organic compounds
3-(4-Hydroxyphenyl)-1,5-bis(pyridin-2-yl)pentane-1,5-dione
aState Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007, People's Republic of China, and bSchool of Chemistry and Chemical Engeneering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
*Correspondence e-mail: mzmz2009@sohu.com
In the title molecule, C21H18N2O3, the pyridine rings make a dihedral angle of 13.1 (1)°. The phenyl ring is approximately perpendicular to both of them, forming dihedral angles of 87.4 (1)and 81.9 (1)°. In the crystal, pairs of O—H⋯N hydrogen bonds link the molecules into centrosymmetric dimers. Additional C—H⋯O, π–π [centroid–centroid distance = 3.971 (2) Å] and C—H⋯π interactions consolidate the dimers into a three-dimensional network.
CCDC reference: 960963
Related literature
For the synthesis of the title compound, see: Constable et al. (1990, 1998); He et al. (2006). For the syntheses of terpyridine compounds and their properties and applications, see: Ma et al. (2009, 2010, 2012, 2013). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
CCDC reference: 960963
10.1107/S1600536813025518/ld2113sup1.cif
contains datablocks I, C21H18N2O3. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813025518/ld2113Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813025518/ld2113Isup3.cml
The title compound was obtained by reaction of 4-hydroxybenzaldehyde with 2-acetylpyridine in a 1.5 M NaOH mixed aqueous/ethanol solution according to a reported procedure (Constable, et al. 1990). In a 250 cm3 flask fitted with a funnel, 4-hydroxybenzaldehyde (5.5 g, 45 mM) and 40 mL of the 1.5 M NaOH aqueous solution were mixed in 60 cm3 of ethanol. To this solution was added dropwise a stoichiometric quantity of 2-acetylpyridine (10 mL, 89 mM) for a period of half an hour with stirring. The mixture was then stirred for 24 h at room temperature. A white solid formed was obtained by filtration and being washed with two times with distilled water (yield 70 %). The product (25 mg) and distilled water (20 mL) were sealed in a 25-mL stainless steel reactor with Teflon liner and heated at 393 K for 1 d. Colourless crystals were obtained, which were suitable for X-ray characterization.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. | |
Fig. 2. A view of the crystal packing to show the formation of centrosymmetric H-bonded dimers by the help of the hydrogen bonds and the π···π interactions between the pyridyl groups of the compound. The thin dashed lines are used to show the hydrogen bonds. The blue dotted lines are used to show π···π interactions between the pyridyl groups of the compound | |
Fig. 3. A view of the crystal packing along the a axis to show the three-dimensional network. |
C21H18N2O3 | Z = 2 |
Mr = 346.37 | F(000) = 364 |
Triclinic, P1 | Dx = 1.328 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4392 (6) Å | Cell parameters from 6339 reflections |
b = 10.6683 (7) Å | θ = 3.2–26.4° |
c = 11.0755 (8) Å | µ = 0.09 mm−1 |
α = 100.623 (6)° | T = 298 K |
β = 103.867 (6)° | Prism, colourless |
γ = 110.550 (6)° | 0.39 × 0.38 × 0.22 mm |
V = 866.05 (10) Å3 |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 3544 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 2661 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.017 |
Detector resolution: 0 pixels mm-1 | θmax = 26.4°, θmin = 3.2° |
ω scans | h = −10→9 |
Absorption correction: multi-scan (CrysAlis PRO, Agilent, 2012) | k = −13→13 |
Tmin = 0.813, Tmax = 1.000 | l = −13→11 |
6339 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | All H-atom parameters refined |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0498P)2 + 0.1436P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3544 reflections | Δρmax = 0.18 e Å−3 |
308 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.018 (3) |
C21H18N2O3 | γ = 110.550 (6)° |
Mr = 346.37 | V = 866.05 (10) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.4392 (6) Å | Mo Kα radiation |
b = 10.6683 (7) Å | µ = 0.09 mm−1 |
c = 11.0755 (8) Å | T = 298 K |
α = 100.623 (6)° | 0.39 × 0.38 × 0.22 mm |
β = 103.867 (6)° |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 3544 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO, Agilent, 2012) | 2661 reflections with I > 2σ(I) |
Tmin = 0.813, Tmax = 1.000 | Rint = 0.017 |
6339 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.119 | All H-atom parameters refined |
S = 1.03 | Δρmax = 0.18 e Å−3 |
3544 reflections | Δρmin = −0.14 e Å−3 |
308 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.71359 (19) | 0.30614 (12) | 0.46604 (11) | 0.0618 (4) | |
O2 | 0.91770 (19) | 0.78344 (12) | 0.42074 (12) | 0.0667 (4) | |
O3 | 0.08708 (17) | 0.40522 (14) | 0.08964 (13) | 0.0592 (3) | |
H03A | 0.044 (3) | 0.351 (3) | 0.003 (2) | 0.100 (8)* | |
N1 | 0.6613 (2) | 0.06026 (14) | 0.18572 (13) | 0.0603 (4) | |
N2 | 1.06938 (19) | 0.81798 (14) | 0.15318 (13) | 0.0493 (4) | |
C1 | 0.6711 (2) | 0.10690 (15) | 0.30835 (14) | 0.0409 (4) | |
C2 | 0.6203 (3) | 0.01932 (17) | 0.38203 (17) | 0.0545 (5) | |
H2A | 0.632 (2) | 0.0607 (19) | 0.4701 (18) | 0.060 (5)* | |
C3 | 0.5570 (3) | −0.12308 (18) | 0.32835 (19) | 0.0639 (5) | |
H3A | 0.524 (3) | −0.184 (2) | 0.3782 (19) | 0.078 (6)* | |
C4 | 0.5449 (3) | −0.17259 (19) | 0.20295 (19) | 0.0680 (6) | |
H4A | 0.501 (3) | −0.273 (2) | 0.159 (2) | 0.083 (6)* | |
C5 | 0.5963 (4) | −0.07886 (19) | 0.1355 (2) | 0.0791 (7) | |
H5A | 0.586 (3) | −0.110 (2) | 0.044 (2) | 0.092 (7)* | |
C6 | 0.7379 (2) | 0.26254 (15) | 0.36597 (14) | 0.0414 (4) | |
C7 | 0.8359 (2) | 0.35918 (16) | 0.29975 (17) | 0.0432 (4) | |
H7A | 0.966 (3) | 0.3793 (18) | 0.3406 (17) | 0.060 (5)* | |
H7B | 0.798 (2) | 0.3108 (17) | 0.2046 (16) | 0.049 (4)* | |
C8 | 0.8128 (2) | 0.49738 (14) | 0.32322 (14) | 0.0378 (3) | |
H8A | 0.847 (2) | 0.5387 (15) | 0.4188 (15) | 0.040 (4)* | |
C9 | 0.9371 (2) | 0.60196 (15) | 0.27268 (16) | 0.0409 (4) | |
H9B | 1.059 (2) | 0.6076 (17) | 0.2993 (15) | 0.052 (5)* | |
H9A | 0.897 (2) | 0.5730 (17) | 0.1737 (17) | 0.052 (5)* | |
C10 | 0.9588 (2) | 0.74944 (15) | 0.32631 (15) | 0.0426 (4) | |
C11 | 1.0436 (2) | 0.85928 (15) | 0.26587 (15) | 0.0428 (4) | |
C12 | 1.0940 (3) | 0.99903 (18) | 0.3296 (2) | 0.0623 (5) | |
H12A | 1.072 (3) | 1.023 (2) | 0.410 (2) | 0.075 (6)* | |
C13 | 1.1764 (3) | 1.0996 (2) | 0.2766 (2) | 0.0798 (7) | |
H13A | 1.215 (3) | 1.200 (3) | 0.322 (2) | 0.108 (8)* | |
C14 | 1.2058 (3) | 1.0592 (2) | 0.1633 (2) | 0.0808 (7) | |
H14A | 1.263 (3) | 1.123 (3) | 0.122 (2) | 0.100 (8)* | |
C15 | 1.1504 (3) | 0.9187 (2) | 0.1043 (2) | 0.0665 (5) | |
H15A | 1.167 (3) | 0.886 (2) | 0.0226 (19) | 0.068 (6)* | |
C16 | 0.6193 (2) | 0.47157 (13) | 0.26132 (13) | 0.0352 (3) | |
C17 | 0.5210 (2) | 0.51095 (15) | 0.33320 (15) | 0.0404 (4) | |
H17A | 0.582 (2) | 0.5549 (16) | 0.4262 (16) | 0.047 (4)* | |
C18 | 0.3451 (2) | 0.48794 (16) | 0.27609 (15) | 0.0439 (4) | |
H18A | 0.281 (2) | 0.5150 (18) | 0.3262 (16) | 0.055 (5)* | |
C19 | 0.2610 (2) | 0.42459 (15) | 0.14348 (15) | 0.0412 (4) | |
C20 | 0.3557 (2) | 0.38460 (16) | 0.06964 (15) | 0.0431 (4) | |
H20A | 0.297 (2) | 0.3412 (18) | −0.0231 (17) | 0.056 (5)* | |
C21 | 0.5317 (2) | 0.40803 (15) | 0.12846 (14) | 0.0412 (4) | |
H21A | 0.598 (2) | 0.3788 (17) | 0.0732 (16) | 0.052 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0992 (11) | 0.0463 (6) | 0.0503 (7) | 0.0314 (7) | 0.0388 (7) | 0.0165 (5) |
O2 | 0.0913 (11) | 0.0402 (6) | 0.0726 (8) | 0.0205 (6) | 0.0498 (8) | 0.0096 (6) |
O3 | 0.0476 (8) | 0.0696 (8) | 0.0573 (8) | 0.0270 (6) | 0.0158 (6) | 0.0081 (6) |
N1 | 0.0922 (13) | 0.0422 (8) | 0.0493 (8) | 0.0227 (8) | 0.0355 (8) | 0.0142 (6) |
N2 | 0.0491 (9) | 0.0450 (7) | 0.0508 (8) | 0.0142 (6) | 0.0180 (6) | 0.0160 (6) |
C1 | 0.0478 (10) | 0.0381 (8) | 0.0402 (8) | 0.0191 (7) | 0.0162 (7) | 0.0144 (6) |
C2 | 0.0769 (13) | 0.0433 (9) | 0.0463 (9) | 0.0213 (9) | 0.0281 (9) | 0.0168 (8) |
C3 | 0.0923 (16) | 0.0427 (9) | 0.0621 (11) | 0.0231 (10) | 0.0357 (11) | 0.0241 (9) |
C4 | 0.0978 (17) | 0.0371 (9) | 0.0669 (12) | 0.0208 (10) | 0.0369 (11) | 0.0125 (9) |
C5 | 0.132 (2) | 0.0432 (10) | 0.0587 (12) | 0.0238 (11) | 0.0485 (13) | 0.0097 (9) |
C6 | 0.0495 (10) | 0.0409 (8) | 0.0380 (8) | 0.0218 (7) | 0.0156 (7) | 0.0135 (7) |
C7 | 0.0499 (11) | 0.0369 (8) | 0.0492 (9) | 0.0206 (7) | 0.0211 (8) | 0.0152 (7) |
C8 | 0.0438 (9) | 0.0325 (7) | 0.0377 (8) | 0.0152 (6) | 0.0161 (7) | 0.0093 (6) |
C9 | 0.0419 (10) | 0.0329 (7) | 0.0491 (9) | 0.0140 (7) | 0.0199 (7) | 0.0108 (7) |
C10 | 0.0423 (9) | 0.0346 (7) | 0.0472 (8) | 0.0126 (7) | 0.0172 (7) | 0.0075 (7) |
C11 | 0.0404 (9) | 0.0348 (7) | 0.0496 (9) | 0.0133 (7) | 0.0132 (7) | 0.0110 (7) |
C12 | 0.0771 (14) | 0.0387 (9) | 0.0689 (12) | 0.0200 (9) | 0.0284 (11) | 0.0131 (9) |
C13 | 0.1020 (18) | 0.0371 (10) | 0.0973 (16) | 0.0189 (11) | 0.0391 (14) | 0.0247 (11) |
C14 | 0.0974 (18) | 0.0550 (12) | 0.0934 (16) | 0.0188 (11) | 0.0427 (14) | 0.0405 (12) |
C15 | 0.0765 (15) | 0.0599 (11) | 0.0652 (12) | 0.0200 (10) | 0.0317 (11) | 0.0285 (10) |
C16 | 0.0438 (9) | 0.0261 (6) | 0.0379 (7) | 0.0128 (6) | 0.0182 (6) | 0.0112 (6) |
C17 | 0.0494 (10) | 0.0371 (7) | 0.0351 (8) | 0.0163 (7) | 0.0183 (7) | 0.0092 (6) |
C18 | 0.0475 (10) | 0.0432 (8) | 0.0465 (9) | 0.0205 (7) | 0.0246 (8) | 0.0102 (7) |
C19 | 0.0417 (9) | 0.0358 (7) | 0.0475 (8) | 0.0154 (7) | 0.0174 (7) | 0.0133 (7) |
C20 | 0.0466 (10) | 0.0410 (8) | 0.0366 (8) | 0.0135 (7) | 0.0153 (7) | 0.0071 (7) |
C21 | 0.0464 (10) | 0.0385 (8) | 0.0405 (8) | 0.0164 (7) | 0.0222 (7) | 0.0078 (6) |
O1—C6 | 1.2135 (17) | C8—H8A | 0.996 (15) |
O2—C10 | 1.2114 (18) | C9—C10 | 1.504 (2) |
O3—C19 | 1.3689 (19) | C9—H9B | 0.975 (18) |
O3—H03A | 0.93 (2) | C9—H9A | 1.017 (17) |
N1—C1 | 1.3295 (19) | C10—C11 | 1.504 (2) |
N1—C5 | 1.338 (2) | C11—C12 | 1.387 (2) |
N2—C15 | 1.339 (2) | C12—C13 | 1.372 (3) |
N2—C11 | 1.340 (2) | C12—H12A | 0.96 (2) |
C1—C2 | 1.375 (2) | C13—C14 | 1.360 (3) |
C1—C6 | 1.504 (2) | C13—H13A | 0.99 (3) |
C2—C3 | 1.375 (2) | C14—C15 | 1.376 (3) |
C2—H2A | 0.960 (18) | C14—H14A | 0.95 (3) |
C3—C4 | 1.357 (3) | C15—H15A | 0.966 (19) |
C3—H3A | 0.94 (2) | C16—C21 | 1.389 (2) |
C4—C5 | 1.368 (3) | C16—C17 | 1.391 (2) |
C4—H4A | 0.99 (2) | C17—C18 | 1.378 (2) |
C5—H5A | 0.99 (2) | C17—H17A | 0.971 (16) |
C6—C7 | 1.502 (2) | C18—C19 | 1.384 (2) |
C7—C8 | 1.538 (2) | C18—H18A | 0.938 (18) |
C7—H7A | 1.006 (19) | C19—C20 | 1.384 (2) |
C7—H7B | 1.001 (16) | C20—C21 | 1.381 (2) |
C8—C16 | 1.513 (2) | C20—H20A | 0.967 (17) |
C8—C9 | 1.532 (2) | C21—H21A | 0.998 (17) |
C19—O3—H03A | 109.1 (15) | H9B—C9—H9A | 104.6 (13) |
C1—N1—C5 | 116.28 (15) | O2—C10—C9 | 121.67 (14) |
C15—N2—C11 | 116.90 (15) | O2—C10—C11 | 119.15 (13) |
N1—C1—C2 | 122.88 (14) | C9—C10—C11 | 119.08 (13) |
N1—C1—C6 | 117.47 (13) | N2—C11—C12 | 122.63 (15) |
C2—C1—C6 | 119.64 (14) | N2—C11—C10 | 118.46 (13) |
C1—C2—C3 | 119.43 (16) | C12—C11—C10 | 118.91 (15) |
C1—C2—H2A | 118.1 (11) | C13—C12—C11 | 119.0 (2) |
C3—C2—H2A | 122.4 (11) | C13—C12—H12A | 121.8 (12) |
C4—C3—C2 | 118.47 (17) | C11—C12—H12A | 119.2 (12) |
C4—C3—H3A | 121.3 (12) | C14—C13—C12 | 118.97 (19) |
C2—C3—H3A | 120.2 (12) | C14—C13—H13A | 121.0 (15) |
C3—C4—C5 | 118.65 (17) | C12—C13—H13A | 120.0 (15) |
C3—C4—H4A | 122.3 (12) | C13—C14—C15 | 119.1 (2) |
C5—C4—H4A | 119.1 (12) | C13—C14—H14A | 123.3 (14) |
N1—C5—C4 | 124.27 (18) | C15—C14—H14A | 117.6 (15) |
N1—C5—H5A | 114.4 (13) | N2—C15—C14 | 123.4 (2) |
C4—C5—H5A | 121.3 (13) | N2—C15—H15A | 115.5 (12) |
O1—C6—C7 | 122.05 (14) | C14—C15—H15A | 121.1 (12) |
O1—C6—C1 | 118.79 (14) | C21—C16—C17 | 116.72 (14) |
C7—C6—C1 | 119.14 (13) | C21—C16—C8 | 121.07 (13) |
C6—C7—C8 | 112.24 (13) | C17—C16—C8 | 122.21 (13) |
C6—C7—H7A | 104.7 (10) | C18—C17—C16 | 121.93 (14) |
C8—C7—H7A | 109.3 (10) | C18—C17—H17A | 121.3 (9) |
C6—C7—H7B | 110.5 (9) | C16—C17—H17A | 116.7 (10) |
C8—C7—H7B | 111.5 (9) | C17—C18—C19 | 120.22 (15) |
H7A—C7—H7B | 108.3 (14) | C17—C18—H18A | 120.7 (10) |
C16—C8—C9 | 110.96 (12) | C19—C18—H18A | 119.0 (11) |
C16—C8—C7 | 110.90 (12) | O3—C19—C20 | 122.26 (14) |
C9—C8—C7 | 110.75 (12) | O3—C19—C18 | 118.70 (14) |
C16—C8—H8A | 107.9 (9) | C20—C19—C18 | 119.04 (15) |
C9—C8—H8A | 108.1 (9) | C21—C20—C19 | 119.99 (14) |
C7—C8—H8A | 108.1 (8) | C21—C20—H20A | 121.1 (10) |
C10—C9—C8 | 112.42 (13) | C19—C20—H20A | 118.9 (10) |
C10—C9—H9B | 104.4 (10) | C20—C21—C16 | 122.10 (14) |
C8—C9—H9B | 112.2 (10) | C20—C21—H21A | 118.6 (9) |
C10—C9—H9A | 110.8 (9) | C16—C21—H21A | 119.3 (10) |
C8—C9—H9A | 111.9 (10) | ||
C5—N1—C1—C2 | 0.8 (3) | C9—C10—C11—N2 | 11.1 (2) |
C5—N1—C1—C6 | −178.05 (18) | O2—C10—C11—C12 | 8.4 (3) |
N1—C1—C2—C3 | 0.3 (3) | C9—C10—C11—C12 | −168.07 (16) |
C6—C1—C2—C3 | 179.14 (17) | N2—C11—C12—C13 | −1.1 (3) |
C1—C2—C3—C4 | −0.7 (3) | C10—C11—C12—C13 | 178.02 (18) |
C2—C3—C4—C5 | 0.1 (3) | C11—C12—C13—C14 | 0.1 (4) |
C1—N1—C5—C4 | −1.6 (4) | C12—C13—C14—C15 | 0.7 (4) |
C3—C4—C5—N1 | 1.1 (4) | C11—N2—C15—C14 | −0.4 (3) |
N1—C1—C6—O1 | 164.80 (16) | C13—C14—C15—N2 | −0.6 (4) |
C2—C1—C6—O1 | −14.1 (2) | C9—C8—C16—C21 | 64.71 (16) |
N1—C1—C6—C7 | −16.5 (2) | C7—C8—C16—C21 | −58.83 (17) |
C2—C1—C6—C7 | 164.56 (16) | C9—C8—C16—C17 | −114.63 (14) |
O1—C6—C7—C8 | −30.0 (2) | C7—C8—C16—C17 | 121.83 (14) |
C1—C6—C7—C8 | 151.38 (14) | C21—C16—C17—C18 | 0.2 (2) |
C6—C7—C8—C16 | −65.15 (17) | C8—C16—C17—C18 | 179.58 (13) |
C6—C7—C8—C9 | 171.20 (13) | C16—C17—C18—C19 | −0.3 (2) |
C16—C8—C9—C10 | 72.76 (16) | C17—C18—C19—O3 | −179.03 (13) |
C7—C8—C9—C10 | −163.62 (14) | C17—C18—C19—C20 | 0.2 (2) |
C8—C9—C10—O2 | 16.4 (2) | O3—C19—C20—C21 | 179.21 (13) |
C8—C9—C10—C11 | −167.22 (13) | C18—C19—C20—C21 | 0.0 (2) |
C15—N2—C11—C12 | 1.2 (3) | C19—C20—C21—C16 | −0.1 (2) |
C15—N2—C11—C10 | −177.89 (16) | C17—C16—C21—C20 | 0.0 (2) |
O2—C10—C11—N2 | −172.47 (15) | C8—C16—C21—C20 | −179.38 (13) |
Cg3 is the centroid of the C16–C21 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H03A···N2i | 0.93 (2) | 2.00 (2) | 2.8940 (19) | 160 (2) |
C12—H12A···O2ii | 0.96 (2) | 2.48 (2) | 3.312 (3) | 145 (2) |
C4a—H4a···Cg3iii | 0.99 (2) | 0.98 (2) | 3.825 (2) | 144 (2) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+2, −z+1; (iii) x, y−1, z. |
Cg3 is the centroid of the C16–C21 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H03A···N2i | 0.93 (2) | 2.00 (2) | 2.8940 (19) | 160 (2) |
C12—H12A···O2ii | 0.96 (2) | 2.48 (2) | 3.312 (3) | 145 (2) |
C4a—H4a···Cg3iii | 0.99 (2) | 0.98 (2) | 3.825 (2) | 144.1 (16) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+2, −z+1; (iii) x, y−1, z. |
Acknowledgements
The authors are grateful for financial support from the Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (K008).
References
Agilent (2012). CrysAlis PRO., Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47–54. CSD CrossRef CAS Web of Science Google Scholar
Constable, E. C., Neuburger, M., Smith, D. R. & Zehnder, M. (1998). Inorg. Chim. Acta, 275, 359–365. CSD CrossRef Google Scholar
He, G.-F., Huang, X.-Q., Dou, J.-M., Li, D.-C. & Wang, D.-Q. (2006). Acta Cryst. E62, o4689–o4690. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ma, Z., Cao, Y., Li, Q., da Guedes da Silva, M. F. C. F., Silva, J. J. R. & Pombeiro, A. J. L. (2010). J. Inorg. Biochem. 104, 704–711. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ma, Z., Liang, B., Yang, M. & Lu, L. (2012). Acta Cryst. E68, m298–m299. CSD CrossRef CAS IUCr Journals Google Scholar
Ma, Z., Lu, W., Liang, B. & Pombeiro, A. J. L. (2013). New J. Chem. 37, 1529–1537. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Xing, Y., Yang, M., Hu, M., da Liu, B. G., Silva, M. F. C. & Pombeiro, A. J. L. (2009). Inorg. Chim. Acta, 362, 2921–2926. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal terpyridene complexes is a topic of major current interest because they show very interesting properties, such as photoluminescence, catalytic and antibiological activities (Ma, Xing et al. 2009; Ma, Cao et al. 2010; Ma, Liang et al. 2012; Ma, Lu et al. 2013). Hence, the aim of our current work was to prepare a series of precursors to produce terpyridine ligands, investigate their coordination behavior toward metal ions and study their applications (Constable, Lewis et al. 1990; Constable, Neuburger et al. 1998). Here, we report the structure of a precursor compound for terpyridine synthesis, which was obtained by reaction of 4-hydroxybenzaldehyde with 2-acetylpyridine in a mixed water/ethanol solution of NaOH, and its structure was determined by X-ray crystal analysis.
The molecular structure is shown in Fig. 1. The average bond length C=O for two carbonyls is 1.1212 Å. Other averages are 1.336 Å for N-C bonds, 1.371 Å for C-C bonds of the pyridyl groups and 1.384 Å for C-C bonds of the aryl group. All bond lengths are within normal ranges (Allen et al., 1987). The two pyridyl groups are not parallel, with a dihedral angle of 13.14 (10) °. The plane of aromatic ring with the hydroxyl group (with an r.m.s. deviation of 0.0041 Å) is approximately perpendicular to those of the two pyridyl groups, forming two dihedral angles of 87.36 (5) and 81.90 (6)°, respectively.
Each molecule forms hydrogen bonds (Table 1) involving its hydroxy group and a nitrogen pyridyl atom (N2ii) of a neighboring molecule [symmetry code: (ii) 1-x, 1-y, -z]) and also an H-bond between C(12)-H group and a carbonyl oxygen (O2iii) of a neighboring molecule [symmetry code: (iii) 2-x, 2-y, 1-z] (Table 1). These hydrogen bonds account for the formation of centrosymmetric dimers (see Fig 2). The structure also has one intermolecular π···π interaction with a distance of 3.971 Å between two neighboring pyridyl groups (see Fig 2)[Cg1 and Cg2(iv) or Cg2 and Cg1(v); Cg2 and Cg1 are the two centroids of the two six membered pyridyl rings of C1-C5-N1 or C11-C15-N2, symmetry code: (iv) -1+x, -1+y, z; (v) 1+x, 1+y, z]. Further structural stabilization is provided by an intermolecular C—H···π interaction between C(4)-H and its neighboring aryl group Cg3 (Fig 2) [H..Cg 2.98 Å; Cg(3) is the centroid of the six membered aromatic ring C16i-C21i, symmetry code: (i) x, -1+y-1, z]. These π···π and C—H···π interactions help to consolidate the H-bonded dimers into a three-dimensional network (Fig 3).