organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Hy­dr­oxy­phen­yl)-1,5-bis­­(pyridin-2-yl)pentane-1,5-dione

aState Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007, People's Republic of China, and bSchool of Chemistry and Chemical Engeneering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
*Correspondence e-mail: mzmz2009@sohu.com

(Received 8 August 2013; accepted 13 September 2013; online 21 September 2013)

In the title mol­ecule, C21H18N2O3, the pyridine rings make a dihedral angle of 13.1 (1)°. The phenyl ring is approximately perpendicular to both of them, forming dihedral angles of 87.4 (1)and 81.9 (1)°. In the crystal, pairs of O—H⋯N hydrogen bonds link the mol­ecules into centrosymmetric dimers. Additional C—H⋯O, ππ [centroid–centroid distance = 3.971 (2) Å] and C—H⋯π inter­actions consolidate the dimers into a three-dimensional network.

Related literature

For the synthesis of the title compound, see: Constable et al. (1990[Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47-54.], 1998[Constable, E. C., Neuburger, M., Smith, D. R. & Zehnder, M. (1998). Inorg. Chim. Acta, 275, 359-365.]); He et al. (2006[He, G.-F., Huang, X.-Q., Dou, J.-M., Li, D.-C. & Wang, D.-Q. (2006). Acta Cryst. E62, o4689-o4690.]). For the syntheses of terpyridine compounds and their properties and applications, see: Ma et al. (2009[Ma, Z., Xing, Y., Yang, M., Hu, M., da Liu, B. G., Silva, M. F. C. & Pombeiro, A. J. L. (2009). Inorg. Chim. Acta, 362, 2921-2926.], 2010[Ma, Z., Cao, Y., Li, Q., da Guedes da Silva, M. F. C. F., Silva, J. J. R. & Pombeiro, A. J. L. (2010). J. Inorg. Biochem. 104, 704-711.], 2012[Ma, Z., Liang, B., Yang, M. & Lu, L. (2012). Acta Cryst. E68, m298-m299.], 2013[Ma, Z., Lu, W., Liang, B. & Pombeiro, A. J. L. (2013). New J. Chem. 37, 1529-1537.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N2O3

  • Mr = 346.37

  • Triclinic, [P \overline 1]

  • a = 8.4392 (6) Å

  • b = 10.6683 (7) Å

  • c = 11.0755 (8) Å

  • α = 100.623 (6)°

  • β = 103.867 (6)°

  • γ = 110.550 (6)°

  • V = 866.05 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.39 × 0.38 × 0.22 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO, Agilent, 2012[Agilent (2012). CrysAlis PRO., Agilent Technologies, Yarnton, England.]) Tmin = 0.813, Tmax = 1.000

  • 6339 measured reflections

  • 3544 independent reflections

  • 2661 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.03

  • 3544 reflections

  • 308 parameters

  • All H-atom parameters refined

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C16–C21 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H03A⋯N2i 0.93 (2) 2.00 (2) 2.8940 (19) 160 (2)
C12—H12A⋯O2ii 0.96 (2) 2.48 (2) 3.312 (3) 145 (2)
C4a—H4a⋯Cg3iii 0.99 (2) 0.98 (2) 3.825 (2) 144 (2)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+2, -z+1; (iii) x, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO., Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Metal terpyridene complexes is a topic of major current interest because they show very interesting properties, such as photoluminescence, catalytic and antibiological activities (Ma, Xing et al. 2009; Ma, Cao et al. 2010; Ma, Liang et al. 2012; Ma, Lu et al. 2013). Hence, the aim of our current work was to prepare a series of precursors to produce terpyridine ligands, investigate their coordination behavior toward metal ions and study their applications (Constable, Lewis et al. 1990; Constable, Neuburger et al. 1998). Here, we report the structure of a precursor compound for terpyridine synthesis, which was obtained by reaction of 4-hydroxybenzaldehyde with 2-acetylpyridine in a mixed water/ethanol solution of NaOH, and its structure was determined by X-ray crystal analysis.

The molecular structure is shown in Fig. 1. The average bond length C=O for two carbonyls is 1.1212 Å. Other averages are 1.336 Å for N-C bonds, 1.371 Å for C-C bonds of the pyridyl groups and 1.384 Å for C-C bonds of the aryl group. All bond lengths are within normal ranges (Allen et al., 1987). The two pyridyl groups are not parallel, with a dihedral angle of 13.14 (10) °. The plane of aromatic ring with the hydroxyl group (with an r.m.s. deviation of 0.0041 Å) is approximately perpendicular to those of the two pyridyl groups, forming two dihedral angles of 87.36 (5) and 81.90 (6)°, respectively.

Each molecule forms hydrogen bonds (Table 1) involving its hydroxy group and a nitrogen pyridyl atom (N2ii) of a neighboring molecule [symmetry code: (ii) 1-x, 1-y, -z]) and also an H-bond between C(12)-H group and a carbonyl oxygen (O2iii) of a neighboring molecule [symmetry code: (iii) 2-x, 2-y, 1-z] (Table 1). These hydrogen bonds account for the formation of centrosymmetric dimers (see Fig 2). The structure also has one intermolecular π···π interaction with a distance of 3.971 Å between two neighboring pyridyl groups (see Fig 2)[Cg1 and Cg2(iv) or Cg2 and Cg1(v); Cg2 and Cg1 are the two centroids of the two six membered pyridyl rings of C1-C5-N1 or C11-C15-N2, symmetry code: (iv) -1+x, -1+y, z; (v) 1+x, 1+y, z]. Further structural stabilization is provided by an intermolecular C—H···π interaction between C(4)-H and its neighboring aryl group Cg3 (Fig 2) [H..Cg 2.98 Å; Cg(3) is the centroid of the six membered aromatic ring C16i-C21i, symmetry code: (i) x, -1+y-1, z]. These π···π and C—H···π interactions help to consolidate the H-bonded dimers into a three-dimensional network (Fig 3).

Related literature top

For the synthesis of the title compound, see: Constable et al. (1990, 1998); He et al. (2006). For the syntheses of terpyridine compounds and their properties and applications, see: Ma et al. (2009, 2010, 2012, 2013). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was obtained by reaction of 4-hydroxybenzaldehyde with 2-acetylpyridine in a 1.5 M NaOH mixed aqueous/ethanol solution according to a reported procedure (Constable, et al. 1990). In a 250 cm3 flask fitted with a funnel, 4-hydroxybenzaldehyde (5.5 g, 45 mM) and 40 mL of the 1.5 M NaOH aqueous solution were mixed in 60 cm3 of ethanol. To this solution was added dropwise a stoichiometric quantity of 2-acetylpyridine (10 mL, 89 mM) for a period of half an hour with stirring. The mixture was then stirred for 24 h at room temperature. A white solid formed was obtained by filtration and being washed with two times with distilled water (yield 70 %). The product (25 mg) and distilled water (20 mL) were sealed in a 25-mL stainless steel reactor with Teflon liner and heated at 393 K for 1 d. Colourless crystals were obtained, which were suitable for X-ray characterization.

Refinement top

All H atoms were positioned from a Difference Fourier series and refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the crystal packing to show the formation of centrosymmetric H-bonded dimers by the help of the hydrogen bonds and the π···π interactions between the pyridyl groups of the compound. The thin dashed lines are used to show the hydrogen bonds. The blue dotted lines are used to show π···π interactions between the pyridyl groups of the compound
[Figure 3] Fig. 3. A view of the crystal packing along the a axis to show the three-dimensional network.
3-(4-Hydroxyphenyl)-1,5-bis(pyridin-2-yl)pentane-1,5-dione top
Crystal data top
C21H18N2O3Z = 2
Mr = 346.37F(000) = 364
Triclinic, P1Dx = 1.328 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4392 (6) ÅCell parameters from 6339 reflections
b = 10.6683 (7) Åθ = 3.2–26.4°
c = 11.0755 (8) ŵ = 0.09 mm1
α = 100.623 (6)°T = 298 K
β = 103.867 (6)°Prism, colourless
γ = 110.550 (6)°0.39 × 0.38 × 0.22 mm
V = 866.05 (10) Å3
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3544 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2661 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
Detector resolution: 0 pixels mm-1θmax = 26.4°, θmin = 3.2°
ω scansh = 109
Absorption correction: multi-scan
(CrysAlis PRO, Agilent, 2012)
k = 1313
Tmin = 0.813, Tmax = 1.000l = 1311
6339 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043All H-atom parameters refined
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.1436P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3544 reflectionsΔρmax = 0.18 e Å3
308 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (3)
Crystal data top
C21H18N2O3γ = 110.550 (6)°
Mr = 346.37V = 866.05 (10) Å3
Triclinic, P1Z = 2
a = 8.4392 (6) ÅMo Kα radiation
b = 10.6683 (7) ŵ = 0.09 mm1
c = 11.0755 (8) ÅT = 298 K
α = 100.623 (6)°0.39 × 0.38 × 0.22 mm
β = 103.867 (6)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3544 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO, Agilent, 2012)
2661 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 1.000Rint = 0.017
6339 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119All H-atom parameters refined
S = 1.03Δρmax = 0.18 e Å3
3544 reflectionsΔρmin = 0.14 e Å3
308 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71359 (19)0.30614 (12)0.46604 (11)0.0618 (4)
O20.91770 (19)0.78344 (12)0.42074 (12)0.0667 (4)
O30.08708 (17)0.40522 (14)0.08964 (13)0.0592 (3)
H03A0.044 (3)0.351 (3)0.003 (2)0.100 (8)*
N10.6613 (2)0.06026 (14)0.18572 (13)0.0603 (4)
N21.06938 (19)0.81798 (14)0.15318 (13)0.0493 (4)
C10.6711 (2)0.10690 (15)0.30835 (14)0.0409 (4)
C20.6203 (3)0.01932 (17)0.38203 (17)0.0545 (5)
H2A0.632 (2)0.0607 (19)0.4701 (18)0.060 (5)*
C30.5570 (3)0.12308 (18)0.32835 (19)0.0639 (5)
H3A0.524 (3)0.184 (2)0.3782 (19)0.078 (6)*
C40.5449 (3)0.17259 (19)0.20295 (19)0.0680 (6)
H4A0.501 (3)0.273 (2)0.159 (2)0.083 (6)*
C50.5963 (4)0.07886 (19)0.1355 (2)0.0791 (7)
H5A0.586 (3)0.110 (2)0.044 (2)0.092 (7)*
C60.7379 (2)0.26254 (15)0.36597 (14)0.0414 (4)
C70.8359 (2)0.35918 (16)0.29975 (17)0.0432 (4)
H7A0.966 (3)0.3793 (18)0.3406 (17)0.060 (5)*
H7B0.798 (2)0.3108 (17)0.2046 (16)0.049 (4)*
C80.8128 (2)0.49738 (14)0.32322 (14)0.0378 (3)
H8A0.847 (2)0.5387 (15)0.4188 (15)0.040 (4)*
C90.9371 (2)0.60196 (15)0.27268 (16)0.0409 (4)
H9B1.059 (2)0.6076 (17)0.2993 (15)0.052 (5)*
H9A0.897 (2)0.5730 (17)0.1737 (17)0.052 (5)*
C100.9588 (2)0.74944 (15)0.32631 (15)0.0426 (4)
C111.0436 (2)0.85928 (15)0.26587 (15)0.0428 (4)
C121.0940 (3)0.99903 (18)0.3296 (2)0.0623 (5)
H12A1.072 (3)1.023 (2)0.410 (2)0.075 (6)*
C131.1764 (3)1.0996 (2)0.2766 (2)0.0798 (7)
H13A1.215 (3)1.200 (3)0.322 (2)0.108 (8)*
C141.2058 (3)1.0592 (2)0.1633 (2)0.0808 (7)
H14A1.263 (3)1.123 (3)0.122 (2)0.100 (8)*
C151.1504 (3)0.9187 (2)0.1043 (2)0.0665 (5)
H15A1.167 (3)0.886 (2)0.0226 (19)0.068 (6)*
C160.6193 (2)0.47157 (13)0.26132 (13)0.0352 (3)
C170.5210 (2)0.51095 (15)0.33320 (15)0.0404 (4)
H17A0.582 (2)0.5549 (16)0.4262 (16)0.047 (4)*
C180.3451 (2)0.48794 (16)0.27609 (15)0.0439 (4)
H18A0.281 (2)0.5150 (18)0.3262 (16)0.055 (5)*
C190.2610 (2)0.42459 (15)0.14348 (15)0.0412 (4)
C200.3557 (2)0.38460 (16)0.06964 (15)0.0431 (4)
H20A0.297 (2)0.3412 (18)0.0231 (17)0.056 (5)*
C210.5317 (2)0.40803 (15)0.12846 (14)0.0412 (4)
H21A0.598 (2)0.3788 (17)0.0732 (16)0.052 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0992 (11)0.0463 (6)0.0503 (7)0.0314 (7)0.0388 (7)0.0165 (5)
O20.0913 (11)0.0402 (6)0.0726 (8)0.0205 (6)0.0498 (8)0.0096 (6)
O30.0476 (8)0.0696 (8)0.0573 (8)0.0270 (6)0.0158 (6)0.0081 (6)
N10.0922 (13)0.0422 (8)0.0493 (8)0.0227 (8)0.0355 (8)0.0142 (6)
N20.0491 (9)0.0450 (7)0.0508 (8)0.0142 (6)0.0180 (6)0.0160 (6)
C10.0478 (10)0.0381 (8)0.0402 (8)0.0191 (7)0.0162 (7)0.0144 (6)
C20.0769 (13)0.0433 (9)0.0463 (9)0.0213 (9)0.0281 (9)0.0168 (8)
C30.0923 (16)0.0427 (9)0.0621 (11)0.0231 (10)0.0357 (11)0.0241 (9)
C40.0978 (17)0.0371 (9)0.0669 (12)0.0208 (10)0.0369 (11)0.0125 (9)
C50.132 (2)0.0432 (10)0.0587 (12)0.0238 (11)0.0485 (13)0.0097 (9)
C60.0495 (10)0.0409 (8)0.0380 (8)0.0218 (7)0.0156 (7)0.0135 (7)
C70.0499 (11)0.0369 (8)0.0492 (9)0.0206 (7)0.0211 (8)0.0152 (7)
C80.0438 (9)0.0325 (7)0.0377 (8)0.0152 (6)0.0161 (7)0.0093 (6)
C90.0419 (10)0.0329 (7)0.0491 (9)0.0140 (7)0.0199 (7)0.0108 (7)
C100.0423 (9)0.0346 (7)0.0472 (8)0.0126 (7)0.0172 (7)0.0075 (7)
C110.0404 (9)0.0348 (7)0.0496 (9)0.0133 (7)0.0132 (7)0.0110 (7)
C120.0771 (14)0.0387 (9)0.0689 (12)0.0200 (9)0.0284 (11)0.0131 (9)
C130.1020 (18)0.0371 (10)0.0973 (16)0.0189 (11)0.0391 (14)0.0247 (11)
C140.0974 (18)0.0550 (12)0.0934 (16)0.0188 (11)0.0427 (14)0.0405 (12)
C150.0765 (15)0.0599 (11)0.0652 (12)0.0200 (10)0.0317 (11)0.0285 (10)
C160.0438 (9)0.0261 (6)0.0379 (7)0.0128 (6)0.0182 (6)0.0112 (6)
C170.0494 (10)0.0371 (7)0.0351 (8)0.0163 (7)0.0183 (7)0.0092 (6)
C180.0475 (10)0.0432 (8)0.0465 (9)0.0205 (7)0.0246 (8)0.0102 (7)
C190.0417 (9)0.0358 (7)0.0475 (8)0.0154 (7)0.0174 (7)0.0133 (7)
C200.0466 (10)0.0410 (8)0.0366 (8)0.0135 (7)0.0153 (7)0.0071 (7)
C210.0464 (10)0.0385 (8)0.0405 (8)0.0164 (7)0.0222 (7)0.0078 (6)
Geometric parameters (Å, º) top
O1—C61.2135 (17)C8—H8A0.996 (15)
O2—C101.2114 (18)C9—C101.504 (2)
O3—C191.3689 (19)C9—H9B0.975 (18)
O3—H03A0.93 (2)C9—H9A1.017 (17)
N1—C11.3295 (19)C10—C111.504 (2)
N1—C51.338 (2)C11—C121.387 (2)
N2—C151.339 (2)C12—C131.372 (3)
N2—C111.340 (2)C12—H12A0.96 (2)
C1—C21.375 (2)C13—C141.360 (3)
C1—C61.504 (2)C13—H13A0.99 (3)
C2—C31.375 (2)C14—C151.376 (3)
C2—H2A0.960 (18)C14—H14A0.95 (3)
C3—C41.357 (3)C15—H15A0.966 (19)
C3—H3A0.94 (2)C16—C211.389 (2)
C4—C51.368 (3)C16—C171.391 (2)
C4—H4A0.99 (2)C17—C181.378 (2)
C5—H5A0.99 (2)C17—H17A0.971 (16)
C6—C71.502 (2)C18—C191.384 (2)
C7—C81.538 (2)C18—H18A0.938 (18)
C7—H7A1.006 (19)C19—C201.384 (2)
C7—H7B1.001 (16)C20—C211.381 (2)
C8—C161.513 (2)C20—H20A0.967 (17)
C8—C91.532 (2)C21—H21A0.998 (17)
C19—O3—H03A109.1 (15)H9B—C9—H9A104.6 (13)
C1—N1—C5116.28 (15)O2—C10—C9121.67 (14)
C15—N2—C11116.90 (15)O2—C10—C11119.15 (13)
N1—C1—C2122.88 (14)C9—C10—C11119.08 (13)
N1—C1—C6117.47 (13)N2—C11—C12122.63 (15)
C2—C1—C6119.64 (14)N2—C11—C10118.46 (13)
C1—C2—C3119.43 (16)C12—C11—C10118.91 (15)
C1—C2—H2A118.1 (11)C13—C12—C11119.0 (2)
C3—C2—H2A122.4 (11)C13—C12—H12A121.8 (12)
C4—C3—C2118.47 (17)C11—C12—H12A119.2 (12)
C4—C3—H3A121.3 (12)C14—C13—C12118.97 (19)
C2—C3—H3A120.2 (12)C14—C13—H13A121.0 (15)
C3—C4—C5118.65 (17)C12—C13—H13A120.0 (15)
C3—C4—H4A122.3 (12)C13—C14—C15119.1 (2)
C5—C4—H4A119.1 (12)C13—C14—H14A123.3 (14)
N1—C5—C4124.27 (18)C15—C14—H14A117.6 (15)
N1—C5—H5A114.4 (13)N2—C15—C14123.4 (2)
C4—C5—H5A121.3 (13)N2—C15—H15A115.5 (12)
O1—C6—C7122.05 (14)C14—C15—H15A121.1 (12)
O1—C6—C1118.79 (14)C21—C16—C17116.72 (14)
C7—C6—C1119.14 (13)C21—C16—C8121.07 (13)
C6—C7—C8112.24 (13)C17—C16—C8122.21 (13)
C6—C7—H7A104.7 (10)C18—C17—C16121.93 (14)
C8—C7—H7A109.3 (10)C18—C17—H17A121.3 (9)
C6—C7—H7B110.5 (9)C16—C17—H17A116.7 (10)
C8—C7—H7B111.5 (9)C17—C18—C19120.22 (15)
H7A—C7—H7B108.3 (14)C17—C18—H18A120.7 (10)
C16—C8—C9110.96 (12)C19—C18—H18A119.0 (11)
C16—C8—C7110.90 (12)O3—C19—C20122.26 (14)
C9—C8—C7110.75 (12)O3—C19—C18118.70 (14)
C16—C8—H8A107.9 (9)C20—C19—C18119.04 (15)
C9—C8—H8A108.1 (9)C21—C20—C19119.99 (14)
C7—C8—H8A108.1 (8)C21—C20—H20A121.1 (10)
C10—C9—C8112.42 (13)C19—C20—H20A118.9 (10)
C10—C9—H9B104.4 (10)C20—C21—C16122.10 (14)
C8—C9—H9B112.2 (10)C20—C21—H21A118.6 (9)
C10—C9—H9A110.8 (9)C16—C21—H21A119.3 (10)
C8—C9—H9A111.9 (10)
C5—N1—C1—C20.8 (3)C9—C10—C11—N211.1 (2)
C5—N1—C1—C6178.05 (18)O2—C10—C11—C128.4 (3)
N1—C1—C2—C30.3 (3)C9—C10—C11—C12168.07 (16)
C6—C1—C2—C3179.14 (17)N2—C11—C12—C131.1 (3)
C1—C2—C3—C40.7 (3)C10—C11—C12—C13178.02 (18)
C2—C3—C4—C50.1 (3)C11—C12—C13—C140.1 (4)
C1—N1—C5—C41.6 (4)C12—C13—C14—C150.7 (4)
C3—C4—C5—N11.1 (4)C11—N2—C15—C140.4 (3)
N1—C1—C6—O1164.80 (16)C13—C14—C15—N20.6 (4)
C2—C1—C6—O114.1 (2)C9—C8—C16—C2164.71 (16)
N1—C1—C6—C716.5 (2)C7—C8—C16—C2158.83 (17)
C2—C1—C6—C7164.56 (16)C9—C8—C16—C17114.63 (14)
O1—C6—C7—C830.0 (2)C7—C8—C16—C17121.83 (14)
C1—C6—C7—C8151.38 (14)C21—C16—C17—C180.2 (2)
C6—C7—C8—C1665.15 (17)C8—C16—C17—C18179.58 (13)
C6—C7—C8—C9171.20 (13)C16—C17—C18—C190.3 (2)
C16—C8—C9—C1072.76 (16)C17—C18—C19—O3179.03 (13)
C7—C8—C9—C10163.62 (14)C17—C18—C19—C200.2 (2)
C8—C9—C10—O216.4 (2)O3—C19—C20—C21179.21 (13)
C8—C9—C10—C11167.22 (13)C18—C19—C20—C210.0 (2)
C15—N2—C11—C121.2 (3)C19—C20—C21—C160.1 (2)
C15—N2—C11—C10177.89 (16)C17—C16—C21—C200.0 (2)
O2—C10—C11—N2172.47 (15)C8—C16—C21—C20179.38 (13)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
O3—H03A···N2i0.93 (2)2.00 (2)2.8940 (19)160 (2)
C12—H12A···O2ii0.96 (2)2.48 (2)3.312 (3)145 (2)
C4a—H4a···Cg3iii0.99 (2)0.98 (2)3.825 (2)144 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z+1; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
O3—H03A···N2i0.93 (2)2.00 (2)2.8940 (19)160 (2)
C12—H12A···O2ii0.96 (2)2.48 (2)3.312 (3)145 (2)
C4a—H4a···Cg3iii0.99 (2)0.98 (2)3.825 (2)144.1 (16)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z+1; (iii) x, y1, z.
 

Acknowledgements

The authors are grateful for financial support from the Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (K008).

References

First citationAgilent (2012). CrysAlis PRO., Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationConstable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47–54.  CSD CrossRef CAS Web of Science Google Scholar
First citationConstable, E. C., Neuburger, M., Smith, D. R. & Zehnder, M. (1998). Inorg. Chim. Acta, 275, 359–365.  CSD CrossRef Google Scholar
First citationHe, G.-F., Huang, X.-Q., Dou, J.-M., Li, D.-C. & Wang, D.-Q. (2006). Acta Cryst. E62, o4689–o4690.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMa, Z., Cao, Y., Li, Q., da Guedes da Silva, M. F. C. F., Silva, J. J. R. & Pombeiro, A. J. L. (2010). J. Inorg. Biochem. 104, 704–711.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMa, Z., Liang, B., Yang, M. & Lu, L. (2012). Acta Cryst. E68, m298–m299.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMa, Z., Lu, W., Liang, B. & Pombeiro, A. J. L. (2013). New J. Chem. 37, 1529–1537.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Xing, Y., Yang, M., Hu, M., da Liu, B. G., Silva, M. F. C. & Pombeiro, A. J. L. (2009). Inorg. Chim. Acta, 362, 2921–2926.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds