organic compounds
2,3,4,5,6-Pentafluoro-trans-cinnamic acid
aCentro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22500, Tijuana, B.C., Mexico
*Correspondence e-mail: gaguirre777@gmail.com
The title compound, C9H3F5O2, crystallizes as O—H⋯O hydrogen-bonded carboxylic acid dimers that, together with C—H⋯F interactions and O⋯F [2.8065 (13) and 2.9628 (13) Å] and F⋯F [2.6665 (11), 2.7049 (12) and 2.7314 (12) Å] contacts, form a sheet-like structure. The sheets are stacked via short π–π interactions [centroid–centroid distance = 4.3198 (11) Å]. An intramolecular C—H⋯F interaction is also observed.
Related literature
For related structures, see: Goud et al. (1995); Quan & Sun, (2013). For the biological activity of N-alkenyl see: Brettle & Mosedale (1988). For fluorinated N-alkenyl see: Aguirre et al. (1998).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536813024513/gg2124sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813024513/gg2124Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813024513/gg2124Isup3.cml
2,3,4,5,6 Pentafluorocinnamic acid obtained from the Aldrich Chemical Company, was dissolved in chloroform. Slow evaporation at room temperature produces plates. One of which was cut provide the experimental sample. Melting point 154–156 °C.
1H NMR (CDCl3): δ 10.5 (s, 1H), 7.7 (d, J=16 Hz, 1H), 6.8 (d, J=16 Hz, 1H) p.p.m.; 13C NMR (CDCl3): δ 171.0 (s), 145.6 (d, JC—F=253 Hz), 142.1 (d, JC—F=253 Hz), 137.8 (d, JC—F=252 Hz), 130.6 (s), 125.3 (t, JC—F=5.8 Hz), 109.6 (d, JC—F=17 Hz) p.p.m.; 19F NMR (CDCl3): δ – 140.2 (dd, J=18,4 Hz), -151.3 (tt, J=20. 3 Hz), -162.4 (t,d, J=20,6 Hz) p.p.m.. EMIE m/e: [M]+ 238.
Refinement for H atoms was carried out using a riding model, with distances constrained to: 0.98 Å for methine CH. Isotropic U parameters were fixed to Uiso(H) = 1.2Ueq(carrier atom) for aromatic CH.
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C9H3F5O2 | Z = 2 |
Mr = 238.11 | F(000) = 236 |
Triclinic, P1 | Dx = 1.913 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.3198 (9) Å | Cell parameters from 5831 reflections |
b = 7.4921 (17) Å | θ = 3.1–30.6° |
c = 13.225 (3) Å | µ = 0.21 mm−1 |
α = 93.612 (12)° | T = 100 K |
β = 93.912 (12)° | Needle, colorless |
γ = 103.769 (12)° | 0.35 × 0.30 × 0.09 mm |
V = 413.37 (15) Å3 |
Bruker APEXII CCD diffractometer | 2405 independent reflections |
Radiation source: fine-focus sealed tube | 2000 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ϕ and ω scans | θmax = 30.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −6→6 |
Tmin = 0.931, Tmax = 0.982 | k = −10→10 |
11089 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 0.70 | w = 1/[σ2(Fo2) + (0.091P)2 + 0.3271P] where P = (Fo2 + 2Fc2)/3 |
2405 reflections | (Δ/σ)max = 0.001 |
145 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C9H3F5O2 | γ = 103.769 (12)° |
Mr = 238.11 | V = 413.37 (15) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.3198 (9) Å | Mo Kα radiation |
b = 7.4921 (17) Å | µ = 0.21 mm−1 |
c = 13.225 (3) Å | T = 100 K |
α = 93.612 (12)° | 0.35 × 0.30 × 0.09 mm |
β = 93.912 (12)° |
Bruker APEXII CCD diffractometer | 2405 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2000 reflections with I > 2σ(I) |
Tmin = 0.931, Tmax = 0.982 | Rint = 0.026 |
11089 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 0.70 | Δρmax = 0.50 e Å−3 |
2405 reflections | Δρmin = −0.23 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6800 (2) | 0.93946 (14) | 0.75051 (8) | 0.0134 (2) | |
C2 | 0.9181 (2) | 0.96009 (14) | 0.83065 (8) | 0.0144 (2) | |
C3 | 0.9520 (2) | 0.81768 (15) | 0.88834 (8) | 0.0157 (2) | |
C4 | 0.7427 (3) | 0.64649 (14) | 0.86844 (8) | 0.0163 (2) | |
C5 | 0.5033 (2) | 0.62006 (14) | 0.79029 (8) | 0.0159 (2) | |
C6 | 0.4761 (2) | 0.76388 (14) | 0.73261 (8) | 0.0142 (2) | |
C7 | 0.6612 (2) | 1.09717 (14) | 0.69294 (8) | 0.0144 (2) | |
H7 | 0.8193 | 1.2081 | 0.7125 | 0.017* | |
C8 | 0.4473 (3) | 1.10410 (14) | 0.61580 (8) | 0.0154 (2) | |
H8 | 0.2826 | 0.9980 | 0.5926 | 0.018* | |
C9 | 0.4709 (2) | 1.27831 (14) | 0.56750 (8) | 0.0147 (2) | |
F1 | 1.12678 (16) | 1.12300 (9) | 0.85325 (5) | 0.01929 (16) | |
F2 | 1.18772 (16) | 0.84479 (10) | 0.96299 (5) | 0.02165 (17) | |
F3 | 0.76994 (18) | 0.50721 (10) | 0.92323 (5) | 0.02419 (18) | |
F4 | 0.29659 (17) | 0.45665 (9) | 0.77171 (6) | 0.02230 (17) | |
F5 | 0.23906 (16) | 0.72905 (9) | 0.65828 (5) | 0.01916 (16) | |
O1 | 0.6780 (2) | 1.41951 (11) | 0.59342 (6) | 0.01988 (18) | |
O2 | 0.2455 (2) | 1.26544 (11) | 0.49321 (6) | 0.01934 (18) | |
H2A | 0.2724 | 1.3661 | 0.4664 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0131 (4) | 0.0122 (4) | 0.0147 (4) | 0.0025 (3) | 0.0006 (3) | 0.0021 (3) |
C2 | 0.0135 (4) | 0.0125 (4) | 0.0157 (4) | 0.0004 (3) | 0.0002 (3) | 0.0007 (4) |
C3 | 0.0139 (4) | 0.0190 (5) | 0.0137 (4) | 0.0040 (4) | −0.0018 (3) | 0.0017 (4) |
C4 | 0.0180 (5) | 0.0144 (5) | 0.0179 (5) | 0.0052 (4) | 0.0011 (4) | 0.0067 (4) |
C5 | 0.0155 (5) | 0.0105 (4) | 0.0204 (5) | 0.0008 (4) | 0.0005 (4) | 0.0026 (4) |
C6 | 0.0131 (4) | 0.0136 (4) | 0.0152 (4) | 0.0022 (3) | −0.0016 (3) | 0.0023 (3) |
C7 | 0.0151 (4) | 0.0109 (4) | 0.0167 (4) | 0.0019 (3) | 0.0012 (4) | 0.0028 (3) |
C8 | 0.0168 (4) | 0.0113 (4) | 0.0175 (5) | 0.0022 (3) | 0.0006 (4) | 0.0032 (3) |
C9 | 0.0161 (4) | 0.0129 (4) | 0.0157 (4) | 0.0043 (4) | 0.0012 (3) | 0.0023 (3) |
F1 | 0.0182 (3) | 0.0145 (3) | 0.0207 (3) | −0.0033 (2) | −0.0033 (2) | 0.0010 (2) |
F2 | 0.0195 (3) | 0.0258 (4) | 0.0182 (3) | 0.0046 (3) | −0.0065 (3) | 0.0033 (3) |
F3 | 0.0281 (4) | 0.0184 (3) | 0.0267 (4) | 0.0059 (3) | −0.0029 (3) | 0.0122 (3) |
F4 | 0.0220 (3) | 0.0117 (3) | 0.0294 (4) | −0.0028 (2) | −0.0029 (3) | 0.0058 (3) |
F5 | 0.0165 (3) | 0.0153 (3) | 0.0223 (3) | −0.0008 (2) | −0.0077 (2) | 0.0037 (2) |
O1 | 0.0215 (4) | 0.0132 (4) | 0.0223 (4) | 0.0002 (3) | −0.0048 (3) | 0.0050 (3) |
O2 | 0.0205 (4) | 0.0137 (4) | 0.0220 (4) | 0.0017 (3) | −0.0059 (3) | 0.0056 (3) |
C1—C2 | 1.4000 (14) | C5—C6 | 1.3814 (14) |
C1—C6 | 1.3941 (14) | C6—F5 | 1.3363 (12) |
C1—C7 | 1.4606 (14) | C7—C8 | 1.3408 (15) |
C2—F1 | 1.3360 (12) | C7—H7 | 0.9500 |
C2—C3 | 1.3797 (15) | C8—C9 | 1.4740 (15) |
C3—F2 | 1.3388 (12) | C8—H8 | 0.9500 |
C3—C4 | 1.3800 (15) | C9—O1 | 1.2244 (13) |
C4—F3 | 1.3304 (12) | C9—O2 | 1.3172 (13) |
C4—C5 | 1.3814 (15) | O2—H2A | 0.8400 |
C5—F4 | 1.3298 (12) | ||
C6—C1—C2 | 115.35 (9) | C4—C5—C6 | 120.03 (10) |
C6—C1—C7 | 125.16 (9) | F5—C6—C5 | 116.98 (9) |
C2—C1—C7 | 119.49 (9) | F5—C6—C1 | 120.37 (9) |
F1—C2—C3 | 117.27 (9) | C5—C6—C1 | 122.65 (9) |
F1—C2—C1 | 119.82 (9) | C8—C7—C1 | 127.75 (10) |
C3—C2—C1 | 122.91 (10) | C8—C7—H7 | 116.1 |
F2—C3—C4 | 120.01 (10) | C1—C7—H7 | 116.1 |
F2—C3—C2 | 120.26 (10) | C7—C8—C9 | 119.20 (10) |
C4—C3—C2 | 119.73 (10) | C7—C8—H8 | 120.4 |
F3—C4—C3 | 120.83 (10) | C9—C8—H8 | 120.4 |
F3—C4—C5 | 119.85 (10) | O1—C9—O2 | 123.66 (10) |
C3—C4—C5 | 119.32 (9) | O1—C9—C8 | 123.65 (10) |
F4—C5—C4 | 119.82 (9) | O2—C9—C8 | 112.69 (9) |
F4—C5—C6 | 120.15 (9) | C9—O2—H2A | 109.5 |
C6—C1—C2—F1 | 179.53 (9) | C3—C4—C5—C6 | 0.34 (16) |
C7—C1—C2—F1 | −0.46 (15) | F4—C5—C6—F5 | −0.89 (15) |
C6—C1—C2—C3 | 0.18 (16) | C4—C5—C6—F5 | −179.94 (9) |
C7—C1—C2—C3 | −179.81 (10) | F4—C5—C6—C1 | 178.10 (9) |
F1—C2—C3—F2 | −0.48 (15) | C4—C5—C6—C1 | −0.94 (17) |
C1—C2—C3—F2 | 178.88 (9) | C2—C1—C6—F5 | 179.63 (9) |
F1—C2—C3—C4 | 179.89 (9) | C7—C1—C6—F5 | −0.38 (16) |
C1—C2—C3—C4 | −0.74 (17) | C2—C1—C6—C5 | 0.67 (16) |
F2—C3—C4—F3 | 0.59 (16) | C7—C1—C6—C5 | −179.34 (10) |
C2—C3—C4—F3 | −179.78 (9) | C6—C1—C7—C8 | 1.45 (18) |
F2—C3—C4—C5 | −179.16 (9) | C2—C1—C7—C8 | −178.56 (10) |
C2—C3—C4—C5 | 0.47 (16) | C1—C7—C8—C9 | −179.90 (10) |
F3—C4—C5—F4 | 1.54 (16) | C7—C8—C9—O1 | 0.40 (17) |
C3—C4—C5—F4 | −178.71 (9) | C7—C8—C9—O2 | −179.81 (9) |
F3—C4—C5—C6 | −179.41 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1i | 0.84 | 1.81 | 2.6485 (13) | 179 |
C7—H7···F4ii | 0.95 | 2.47 | 3.4074 (14) | 169 |
C8—H8···F5 | 0.95 | 2.22 | 2.8434 (14) | 123 |
Symmetry codes: (i) −x+1, −y+3, −z+1; (ii) x+1, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1i | 0.84 | 1.81 | 2.6485 (13) | 179 |
C7—H7···F4ii | 0.95 | 2.47 | 3.4074 (14) | 169 |
C8—H8···F5 | 0.95 | 2.22 | 2.8434 (14) | 123 |
Symmetry codes: (i) −x+1, −y+3, −z+1; (ii) x+1, y+1, z. |
Acknowledgements
We gratefully acknowledge support for this project from the Dirección General de Educación Superior Tecnológica (DGEST) 2536.09-P.
References
Aguirre, G., Somanathan, R. & Hellberg, L. H. (1998). J. Fluorine Chem. 90, 5–8. Web of Science CrossRef CAS Google Scholar
Brettle, R. & Mosedale, A. J. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 2185–2195. CrossRef Web of Science Google Scholar
Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Goud, B. S., Reddy, P. K., Panneerselvam, K. & Desiraju, G. R. (1995). Acta Cryst. C51, 683–685. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Quan, J. & Sun, H.-S. (2013). Acta Cryst. E69, o30. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N-Alkenyl amides are a rapidly emerging class of naturally occurring substances, widely distributed in higher plants, marine and microorganisms, and they exhibit an array of biological properties, including antibiotic, protein kinase inhibition an antitumor activity (Brettle & Mosedale, 1988). In particular we are interested in the synthesis of fluorinated N-alkenyl amides from commercially available fluorocinnamic acids and aldehydes (Aguirre et al., 1998). In our synthesis of pentafluorinated enamide, we used 2,3,4,5,6-Pentafluoro-trans-cinnamic acid as the starting material, which is commercially available and herein we report the crystal structure (Fig. 1).
In the crystal structure adjacent networks are linked together via intermolecular hydrogen bond interactions (Table 1). The molecules form typical carboxylic acid dimers (Fig. 2) and stack via π–π interactions.