organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-[(4′-Ethoxycarbonyl-[1,1′-bi­phenyl]-4-yl)­oxy]hexanoic acid

aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico, and bCentro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
*Correspondence e-mail: angel.mendoza@correo.buap.mx

(Received 7 September 2013; accepted 19 September 2013; online 25 September 2013)

In the title compound, C21H24O5, the dihedral angle between the benzene rings is 19.57 (15)°. In the crystal, the mol­ecular arrangement makes up head-to-head centrosymmetric dimers assembled by pairs of O—H⋯O bonds; this arrangement builds a graph-set ring motif of R22(8). The dimers are linked into a tape running along the b-axis direction through C—H⋯O inter­actions. The packing is further consolidated by C—H⋯π inter­actions, forming layers parallel to (10-2).

Related literature

For hydrogen-bonding assemblies, see: Braga et al. (2004[Braga, D., Grepioni, F., Hardie, M. J., Hubberstey, P., Maini, L., Poloto, M., Suksangpanya, U. & Vilar, R. (2004). Structure and Bonding, Vol. 111, edited by D. M. P. Mingos. Berlin: Springer.]). For hydrogen-bonding packing modes and applications of hydrogen bonds, see: Jeong et al. (2006[Jeong, K. U., Knapp, B. S., Ge, J. J., Jin, S., Graham, M. J., Harris, F. W. & Cheng, S. Z. D. (2006). Chem. Mater. 18, 680-690.]); Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24O5

  • Mr = 356.4

  • Monoclinic, P 21 /c

  • a = 9.111 (2) Å

  • b = 14.753 (3) Å

  • c = 14.427 (2) Å

  • β = 100.785 (14)°

  • V = 1904.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.5 × 0.5 × 0.4 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.891, Tmax = 0.911

  • 4265 measured reflections

  • 3217 independent reflections

  • 1628 reflections with I > 2σ(I)

  • Rint = 0.031

  • 3 standard reflections every 97 reflections intensity decay: 6%

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.171

  • S = 1.06

  • 3217 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.80 2.612 (3) 170
C18—H18⋯O1ii 0.93 2.54 3.460 (4) 173
C6—H6ACg1iii 0.97 2.78 3.668 (4) 152
Symmetry codes: (i) -x+2, -y-2, -z+1; (ii) x, y+1, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Hydrogen bonds are the strongest of the non-covalent interactions and have a high degree of directionality. Therefore, the design of molecules with hydrogen bonding capabilities is very important due to its numerous potential application (Braga et al., 2004) in nanotechnology, in crystal engineering, in template synthesis of polymers and networks, as well as in templated processes in biology such as the replication and transcription of nucleic acids. It has long been known that monocarboxylic acid may be interlinked to form the cyclic hydrogen-bonded dimer. This kind of molecular dimer, is well known as supramolecular synthon in crystals of carboxylic acids (Jeong et al., 2006; Leiserowitz et al., 1976). It is also important to point out that the title compound I contains a polymerizable end-group. Therefore it is a precursor for polymeric materials.

In the title compound, the ASU shows a molecule with two non-coplanar phenyl rings bonded by C10 and C13, both rings with p-substitution. The dihedral angle between these planes is 19.57 (15)°. On the other hand, C2 to C6 show an aliphatic extended-chain probably due to intermolecular interactions. The crystal packing makes up a head to head dimer assembled by intermolecular O—H···O bonds between the carboxyl groups (Fig. 1). This arrangement builds a graph-set ring R22(8) (Etter et al., 1990; Bernstein et al., 1995). Two more interactions C—H···O and C—H···π interactions, are identified, which stabilize the crystal packing. A tape of molecules from the C18—H18···O1 interaction is formed along the b axis. The C6—H6A···Cg1 interaction is building a layer of molecules parallel to (1 0 2). (Table 1; Cg1 is the centroid of the ring composed of C13–C18.)

Related literature top

For hydrogen-bonding assemblies, see: Braga et al. (2004). For hydrogen-bonding packing modes and applications of hydrogen bonds, see: Jeong et al. (2006); Leiserowitz (1976). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

6.2 g (14 mmol) of benzyl 6-(ethyl 4'-oxydiphenyl-4-carboxylate)-hexanoate was added to 90 ml of dry ethyl acetate. 5% Pd—C (0.029 g) was then added with stirring. The hydrogenolisis was allowed to proceed for 8.5 h under hydrogen atmosphere at room temperature. After the removal of the catalyst by filtration and evaporation of the ethyl acetate under reduced pressure, the residue was then dissolved in hot methylene chloride and the solution was allowed to cool to -10 °C. It gave a white crystalline solid which was filtered off (4.8 g, 13.48 mmol, yield 97%). Crystals of I were grown from a solution of acetone by slow evaporation technique at room temperature. Anal. Calc. for C21H24O5: C 70.79, H 6.74%. Found: C 70.86, H 6.92%. IR(solid state, cm-1): ν (C—HAr) 3028; ν (C—HAliph) 2938; ν (C= O, Aliph.) 1703; ν (C=O, COOH) 1694; ν (C=C, Ar) 1600. 1H NMR [400 MHz; CDCl3, (CH3)4Si) δ (p.p.m.)]: 1.40 (t, 3H21, CH3), 1.55 (m, 2H4, CH2), 1.74 (m, 2H3, CH2), 1.84 (m, 2H5, CH2), 2.41 (t, 2H2, CH2—COOH), 4.01 (t, 2H6, O—CH2), 4.38 (q, 2H20 Me—CH2—O), 6.98 (d, 2H), 7.55 (d, 2H), 7.62 (d, 2H), 8.07 (d, 2H). 13C NMR [100 MHz; CDCl3, (CH3)4Si δ (p.p.m.)]: C21 14.61, C4 24.64, C3 25.82, C5, 29.15, C2 34.05, C20 61.15, C6 67.93, C12 and C8 115.11, C15 and C17 126.63, C14 and C18 128.57, C9 and C11 130.29, C10 132.57, C16 145.36, C13 145.36, C7 159.48, C19 166.87, C1 179.41.

Refinement top

H atoms linked to C and O atoms were placed in geometrical idealized positions (C—H = 0.93–0.97 Å and O—H = 0.82 Å) and refined as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(Cmethyl, O).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: XSCANS (Siemens, 1994); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the centrosymmetric dimer of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A crystal packing view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
6-[(4'-Ethoxycarbonyl-[1,1'-biphenyl]-4-yl)oxy]hexanoic acid top
Crystal data top
C21H24O5F(000) = 760
Mr = 356.4Dx = 1.243 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 43 reflections
a = 9.111 (2) Åθ = 9.1–33.6°
b = 14.753 (3) ŵ = 0.09 mm1
c = 14.427 (2) ÅT = 298 K
β = 100.785 (14)°PRISM, colorless
V = 1904.9 (6) Å30.5 × 0.5 × 0.4 mm
Z = 4
Data collection top
Siemens P4
diffractometer
Rint = 0.031
Graphite monochromatorθmax = 24.7°, θmin = 2.0°
ω scansh = 110
Absorption correction: ψ scan
(North et al., 1968)
k = 171
Tmin = 0.891, Tmax = 0.911l = 1616
4265 measured reflections3 standard reflections every 97 reflections
3217 independent reflections intensity decay: 6%
1628 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.9974P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.171(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.16 e Å3
3217 reflectionsΔρmin = 0.15 e Å3
238 parametersExtinction correction: SHELXL
0 restraintsExtinction coefficient: 0.0013 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H24O5V = 1904.9 (6) Å3
Mr = 356.4Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.111 (2) ŵ = 0.09 mm1
b = 14.753 (3) ÅT = 298 K
c = 14.427 (2) Å0.5 × 0.5 × 0.4 mm
β = 100.785 (14)°
Data collection top
Siemens P4
diffractometer
1628 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.031
Tmin = 0.891, Tmax = 0.9113 standard reflections every 97 reflections
4265 measured reflections intensity decay: 6%
3217 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.06Δρmax = 0.16 e Å3
3217 reflectionsΔρmin = 0.15 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8791 (4)0.8969 (2)0.4560 (2)0.0645 (9)
C20.7761 (4)0.82076 (19)0.4252 (2)0.0672 (9)
H2A0.68470.83090.44910.081*
H2B0.75040.82160.35690.081*
C30.8346 (4)0.72759 (19)0.4559 (3)0.0712 (10)
H3A0.92430.71570.43090.085*
H3B0.86080.72560.52420.085*
C40.7197 (4)0.65502 (19)0.4220 (2)0.0721 (10)
H4A0.69360.65780.35380.087*
H4B0.63010.66780.44690.087*
C50.7716 (4)0.5605 (2)0.4506 (3)0.0790 (11)
H5A0.86170.54730.42650.095*
H5B0.79560.55680.51890.095*
C60.6529 (4)0.4906 (2)0.4133 (3)0.0748 (10)
H6A0.62880.49330.3450.09*
H6B0.56260.50260.43780.09*
C70.6196 (4)0.3305 (2)0.4188 (2)0.0666 (9)
C80.4757 (4)0.3335 (2)0.3664 (2)0.0688 (9)
H80.43340.38850.34420.083*
C90.3949 (4)0.2531 (2)0.3471 (2)0.0639 (9)
H90.29820.25580.31210.077*
C100.4537 (3)0.16963 (19)0.3782 (2)0.0550 (8)
C110.5982 (4)0.1695 (2)0.4320 (2)0.0655 (9)
H110.64090.11480.45510.079*
C120.6788 (4)0.2480 (2)0.4516 (2)0.0706 (10)
H120.77470.24550.48760.085*
C130.3703 (3)0.08361 (19)0.3554 (2)0.0560 (8)
C140.2155 (4)0.0809 (2)0.3260 (2)0.0724 (10)
H140.16150.13470.32190.087*
C150.1407 (4)0.0002 (2)0.3031 (3)0.0750 (10)
H150.03750.00080.28350.09*
C160.2158 (3)0.0809 (2)0.3086 (2)0.0598 (8)
C170.3689 (4)0.0802 (2)0.3380 (2)0.0657 (9)
H170.42180.13450.34240.079*
C180.4447 (3)0.0007 (2)0.3611 (2)0.0631 (9)
H180.54790.00040.38090.076*
C190.1335 (4)0.1663 (2)0.2828 (2)0.0699 (9)
C200.1574 (4)0.3263 (2)0.2690 (3)0.0835 (11)
H20A0.07450.33660.30120.1*
H20B0.12060.33010.20160.1*
C210.2767 (4)0.3949 (2)0.2988 (3)0.0951 (13)
H21A0.35950.38270.26810.143*
H21B0.30950.3920.3660.143*
H21C0.23810.45440.28150.143*
O10.8276 (3)0.97632 (15)0.42837 (19)0.0836 (8)
H10.88741.01530.45170.125*
O21.0048 (3)0.88595 (14)0.50571 (18)0.0784 (7)
O30.7090 (3)0.40416 (14)0.44254 (17)0.0856 (8)
O40.0006 (3)0.17132 (17)0.2554 (2)0.1023 (9)
O50.2228 (2)0.23813 (15)0.29348 (17)0.0774 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.060 (2)0.0473 (19)0.085 (2)0.0006 (17)0.0096 (18)0.0006 (18)
C20.068 (2)0.0511 (18)0.081 (2)0.0086 (17)0.0084 (18)0.0084 (17)
C30.071 (2)0.0500 (19)0.093 (3)0.0087 (17)0.0146 (19)0.0075 (18)
C40.085 (2)0.0500 (19)0.079 (2)0.0125 (18)0.0099 (19)0.0045 (17)
C50.095 (3)0.0496 (19)0.089 (3)0.0114 (19)0.010 (2)0.0040 (18)
C60.090 (3)0.0483 (19)0.086 (3)0.0049 (18)0.014 (2)0.0031 (18)
C70.074 (2)0.0485 (19)0.075 (2)0.0104 (18)0.0078 (18)0.0006 (17)
C80.078 (2)0.0464 (18)0.079 (2)0.0005 (17)0.0067 (19)0.0051 (17)
C90.0571 (19)0.0562 (19)0.075 (2)0.0030 (16)0.0026 (16)0.0032 (17)
C100.0584 (19)0.0447 (17)0.0610 (19)0.0020 (15)0.0088 (15)0.0036 (14)
C110.066 (2)0.0474 (18)0.078 (2)0.0013 (16)0.0001 (17)0.0009 (16)
C120.064 (2)0.054 (2)0.086 (3)0.0002 (17)0.0035 (18)0.0006 (18)
C130.0538 (19)0.0515 (18)0.062 (2)0.0040 (15)0.0105 (15)0.0023 (15)
C140.056 (2)0.058 (2)0.102 (3)0.0038 (17)0.0136 (19)0.0019 (19)
C150.0468 (19)0.068 (2)0.109 (3)0.0068 (18)0.0090 (19)0.000 (2)
C160.0518 (19)0.0542 (19)0.073 (2)0.0053 (15)0.0115 (16)0.0018 (16)
C170.057 (2)0.0541 (19)0.082 (2)0.0047 (16)0.0026 (17)0.0025 (17)
C180.0499 (18)0.0530 (19)0.083 (2)0.0054 (16)0.0033 (16)0.0031 (17)
C190.059 (2)0.066 (2)0.084 (3)0.0098 (19)0.0146 (19)0.0019 (19)
C200.079 (2)0.061 (2)0.109 (3)0.019 (2)0.016 (2)0.017 (2)
C210.099 (3)0.063 (2)0.118 (3)0.004 (2)0.008 (3)0.010 (2)
O10.0658 (15)0.0533 (14)0.121 (2)0.0020 (12)0.0096 (14)0.0037 (14)
O20.0587 (14)0.0538 (14)0.1133 (19)0.0005 (11)0.0082 (13)0.0025 (13)
O30.0923 (18)0.0503 (13)0.1049 (19)0.0138 (13)0.0050 (15)0.0019 (13)
O40.0565 (15)0.0853 (19)0.160 (3)0.0175 (14)0.0074 (16)0.0118 (18)
O50.0668 (15)0.0565 (14)0.1050 (19)0.0122 (12)0.0063 (13)0.0084 (13)
Geometric parameters (Å, º) top
C1—O21.243 (4)C10—C131.484 (4)
C1—O11.296 (3)C11—C121.371 (4)
C1—C21.478 (4)C11—H110.93
C2—C31.511 (4)C12—H120.93
C2—H2A0.97C13—C181.393 (4)
C2—H2B0.97C13—C141.395 (4)
C3—C41.513 (4)C14—C151.381 (4)
C3—H3A0.97C14—H140.93
C3—H3B0.97C15—C161.373 (4)
C4—C51.505 (4)C15—H150.93
C4—H4A0.97C16—C171.380 (4)
C4—H4B0.97C16—C191.478 (4)
C5—C61.519 (4)C17—C181.388 (4)
C5—H5A0.97C17—H170.93
C5—H5B0.97C18—H180.93
C6—O31.408 (4)C19—O41.214 (4)
C6—H6A0.97C19—O51.327 (4)
C6—H6B0.97C20—O51.446 (4)
C7—O31.364 (3)C20—C211.489 (5)
C7—C121.378 (4)C20—H20A0.97
C7—C81.386 (4)C20—H20B0.97
C8—C91.396 (4)C21—H21A0.96
C8—H80.93C21—H21B0.96
C9—C101.384 (4)C21—H21C0.96
C9—H90.93O1—H10.82
C10—C111.398 (4)
O2—C1—O1122.4 (3)C11—C10—C13120.8 (3)
O2—C1—C2122.6 (3)C12—C11—C10121.7 (3)
O1—C1—C2114.9 (3)C12—C11—H11119.1
C1—C2—C3115.7 (3)C10—C11—H11119.1
C1—C2—H2A108.3C11—C12—C7120.9 (3)
C3—C2—H2A108.3C11—C12—H12119.5
C1—C2—H2B108.3C7—C12—H12119.5
C3—C2—H2B108.3C18—C13—C14116.5 (3)
H2A—C2—H2B107.4C18—C13—C10120.9 (3)
C2—C3—C4111.4 (3)C14—C13—C10122.6 (3)
C2—C3—H3A109.4C15—C14—C13121.6 (3)
C4—C3—H3A109.4C15—C14—H14119.2
C2—C3—H3B109.4C13—C14—H14119.2
C4—C3—H3B109.4C16—C15—C14121.3 (3)
H3A—C3—H3B108C16—C15—H15119.4
C5—C4—C3113.9 (3)C14—C15—H15119.4
C5—C4—H4A108.8C15—C16—C17118.4 (3)
C3—C4—H4A108.8C15—C16—C19120.3 (3)
C5—C4—H4B108.8C17—C16—C19121.3 (3)
C3—C4—H4B108.8C16—C17—C18120.6 (3)
H4A—C4—H4B107.7C16—C17—H17119.7
C4—C5—C6111.5 (3)C18—C17—H17119.7
C4—C5—H5A109.3C17—C18—C13121.7 (3)
C6—C5—H5A109.3C17—C18—H18119.1
C4—C5—H5B109.3C13—C18—H18119.1
C6—C5—H5B109.3O4—C19—O5123.2 (3)
H5A—C5—H5B108O4—C19—C16124.5 (3)
O3—C6—C5108.3 (3)O5—C19—C16112.4 (3)
O3—C6—H6A110O5—C20—C21107.2 (3)
C5—C6—H6A110O5—C20—H20A110.3
O3—C6—H6B110C21—C20—H20A110.3
C5—C6—H6B110O5—C20—H20B110.3
H6A—C6—H6B108.4C21—C20—H20B110.3
O3—C7—C12116.1 (3)H20A—C20—H20B108.5
O3—C7—C8124.8 (3)C20—C21—H21A109.5
C12—C7—C8119.0 (3)C20—C21—H21B109.5
C7—C8—C9119.4 (3)H21A—C21—H21B109.5
C7—C8—H8120.3C20—C21—H21C109.5
C9—C8—H8120.3H21A—C21—H21C109.5
C10—C9—C8122.2 (3)H21B—C21—H21C109.5
C10—C9—H9118.9C1—O1—H1109.5
C8—C9—H9118.9C7—O3—C6118.7 (3)
C9—C10—C11116.6 (3)C19—O5—C20118.3 (3)
C9—C10—C13122.5 (3)
O2—C1—C2—C31.4 (5)C18—C13—C14—C150.6 (5)
O1—C1—C2—C3179.4 (3)C10—C13—C14—C15178.5 (3)
C1—C2—C3—C4179.1 (3)C13—C14—C15—C160.3 (6)
C2—C3—C4—C5179.9 (3)C14—C15—C16—C170.1 (5)
C3—C4—C5—C6179.1 (3)C14—C15—C16—C19179.4 (3)
C4—C5—C6—O3179.9 (3)C15—C16—C17—C180.2 (5)
O3—C7—C8—C9179.7 (3)C19—C16—C17—C18179.3 (3)
C12—C7—C8—C90.7 (5)C16—C17—C18—C130.2 (5)
C7—C8—C9—C100.3 (5)C14—C13—C18—C170.5 (5)
C8—C9—C10—C111.2 (5)C10—C13—C18—C17178.6 (3)
C8—C9—C10—C13178.0 (3)C15—C16—C19—O40.4 (6)
C9—C10—C11—C121.1 (5)C17—C16—C19—O4179.1 (4)
C13—C10—C11—C12178.1 (3)C15—C16—C19—O5179.1 (3)
C10—C11—C12—C70.1 (5)C17—C16—C19—O51.4 (5)
O3—C7—C12—C11179.9 (3)C12—C7—O3—C6178.2 (3)
C8—C7—C12—C110.9 (5)C8—C7—O3—C60.8 (5)
C9—C10—C13—C18159.7 (3)C5—C6—O3—C7178.5 (3)
C11—C10—C13—C1819.4 (5)O4—C19—O5—C201.6 (5)
C9—C10—C13—C1419.3 (5)C16—C19—O5—C20178.9 (3)
C11—C10—C13—C14161.5 (3)C21—C20—O5—C19173.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.802.612 (3)170
C18—H18···O1ii0.932.543.460 (4)173
C6—H6A···Cg1iii0.972.783.668 (4)152
Symmetry codes: (i) x+2, y2, z+1; (ii) x, y+1, z; (iii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.802.612 (3)170
C18—H18···O1ii0.932.543.460 (4)173
C6—H6A···Cg1iii0.972.783.668 (4)152
Symmetry codes: (i) x+2, y2, z+1; (ii) x, y+1, z; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the VIEP–BUAP Project (LOVD-NAT12–1), PIFI-2012, Programa Anual de Cooperación Académica BUAP–UNAM 2012 and thank A. R. Hernández-Sosa for the crystal preparation.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBraga, D., Grepioni, F., Hardie, M. J., Hubberstey, P., Maini, L., Poloto, M., Suksangpanya, U. & Vilar, R. (2004). Structure and Bonding, Vol. 111, edited by D. M. P. Mingos. Berlin: Springer.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJeong, K. U., Knapp, B. S., Ge, J. J., Jin, S., Graham, M. J., Harris, F. W. & Cheng, S. Z. D. (2006). Chem. Mater. 18, 680–690.  Web of Science CrossRef CAS Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds