organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,4,5,6-Penta­fluoro-trans-cinnamic acid

aCentro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22500, Tijuana, B.C., Mexico
*Correspondence e-mail: gaguirre777@gmail.com

(Received 17 July 2013; accepted 2 September 2013; online 7 September 2013)

The title compound, C9H3F5O2, crystallizes as O—H⋯O hydrogen-bonded carb­oxy­lic acid dimers that, together with C—H⋯F inter­actions and O⋯F [2.8065 (13) and 2.9628 (13) Å] and F⋯F [2.6665 (11), 2.7049 (12) and 2.7314 (12) Å] contacts, form a sheet-like structure. The sheets are stacked via short ππ inter­actions [centroid–centroid distance = 4.3198 (11) Å]. An intra­molecular C—H⋯F inter­action is also observed.

Related literature

For related structures, see: Goud et al. (1995[Goud, B. S., Reddy, P. K., Panneerselvam, K. & Desiraju, G. R. (1995). Acta Cryst. C51, 683-685.]); Quan & Sun, (2013[Quan, J. & Sun, H.-S. (2013). Acta Cryst. E69, o30.]). For the biological activity of N-alkenyl amides, see: Brettle & Mosedale (1988[Brettle, R. & Mosedale, A. J. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 2185-2195.]). For fluorinated N-alkenyl amides, see: Aguirre et al. (1998[Aguirre, G., Somanathan, R. & Hellberg, L. H. (1998). J. Fluorine Chem. 90, 5-8.]).

[Scheme 1]

Experimental

Crystal data
  • C9H3F5O2

  • Mr = 238.11

  • Triclinic, [P \overline 1]

  • a = 4.3198 (9) Å

  • b = 7.4921 (17) Å

  • c = 13.225 (3) Å

  • α = 93.612 (12)°

  • β = 93.912 (12)°

  • γ = 103.769 (12)°

  • V = 413.37 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.982

  • 11089 measured reflections

  • 2405 independent reflections

  • 2000 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.104

  • S = 0.70

  • 2405 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.84 1.81 2.6485 (13) 179
C7—H7⋯F4ii 0.95 2.47 3.4074 (14) 169
C8—H8⋯F5 0.95 2.22 2.8434 (14) 123
Symmetry codes: (i) -x+1, -y+3, -z+1; (ii) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-Alkenyl amides are a rapidly emerging class of naturally occurring substances, widely distributed in higher plants, marine and microorganisms, and they exhibit an array of biological properties, including antibiotic, protein kinase inhibition an antitumor activity (Brettle & Mosedale, 1988). In particular we are interested in the synthesis of fluorinated N-alkenyl amides from commercially available fluorocinnamic acids and aldehydes (Aguirre et al., 1998). In our synthesis of pentafluorinated enamide, we used 2,3,4,5,6-Pentafluoro-trans-cinnamic acid as the starting material, which is commercially available and herein we report the crystal structure (Fig. 1).

In the crystal structure adjacent networks are linked together via intermolecular hydrogen bond interactions (Table 1). The molecules form typical carboxylic acid dimers (Fig. 2) and stack via ππ interactions.

Related literature top

For related structures, see: Goud et al. (1995); Quan & Sun, (2013). For the biological activity of N-alkenyl amides, see: Brettle & Mosedale (1988). For fluorinated N-alkenyl amides, see: Aguirre et al. (1998).

Experimental top

2,3,4,5,6 Pentafluorocinnamic acid obtained from the Aldrich Chemical Company, was dissolved in chloroform. Slow evaporation at room temperature produces plates. One of which was cut provide the experimental sample. Melting point 154–156 °C.

1H NMR (CDCl3): δ 10.5 (s, 1H), 7.7 (d, J=16 Hz, 1H), 6.8 (d, J=16 Hz, 1H) p.p.m.; 13C NMR (CDCl3): δ 171.0 (s), 145.6 (d, JC—F=253 Hz), 142.1 (d, JC—F=253 Hz), 137.8 (d, JC—F=252 Hz), 130.6 (s), 125.3 (t, JC—F=5.8 Hz), 109.6 (d, JC—F=17 Hz) p.p.m.; 19F NMR (CDCl3): δ – 140.2 (dd, J=18,4 Hz), -151.3 (tt, J=20. 3 Hz), -162.4 (t,d, J=20,6 Hz) p.p.m.. EMIE m/e: [M]+ 238.

Refinement top

Refinement for H atoms was carried out using a riding model, with distances constrained to: 0.98 Å for methine CH. Isotropic U parameters were fixed to Uiso(H) = 1.2Ueq(carrier atom) for aromatic CH.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme, displacement ellipsoids are drawn at 30% probability level. H atoms are present as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A packing diagram of (I). Intermolecular hydrogen bonds are shown as dashed lines.
(E)-3-(2,3,4,5,6-Pentafluorophenyl)prop-2-enoic acid top
Crystal data top
C9H3F5O2Z = 2
Mr = 238.11F(000) = 236
Triclinic, P1Dx = 1.913 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.3198 (9) ÅCell parameters from 5831 reflections
b = 7.4921 (17) Åθ = 3.1–30.6°
c = 13.225 (3) ŵ = 0.21 mm1
α = 93.612 (12)°T = 100 K
β = 93.912 (12)°Needle, colorless
γ = 103.769 (12)°0.35 × 0.30 × 0.09 mm
V = 413.37 (15) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2405 independent reflections
Radiation source: fine-focus sealed tube2000 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.931, Tmax = 0.982k = 1010
11089 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 0.70 w = 1/[σ2(Fo2) + (0.091P)2 + 0.3271P]
where P = (Fo2 + 2Fc2)/3
2405 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H3F5O2γ = 103.769 (12)°
Mr = 238.11V = 413.37 (15) Å3
Triclinic, P1Z = 2
a = 4.3198 (9) ÅMo Kα radiation
b = 7.4921 (17) ŵ = 0.21 mm1
c = 13.225 (3) ÅT = 100 K
α = 93.612 (12)°0.35 × 0.30 × 0.09 mm
β = 93.912 (12)°
Data collection top
Bruker APEXII CCD
diffractometer
2405 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2000 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.982Rint = 0.026
11089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.70Δρmax = 0.50 e Å3
2405 reflectionsΔρmin = 0.23 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6800 (2)0.93946 (14)0.75051 (8)0.0134 (2)
C20.9181 (2)0.96009 (14)0.83065 (8)0.0144 (2)
C30.9520 (2)0.81768 (15)0.88834 (8)0.0157 (2)
C40.7427 (3)0.64649 (14)0.86844 (8)0.0163 (2)
C50.5033 (2)0.62006 (14)0.79029 (8)0.0159 (2)
C60.4761 (2)0.76388 (14)0.73261 (8)0.0142 (2)
C70.6612 (2)1.09717 (14)0.69294 (8)0.0144 (2)
H70.81931.20810.71250.017*
C80.4473 (3)1.10410 (14)0.61580 (8)0.0154 (2)
H80.28260.99800.59260.018*
C90.4709 (2)1.27831 (14)0.56750 (8)0.0147 (2)
F11.12678 (16)1.12300 (9)0.85325 (5)0.01929 (16)
F21.18772 (16)0.84479 (10)0.96299 (5)0.02165 (17)
F30.76994 (18)0.50721 (10)0.92323 (5)0.02419 (18)
F40.29659 (17)0.45665 (9)0.77171 (6)0.02230 (17)
F50.23906 (16)0.72905 (9)0.65828 (5)0.01916 (16)
O10.6780 (2)1.41951 (11)0.59342 (6)0.01988 (18)
O20.2455 (2)1.26544 (11)0.49321 (6)0.01934 (18)
H2A0.27241.36610.46640.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0131 (4)0.0122 (4)0.0147 (4)0.0025 (3)0.0006 (3)0.0021 (3)
C20.0135 (4)0.0125 (4)0.0157 (4)0.0004 (3)0.0002 (3)0.0007 (4)
C30.0139 (4)0.0190 (5)0.0137 (4)0.0040 (4)0.0018 (3)0.0017 (4)
C40.0180 (5)0.0144 (5)0.0179 (5)0.0052 (4)0.0011 (4)0.0067 (4)
C50.0155 (5)0.0105 (4)0.0204 (5)0.0008 (4)0.0005 (4)0.0026 (4)
C60.0131 (4)0.0136 (4)0.0152 (4)0.0022 (3)0.0016 (3)0.0023 (3)
C70.0151 (4)0.0109 (4)0.0167 (4)0.0019 (3)0.0012 (4)0.0028 (3)
C80.0168 (4)0.0113 (4)0.0175 (5)0.0022 (3)0.0006 (4)0.0032 (3)
C90.0161 (4)0.0129 (4)0.0157 (4)0.0043 (4)0.0012 (3)0.0023 (3)
F10.0182 (3)0.0145 (3)0.0207 (3)0.0033 (2)0.0033 (2)0.0010 (2)
F20.0195 (3)0.0258 (4)0.0182 (3)0.0046 (3)0.0065 (3)0.0033 (3)
F30.0281 (4)0.0184 (3)0.0267 (4)0.0059 (3)0.0029 (3)0.0122 (3)
F40.0220 (3)0.0117 (3)0.0294 (4)0.0028 (2)0.0029 (3)0.0058 (3)
F50.0165 (3)0.0153 (3)0.0223 (3)0.0008 (2)0.0077 (2)0.0037 (2)
O10.0215 (4)0.0132 (4)0.0223 (4)0.0002 (3)0.0048 (3)0.0050 (3)
O20.0205 (4)0.0137 (4)0.0220 (4)0.0017 (3)0.0059 (3)0.0056 (3)
Geometric parameters (Å, º) top
C1—C21.4000 (14)C5—C61.3814 (14)
C1—C61.3941 (14)C6—F51.3363 (12)
C1—C71.4606 (14)C7—C81.3408 (15)
C2—F11.3360 (12)C7—H70.9500
C2—C31.3797 (15)C8—C91.4740 (15)
C3—F21.3388 (12)C8—H80.9500
C3—C41.3800 (15)C9—O11.2244 (13)
C4—F31.3304 (12)C9—O21.3172 (13)
C4—C51.3814 (15)O2—H2A0.8400
C5—F41.3298 (12)
C6—C1—C2115.35 (9)C4—C5—C6120.03 (10)
C6—C1—C7125.16 (9)F5—C6—C5116.98 (9)
C2—C1—C7119.49 (9)F5—C6—C1120.37 (9)
F1—C2—C3117.27 (9)C5—C6—C1122.65 (9)
F1—C2—C1119.82 (9)C8—C7—C1127.75 (10)
C3—C2—C1122.91 (10)C8—C7—H7116.1
F2—C3—C4120.01 (10)C1—C7—H7116.1
F2—C3—C2120.26 (10)C7—C8—C9119.20 (10)
C4—C3—C2119.73 (10)C7—C8—H8120.4
F3—C4—C3120.83 (10)C9—C8—H8120.4
F3—C4—C5119.85 (10)O1—C9—O2123.66 (10)
C3—C4—C5119.32 (9)O1—C9—C8123.65 (10)
F4—C5—C4119.82 (9)O2—C9—C8112.69 (9)
F4—C5—C6120.15 (9)C9—O2—H2A109.5
C6—C1—C2—F1179.53 (9)C3—C4—C5—C60.34 (16)
C7—C1—C2—F10.46 (15)F4—C5—C6—F50.89 (15)
C6—C1—C2—C30.18 (16)C4—C5—C6—F5179.94 (9)
C7—C1—C2—C3179.81 (10)F4—C5—C6—C1178.10 (9)
F1—C2—C3—F20.48 (15)C4—C5—C6—C10.94 (17)
C1—C2—C3—F2178.88 (9)C2—C1—C6—F5179.63 (9)
F1—C2—C3—C4179.89 (9)C7—C1—C6—F50.38 (16)
C1—C2—C3—C40.74 (17)C2—C1—C6—C50.67 (16)
F2—C3—C4—F30.59 (16)C7—C1—C6—C5179.34 (10)
C2—C3—C4—F3179.78 (9)C6—C1—C7—C81.45 (18)
F2—C3—C4—C5179.16 (9)C2—C1—C7—C8178.56 (10)
C2—C3—C4—C50.47 (16)C1—C7—C8—C9179.90 (10)
F3—C4—C5—F41.54 (16)C7—C8—C9—O10.40 (17)
C3—C4—C5—F4178.71 (9)C7—C8—C9—O2179.81 (9)
F3—C4—C5—C6179.41 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.841.812.6485 (13)179
C7—H7···F4ii0.952.473.4074 (14)169
C8—H8···F50.952.222.8434 (14)123
Symmetry codes: (i) x+1, y+3, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.841.812.6485 (13)179
C7—H7···F4ii0.952.473.4074 (14)169
C8—H8···F50.952.222.8434 (14)123
Symmetry codes: (i) x+1, y+3, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

We gratefully acknowledge support for this project from the Dirección General de Educación Superior Tecnológica (DGEST) 2536.09-P.

References

First citationAguirre, G., Somanathan, R. & Hellberg, L. H. (1998). J. Fluorine Chem. 90, 5–8.  Web of Science CrossRef CAS Google Scholar
First citationBrettle, R. & Mosedale, A. J. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 2185–2195.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGoud, B. S., Reddy, P. K., Panneerselvam, K. & Desiraju, G. R. (1995). Acta Cryst. C51, 683–685.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationQuan, J. & Sun, H.-S. (2013). Acta Cryst. E69, o30.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds