623 (8)0.4841 (3)0.0454 (11)
H130.22791.22200.51880.055*
C140.2919 (3)0.9732 (7)0.5066 (3)0.0421 (11)
C150.3278 (3)0.8633 (8)0.4615 (3)0.0487 (12)
H150.32640.91240.41450.058*
C160.3653 (3)0.6840 (8)0.4851 (3)0.0461 (12)
H160.38900.61390.45400.055*
C170.3677 (3)0.6079 (7)0.5546 (2)0.0366 (10)
C180.3317 (3)0.7111 (8)0.6003 (3)0.0469 (12)
H180.33240.65970.64700.056*
C190.2945 (3)0.8915 (8)0.5759 (3)0.0485 (12)
H190.27050.96050.60690.058*
C200.4439 (3)0.3009 (9)0.5405 (3)0.0488 (12)
H200.44670.32070.49200.059*
C210.4750 (3)0.1469 (8)0.5857 (3)0.0476 (12)
H210.50300.04070.57320.057*
C220.4183 (3)0.3371 (7)0.6475 (3)0.0413 (11)
H220.39950.38930.68560.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0579 (2)0.04093 (17)0.03286 (16)0.0000.02053 (12)0.000
I10.0757 (3)0.0706 (3)0.0394 (2)0.0295 (2)0.02794 (18)0.01058 (15)
N10.165 (8)0.101 (6)0.144 (8)0.062 (6)0.038 (6)0.065 (6)
N20.177 (8)0.111 (6)0.123 (6)0.046 (6)0.104 (7)0.048 (5)
N30.040 (2)0.037 (2)0.0310 (19)0.0014 (16)0.0078 (16)0.0001 (15)
N40.054 (2)0.035 (2)0.0290 (18)0.0050 (18)0.0109 (17)0.0047 (15)
C10.102 (6)0.079 (5)0.079 (5)0.022 (4)0.046 (5)0.039 (4)
C20.094 (6)0.073 (4)0.078 (5)0.021 (4)0.021 (4)0.030 (4)
C30.056 (3)0.055 (3)0.068 (4)0.009 (3)0.018 (3)0.021 (3)
C40.039 (3)0.044 (3)0.054 (3)0.001 (2)0.008 (2)0.008 (2)
C50.058 (3)0.042 (3)0.062 (3)0.009 (2)0.014 (3)0.004 (2)
C60.049 (3)0.055 (3)0.054 (3)0.005 (3)0.017 (2)0.001 (3)
C70.048 (4)0.090 (5)0.085 (5)0.011 (3)0.014 (3)0.004 (4)
C80.105 (6)0.091 (5)0.081 (5)0.036 (5)0.047 (5)0.005 (4)
C90.058 (3)0.045 (3)0.047 (3)0.001 (2)0.013 (3)0.001 (2)
C100.038 (3)0.037 (3)0.048 (3)0.0038 (19)0.006 (2)0.002 (2)
C110.049 (3)0.043 (3)0.053 (3)0.003 (2)0.018 (2)0.008 (2)
C120.050 (3)0.041 (3)0.053 (3)0.001 (2)0.018 (2)0.005 (2)
C130.050 (3)0.040 (3)0.046 (3)0.000 (2)0.010 (2)0.002 (2)
C140.046 (3)0.037 (2)0.041 (3)0.002 (2)0.007 (2)0.002 (2)
C150.060 (3)0.046 (3)0.043 (3)0.003 (3)0.019 (2)0.012 (2)
C160.055 (3)0.046 (3)0.043 (3)0.007 (2)0.023 (2)0.007 (2)
C170.041 (3)0.033 (2)0.033 (2)0.002 (2)0.0049 (19)0.0004 (18)
C180.062 (3)0.048 (3)0.030 (2)0.006 (2)0.011 (2)0.003 (2)
C190.059 (3)0.048 (3)0.039 (3)0.012 (3)0.013 (2)0.002 (2)
C200.063 (3)0.055 (3)0.033 (2)0.013 (3)0.020 (2)0.006 (2)
C210.061 (3)0.049 (3)0.037 (2)0.015 (3)0.019 (2)0.002 (2)
C220.054 (3)0.040 (3)0.034 (2)0.002 (2)0.018 (2)0.0008 (19)
Geometric parameters (Å, º) top
Hg1—N4i2.326 (4)C8—H8B0.9600
Hg1—N42.326 (4)C8—H8C0.9600
Hg1—I1i2.7277 (4)C9—C101.499 (8)
Hg1—I12.7277 (4)C9—H9A0.9700
N1—C21.135 (10)C9—H9B0.9700
N2—C11.135 (10)C10—C111.351 (7)
N3—C221.353 (6)C10—C121.451 (7)
N3—C201.371 (6)C11—H110.9300
N3—C171.430 (6)C12—C131.328 (7)
N4—C221.311 (6)C12—H120.9300
N4—C211.366 (6)C13—C141.466 (7)
C1—C31.435 (10)C13—H130.9300
C2—C31.429 (9)C14—C191.389 (7)
C3—C41.362 (8)C14—C151.394 (8)
C4—C111.440 (7)C15—C161.375 (7)
C4—C51.486 (8)C15—H150.9300
C5—C61.525 (8)C16—C171.380 (7)
C5—H5A0.9700C16—H160.9300
C5—H5B0.9700C17—C181.384 (7)
C6—C81.527 (9)C18—C191.383 (7)
C6—C91.529 (8)C18—H180.9300
C6—C71.535 (9)C19—H190.9300
C7—H7A0.9600C20—C211.348 (7)
C7—H7B0.9600C20—H200.9300
C7—H7C0.9600C21—H210.9300
C8—H8A0.9600C22—H220.9300
N4i—Hg1—N4100.90 (19)C10—C9—H9A108.8
N4i—Hg1—I1i122.15 (10)C6—C9—H9A108.8
N4—Hg1—I1i97.07 (10)C10—C9—H9B108.8
N4i—Hg1—I197.07 (10)C6—C9—H9B108.8
N4—Hg1—I1122.15 (10)H9A—C9—H9B107.7
I1i—Hg1—I1118.08 (2)C11—C10—C12119.1 (5)
C22—N3—C20106.1 (4)C11—C10—C9120.6 (5)
C22—N3—C17127.2 (4)C12—C10—C9120.3 (5)
C20—N3—C17126.6 (4)C10—C11—C4122.4 (5)
C22—N4—C21106.1 (4)C10—C11—H11118.8
C22—N4—Hg1131.2 (3)C4—C11—H11118.8
C21—N4—Hg1122.6 (3)C13—C12—C10125.7 (5)
N2—C1—C3178.8 (10)C13—C12—H12117.1
N1—C2—C3179.6 (10)C10—C12—H12117.1
C4—C3—C2122.2 (6)C12—C13—C14127.0 (5)
C4—C3—C1122.5 (5)C12—C13—H13116.5
C2—C3—C1115.3 (6)C14—C13—H13116.5
C3—C4—C11120.2 (5)C19—C14—C15117.0 (5)
C3—C4—C5121.4 (5)C19—C14—C13118.8 (5)
C11—C4—C5118.3 (5)C15—C14—C13124.1 (5)
C4—C5—C6113.7 (5)C16—C15—C14121.6 (5)
C4—C5—H5A108.8C16—C15—H15119.2
C6—C5—H5A108.8C14—C15—H15119.2
C4—C5—H5B108.8C15—C16—C17120.2 (5)
C6—C5—H5B108.8C15—C16—H16119.9
H5A—C5—H5B107.7C17—C16—H16119.9
C5—C6—C8108.5 (5)C16—C17—C18119.8 (5)
C5—C6—C9108.6 (5)C16—C17—N3120.5 (4)
C8—C6—C9109.8 (5)C18—C17—N3119.7 (4)
C5—C6—C7109.9 (5)C19—C18—C17119.2 (5)
C8—C6—C7110.0 (6)C19—C18—H18120.4
C9—C6—C7110.0 (5)C17—C18—H18120.4
C6—C7—H7A109.5C18—C19—C14122.2 (5)
C6—C7—H7B109.5C18—C19—H19118.9
H7A—C7—H7B109.5C14—C19—H19118.9
C6—C7—H7C109.5C21—C20—N3106.9 (4)
H7A—C7—H7C109.5C21—C20—H20126.5
H7B—C7—H7C109.5N3—C20—H20126.5
C6—C8—H8A109.5C20—C21—N4109.4 (4)
C6—C8—H8B109.5C20—C21—H21125.3
H8A—C8—H8B109.5N4—C21—H21125.3
C6—C8—H8C109.5N4—C22—N3111.4 (4)
H8A—C8—H8C109.5N4—C22—H22124.3
H8B—C8—H8C109.5N3—C22—H22124.3
C10—C9—C6113.8 (5)
N4i—Hg1—N4—C2246.1 (4)C11—C10—C12—C13174.5 (5)
I1i—Hg1—N4—C22170.9 (4)C9—C10—C12—C135.0 (8)
I1—Hg1—N4—C2259.5 (5)C10—C12—C13—C14178.3 (5)
N4i—Hg1—N4—C21134.9 (4)C12—C13—C14—C19177.6 (5)
I1i—Hg1—N4—C2110.1 (4)C12—C13—C14—C150.3 (9)
I1—Hg1—N4—C21119.5 (4)C19—C14—C15—C161.1 (8)
N1—C2—C3—C4113 (100)C13—C14—C15—C16178.4 (5)
N1—C2—C3—C167 (100)C14—C15—C16—C170.3 (8)
N2—C1—C3—C4128 (47)C15—C16—C17—C180.7 (8)
N2—C1—C3—C251 (48)C15—C16—C17—N3179.3 (5)
C2—C3—C4—C11178.3 (6)C22—N3—C17—C16175.5 (5)
C1—C3—C4—C110.8 (10)C20—N3—C17—C161.7 (8)
C2—C3—C4—C51.2 (10)C22—N3—C17—C184.6 (7)
C1—C3—C4—C5177.9 (7)C20—N3—C17—C18178.2 (5)
C3—C4—C5—C6154.3 (6)C16—C17—C18—C191.0 (8)
C11—C4—C5—C628.5 (7)N3—C17—C18—C19179.1 (5)
C4—C5—C6—C8171.2 (6)C17—C18—C19—C140.1 (9)
C4—C5—C6—C951.9 (6)C15—C14—C19—C180.9 (8)
C4—C5—C6—C768.5 (7)C13—C14—C19—C18178.4 (5)
C5—C6—C9—C1049.4 (6)C22—N3—C20—C210.4 (6)
C8—C6—C9—C10167.9 (5)C17—N3—C20—C21178.1 (5)
C7—C6—C9—C1070.9 (6)N3—C20—C21—N40.5 (7)
C6—C9—C10—C1123.9 (7)C22—N4—C21—C200.4 (6)
C6—C9—C10—C12156.7 (5)Hg1—N4—C21—C20179.7 (4)
C12—C10—C11—C4177.0 (5)C21—N4—C22—N30.2 (6)
C9—C10—C11—C42.4 (8)Hg1—N4—C22—N3179.3 (3)
C3—C4—C11—C10177.1 (6)C20—N3—C22—N40.2 (6)
C5—C4—C11—C100.1 (8)C17—N3—C22—N4177.8 (4)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N2ii0.932.703.541 (15)151
C18—H18···I1iii0.933.093.864 (5)142
Symmetry codes: (ii) x, y+3, z+1/2; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N2i0.932.703.541 (15)151
C18—H18···I1ii0.933.093.864 (5)142
Symmetry codes: (i) x, y+3, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the Program for New Century Excellent Talents in University (China), the Doctoral Program Foundation of the Ministry of Education of China (20113401110004), the National Natural Science Foundation of China (21271003 and 21271004), the Natural Science Foundation of the Education Committee of Anhui Province (KJ2012A024), the Natural Science Foundation of Anhui Province (1208085MB22) and the 211 Project of Anhui University

References

First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationLi, T.-L. (2011). Acta Cryst. E67, m1396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirvan, S. A., Asghariganjeh, M. R., Aghajeri, M., Haydari Dezfuli, S. & Hossini, F. (2012). Acta Cryst. E68, m303.  CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Z., Yu, Z. P., Yang, M. D., Jin, F., Zhang, Q., Zhou, H. P., Wu, J. Y. & Tian, Y. P. (2013). J. Org. Chem. 78, 3222–3234.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds