metal-organic compounds
m-Xylylenediaminium diaquabis[dihydrogen diphosphato(2−)]cobaltate(II) dihydrate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: mohamedrzaigui@yahoo.fr
In the title complex, (C8H14N2)[Co(H2P2O7)2(H2O)2]·2H2O, the CoII ion lies on an inversion center and is coordinated by two bidentate diphosphate ligands and two water molecules in a slightly distorted octahedral coordination geometry. The m-xylylenediaminium cation is located on a twofold rotation axis. In the crystal, a three-dimensional supramolecular assembly is constructed by O—H⋯O and N—H⋯O hydrogen bonds between the organic cations, complex anions and uncoordinated water molecules.
CCDC reference: 960923
Related literature
For applications of diphosphate compounds containing transition metals, see: Erragh et al. (1998); Handizi et al. (1994); Dridi et al. (2000); Cheetham et al. (1999); Clearfield (1998). For bond-valence-sum calculations, see: Brown & Altermatt (1985). For geometrical features in related structures, see: Selmi et al. (2006a,b, 2009); Gharbi et al. (1994); Gharbi & Jouini (2004); Nelson et al. (2007).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).
Supporting information
CCDC reference: 960923
10.1107/S160053681302535X/lh5650sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681302535X/lh5650Isup2.hkl
Pink prismatic shaped crystals of the title compound were synthesized by the reaction of diphosphoric acid H4P2O7 (2 mmol), CoCl2·6H2O (0.24 g; 1 mmol)and m-xylylenediamine (0.14 g; 1 mmol) carried out in water–ethanol (5:1) at rt. The diphosphoric acid, H4P2O7, was obtained from Na4P2O7 by using an ion-exchange resin (Amberlite IR 120).
All H atoms attached to C, O and N atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C) for the aromatic ring and C—H = 0.97 Å and N—H = 0.89 Å respectively for CH2 and NH3 cation groups and O—H = 0.82 Å for diphosphoric anion with Uiso(H) = 1.5Ueq(C, O or N). The water H atoms were refined using restraints [O—H = 0.85 (1) A °, H···H = 1.44 (2) A ° and Uiso(H) = 1.5Ueq(O)].
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).Fig. 1. An ORTEP view of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. A hydrogen bond is represented as a dotted line [Symmetry codes: (i) -x, y, -z+1/2; (ii) -x+1/2, -y+1/2, -z+1]. | |
Fig. 2. A projection of (I) along the [110] direction. The H-atoms not involved in H-bonding are omitted. Hydrogen bonds are shown as dashed lines. |
(C8H14N2)[Co(H2P2O7)2(H2O)2]·2H2O | F(000) = 1276 |
Mr = 621.12 | Dx = 1.800 Mg m−3 |
Monoclinic, C2/c | Ag Kα radiation, λ = 0.56087 Å |
Hall symbol: -C 2yc | Cell parameters from 25 reflections |
a = 11.933 (2) Å | θ = 9–11° |
b = 9.132 (4) Å | µ = 0.58 mm−1 |
c = 21.441 (3) Å | T = 293 K |
β = 101.20 (2)° | Prism, pink |
V = 2291.8 (11) Å3 | 0.27 × 0.21 × 0.15 mm |
Z = 4 |
Enraf Nonius CAD4 diffractometer | Rint = 0.019 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.2° |
Graphite monochromator | h = −19→19 |
non–profiled ω scans | k = −2→15 |
7386 measured reflections | l = −2→35 |
5609 independent reflections | 2 standard reflections every 120 min |
4197 reflections with I > 2σ(I) | intensity decay: 2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0412P)2 + 1.174P] where P = (Fo2 + 2Fc2)/3 |
5609 reflections | (Δ/σ)max = 0.001 |
167 parameters | Δρmax = 0.87 e Å−3 |
6 restraints | Δρmin = −0.41 e Å−3 |
(C8H14N2)[Co(H2P2O7)2(H2O)2]·2H2O | V = 2291.8 (11) Å3 |
Mr = 621.12 | Z = 4 |
Monoclinic, C2/c | Ag Kα radiation, λ = 0.56087 Å |
a = 11.933 (2) Å | µ = 0.58 mm−1 |
b = 9.132 (4) Å | T = 293 K |
c = 21.441 (3) Å | 0.27 × 0.21 × 0.15 mm |
β = 101.20 (2)° |
Enraf Nonius CAD4 diffractometer | Rint = 0.019 |
7386 measured reflections | 2 standard reflections every 120 min |
5609 independent reflections | intensity decay: 2% |
4197 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.035 | 6 restraints |
wR(F2) = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.87 e Å−3 |
5609 reflections | Δρmin = −0.41 e Å−3 |
167 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.2500 | 0.2500 | 0.5000 | 0.01705 (6) | |
P1 | 0.02843 (3) | 0.22128 (4) | 0.571350 (18) | 0.01809 (7) | |
P2 | −0.02421 (3) | 0.29251 (4) | 0.435477 (17) | 0.01764 (7) | |
O1 | 0.14860 (8) | 0.19560 (13) | 0.56463 (5) | 0.0244 (2) | |
O2 | 0.01855 (10) | 0.34054 (12) | 0.62180 (6) | 0.0295 (2) | |
H2O2 | 0.0510 | 0.4153 | 0.6137 | 0.044* | |
O3 | −0.03555 (9) | 0.08962 (12) | 0.58755 (6) | 0.0272 (2) | |
O4 | −0.04173 (9) | 0.29279 (16) | 0.50765 (6) | 0.0343 (3) | |
O5 | 0.10009 (8) | 0.30371 (12) | 0.43469 (5) | 0.02264 (19) | |
O6 | −0.10026 (8) | 0.41352 (11) | 0.40494 (5) | 0.0240 (2) | |
O7 | −0.07639 (9) | 0.14643 (13) | 0.40722 (7) | 0.0373 (3) | |
H7 | −0.0275 | 0.0822 | 0.4135 | 0.056* | |
O1W | 0.25749 (9) | 0.47229 (13) | 0.52445 (7) | 0.0317 (3) | |
H1W1 | 0.2077 (14) | 0.501 (3) | 0.5446 (10) | 0.050* | |
H2W1 | 0.3230 (10) | 0.503 (3) | 0.5427 (10) | 0.050* | |
O2W | 0.31653 (13) | 0.3286 (2) | 0.17868 (8) | 0.0503 (4) | |
H1W2 | 0.3666 (14) | 0.365 (3) | 0.1596 (10) | 0.050* | |
H2W2 | 0.2488 (10) | 0.355 (3) | 0.1618 (10) | 0.050* | |
N1 | 0.20006 (11) | 0.51928 (16) | 0.36481 (7) | 0.0286 (3) | |
H1A | 0.1506 | 0.5933 | 0.3594 | 0.043* | |
H1B | 0.2686 | 0.5518 | 0.3836 | 0.043* | |
H1C | 0.1768 | 0.4511 | 0.3891 | 0.043* | |
C1 | 0.09999 (15) | 0.3728 (2) | 0.27477 (8) | 0.0336 (3) | |
C2 | 0.0986 (2) | 0.2211 (3) | 0.27536 (10) | 0.0499 (5) | |
H2 | 0.1644 | 0.1696 | 0.2929 | 0.060* | |
C3 | 0.0000 | 0.1464 (4) | 0.2500 | 0.0578 (9) | |
H3 | 0.0000 | 0.0446 | 0.2500 | 0.069* | |
C4 | 0.0000 | 0.4479 (3) | 0.2500 | 0.0305 (4) | |
H4 | 0.0000 | 0.5497 | 0.2500 | 0.037* | |
C5 | 0.20697 (16) | 0.4554 (3) | 0.30225 (10) | 0.0477 (5) | |
H5A | 0.2719 | 0.3896 | 0.3070 | 0.057* | |
H5B | 0.2186 | 0.5330 | 0.2733 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.01044 (9) | 0.01735 (11) | 0.02374 (12) | 0.00015 (8) | 0.00423 (8) | −0.00035 (9) |
P1 | 0.01487 (12) | 0.01621 (14) | 0.02461 (16) | 0.00092 (10) | 0.00736 (11) | 0.00057 (11) |
P2 | 0.01156 (12) | 0.01553 (14) | 0.02536 (16) | 0.00003 (10) | 0.00241 (11) | 0.00060 (12) |
O1 | 0.0148 (4) | 0.0313 (5) | 0.0283 (5) | 0.0045 (4) | 0.0073 (4) | 0.0064 (4) |
O2 | 0.0363 (6) | 0.0195 (5) | 0.0374 (6) | −0.0048 (4) | 0.0187 (5) | −0.0060 (4) |
O3 | 0.0217 (4) | 0.0178 (4) | 0.0446 (6) | −0.0032 (4) | 0.0129 (4) | −0.0008 (4) |
O4 | 0.0202 (4) | 0.0539 (8) | 0.0304 (6) | 0.0138 (5) | 0.0085 (4) | 0.0100 (5) |
O5 | 0.0124 (3) | 0.0297 (5) | 0.0256 (5) | −0.0013 (3) | 0.0032 (3) | 0.0023 (4) |
O6 | 0.0182 (4) | 0.0184 (4) | 0.0339 (5) | 0.0032 (3) | 0.0014 (4) | 0.0034 (4) |
O7 | 0.0193 (5) | 0.0182 (5) | 0.0697 (9) | −0.0006 (4) | −0.0025 (5) | −0.0103 (5) |
O1W | 0.0178 (4) | 0.0256 (5) | 0.0525 (7) | −0.0017 (4) | 0.0090 (5) | −0.0130 (5) |
O2W | 0.0372 (7) | 0.0640 (11) | 0.0506 (9) | −0.0005 (7) | 0.0106 (7) | 0.0063 (8) |
N1 | 0.0203 (5) | 0.0316 (7) | 0.0327 (7) | −0.0009 (5) | 0.0021 (5) | 0.0041 (5) |
C1 | 0.0308 (7) | 0.0460 (10) | 0.0233 (7) | 0.0031 (7) | 0.0037 (6) | −0.0020 (7) |
C2 | 0.0589 (13) | 0.0493 (12) | 0.0396 (10) | 0.0199 (10) | 0.0051 (9) | 0.0030 (9) |
C3 | 0.086 (3) | 0.0330 (14) | 0.0521 (19) | 0.000 | 0.0083 (18) | 0.000 |
C4 | 0.0304 (10) | 0.0333 (12) | 0.0271 (10) | 0.000 | 0.0041 (8) | 0.000 |
C5 | 0.0262 (8) | 0.0832 (17) | 0.0347 (9) | −0.0055 (9) | 0.0088 (7) | −0.0058 (10) |
Co1—O1i | 2.0695 (11) | O2W—H1W2 | 0.853 (9) |
Co1—O1 | 2.0695 (11) | O2W—H2W2 | 0.855 (9) |
Co1—O1Wi | 2.0940 (15) | N1—C5 | 1.480 (3) |
Co1—O1W | 2.0940 (14) | N1—H1A | 0.8900 |
Co1—O5 | 2.1044 (11) | N1—H1B | 0.8900 |
Co1—O5i | 2.1044 (11) | N1—H1C | 0.8900 |
P1—O1 | 1.4873 (10) | C1—C2 | 1.385 (3) |
P1—O3 | 1.5007 (12) | C1—C4 | 1.389 (2) |
P1—O2 | 1.5554 (12) | C1—C5 | 1.501 (3) |
P1—O4 | 1.5965 (12) | C2—C3 | 1.377 (3) |
P2—O5 | 1.4901 (10) | C2—H2 | 0.9300 |
P2—O6 | 1.4975 (11) | C3—C2ii | 1.377 (3) |
P2—O7 | 1.5452 (13) | C3—H3 | 0.9300 |
P2—O4 | 1.6012 (13) | C4—C1ii | 1.389 (2) |
O2—H2O2 | 0.8200 | C4—H4 | 0.9300 |
O7—H7 | 0.8200 | C5—H5A | 0.9700 |
O1W—H1W1 | 0.843 (9) | C5—H5B | 0.9700 |
O1W—H2W1 | 0.849 (9) | ||
O1i—Co1—O1 | 180.0 | P2—O5—Co1 | 134.09 (7) |
O1i—Co1—O1Wi | 93.85 (5) | P2—O7—H7 | 109.5 |
O1—Co1—O1Wi | 86.15 (5) | Co1—O1W—H1W1 | 115.7 (17) |
O1i—Co1—O1W | 86.15 (5) | Co1—O1W—H2W1 | 114.9 (17) |
O1—Co1—O1W | 93.85 (5) | H1W1—O1W—H2W1 | 109.9 (18) |
O1Wi—Co1—O1W | 180.00 (8) | H1W2—O2W—H2W2 | 112.3 (18) |
O1i—Co1—O5 | 91.75 (4) | C5—N1—H1A | 109.5 |
O1—Co1—O5 | 88.25 (4) | C5—N1—H1B | 109.5 |
O1Wi—Co1—O5 | 94.01 (5) | H1A—N1—H1B | 109.5 |
O1W—Co1—O5 | 85.99 (5) | C5—N1—H1C | 109.5 |
O1i—Co1—O5i | 88.25 (4) | H1A—N1—H1C | 109.5 |
O1—Co1—O5i | 91.75 (4) | H1B—N1—H1C | 109.5 |
O1Wi—Co1—O5i | 85.99 (5) | C2—C1—C4 | 119.07 (19) |
O1W—Co1—O5i | 94.01 (5) | C2—C1—C5 | 120.64 (19) |
O5—Co1—O5i | 180.00 (5) | C4—C1—C5 | 120.3 (2) |
O1—P1—O3 | 116.07 (7) | C3—C2—C1 | 120.2 (2) |
O1—P1—O2 | 112.49 (7) | C3—C2—H2 | 119.9 |
O3—P1—O2 | 106.82 (7) | C1—C2—H2 | 119.9 |
O1—P1—O4 | 109.69 (6) | C2ii—C3—C2 | 120.6 (3) |
O3—P1—O4 | 108.66 (7) | C2ii—C3—H3 | 119.7 |
O2—P1—O4 | 102.15 (7) | C2—C3—H3 | 119.7 |
O5—P2—O6 | 117.67 (6) | C1ii—C4—C1 | 120.8 (2) |
O5—P2—O7 | 112.39 (7) | C1ii—C4—H4 | 119.6 |
O6—P2—O7 | 107.56 (7) | C1—C4—H4 | 119.6 |
O5—P2—O4 | 109.15 (7) | N1—C5—C1 | 111.18 (15) |
O6—P2—O4 | 103.86 (7) | N1—C5—H5A | 109.4 |
O7—P2—O4 | 105.19 (8) | C1—C5—H5A | 109.4 |
P1—O1—Co1 | 136.65 (7) | N1—C5—H5B | 109.4 |
P1—O2—H2O2 | 109.5 | C1—C5—H5B | 109.4 |
P1—O4—P2 | 132.91 (7) | H5A—C5—H5B | 108.0 |
O3—P1—O1—Co1 | 132.63 (10) | O7—P2—O5—Co1 | −91.76 (11) |
O2—P1—O1—Co1 | −103.92 (11) | O4—P2—O5—Co1 | 24.54 (12) |
O4—P1—O1—Co1 | 9.04 (13) | O1i—Co1—O5—P2 | 175.43 (10) |
O1i—Co1—O1—P1 | 112.8 (17) | O1—Co1—O5—P2 | −4.57 (10) |
O1Wi—Co1—O1—P1 | −109.69 (11) | O1Wi—Co1—O5—P2 | 81.45 (10) |
O1W—Co1—O1—P1 | 70.31 (11) | O1W—Co1—O5—P2 | −98.55 (10) |
O5—Co1—O1—P1 | −15.56 (11) | O5i—Co1—O5—P2 | −39 (100) |
O5i—Co1—O1—P1 | 164.44 (11) | C4—C1—C2—C3 | 1.9 (3) |
O1—P1—O4—P2 | 23.46 (15) | C5—C1—C2—C3 | −179.98 (16) |
O3—P1—O4—P2 | −104.38 (13) | C1—C2—C3—C2ii | −0.95 (14) |
O2—P1—O4—P2 | 142.97 (12) | C2—C1—C4—C1ii | −0.93 (14) |
O5—P2—O4—P1 | −38.26 (15) | C5—C1—C4—C1ii | −179.09 (18) |
O6—P2—O4—P1 | −164.55 (12) | C2—C1—C5—N1 | −104.4 (2) |
O7—P2—O4—P1 | 82.55 (13) | C4—C1—C5—N1 | 73.8 (2) |
O6—P2—O5—Co1 | 142.47 (8) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2O2···O6iii | 0.82 | 1.74 | 2.5574 (18) | 172 |
O7—H7···O3iv | 0.82 | 1.74 | 2.5268 (18) | 160 |
O1W—H1W1···O6iii | 0.84 (1) | 1.99 (1) | 2.8289 (17) | 174 (2) |
O1W—H2W1···O3v | 0.85 (1) | 1.94 (1) | 2.7891 (17) | 174 (2) |
O2W—H1W2···O3vi | 0.85 (1) | 2.15 (1) | 2.972 (2) | 162 (2) |
O2W—H2W2···O6ii | 0.86 (1) | 2.12 (1) | 2.946 (2) | 163 (2) |
N1—H1A···O2iii | 0.89 | 2.22 | 2.9694 (18) | 142 |
N1—H1A···O2Wvii | 0.89 | 2.36 | 2.969 (3) | 126 |
N1—H1B···O7v | 0.89 | 2.01 | 2.8893 (18) | 167 |
N1—H1C···O5 | 0.89 | 1.99 | 2.8701 (19) | 171 |
Symmetry codes: (ii) −x, y, −z+1/2; (iii) −x, −y+1, −z+1; (iv) −x, −y, −z+1; (v) x+1/2, y+1/2, z; (vi) x+1/2, −y+1/2, z−1/2; (vii) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2O2···O6i | 0.82 | 1.74 | 2.5574 (18) | 171.5 |
O7—H7···O3ii | 0.82 | 1.74 | 2.5268 (18) | 159.6 |
O1W—H1W1···O6i | 0.843 (9) | 1.988 (10) | 2.8289 (17) | 174 (2) |
O1W—H2W1···O3iii | 0.849 (9) | 1.944 (10) | 2.7891 (17) | 174 (2) |
O2W—H1W2···O3iv | 0.853 (9) | 2.151 (12) | 2.972 (2) | 162 (2) |
O2W—H2W2···O6v | 0.855 (9) | 2.118 (12) | 2.946 (2) | 163 (2) |
N1—H1A···O2i | 0.89 | 2.22 | 2.9694 (18) | 141.9 |
N1—H1A···O2Wvi | 0.89 | 2.36 | 2.969 (3) | 125.9 |
N1—H1B···O7iii | 0.89 | 2.01 | 2.8893 (18) | 167.3 |
N1—H1C···O5 | 0.89 | 1.99 | 2.8701 (19) | 170.8 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) x+1/2, y+1/2, z; (iv) x+1/2, −y+1/2, z−1/2; (v) −x, y, −z+1/2; (vi) −x+1/2, y+1/2, −z+1/2. |
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. Engl. 38, 3268–3292. CrossRef PubMed CAS Google Scholar
Clearfield, A. (1998). Chem. Mater. 10, 2801–2810. Web of Science CrossRef CAS Google Scholar
Dridi, N., Boukhari, A., Réau, J. M., Arbib, E. & Holt, E. M. (2000). Solid State Ionics, 127, 141–149. Web of Science CrossRef CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Erragh, F., Boukhari, A., Sadel, A. & Holt, E. M. (1998). Acta Cryst. C54, 1373–1376. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gharbi, A. & Jouini, A. (2004). J. Chem. Crystallogr. 34, 11–13. Web of Science CSD CrossRef Google Scholar
Gharbi, A., Jouini, A., Averbuch-Pouchot, M. T. & Durif, A. (1994). J. Solid State Chem. 111, 330–337. CSD CrossRef CAS Web of Science Google Scholar
Handizi, A., Boukhari, A., Holt, E. M., Aride, J., Belaiche, M. & Drillon, M. (1994). Eur. J. Solid State Inorg. Chem. 31, 123–135. CAS Google Scholar
Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Google Scholar
Nelson, J. H., Narducci Sarjeant, A. & Norquist, A. J. (2007). Acta Cryst. E63, m1442–m1444. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Selmi, A., Akriche, S. & Rzaigui, M. (2006a). Anal. Sci. 22, x135–x136. CAS Google Scholar
Selmi, A., Akriche, S. & Rzaigui, M. (2006b). Acta Cryst. E62, m1796–m1798. Web of Science CSD CrossRef IUCr Journals Google Scholar
Selmi, A., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m1487. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Among a variety of organic inorganic hybrid materials, diphosphate compounds containing transition metals showed promising properties in diverse areas such as catalysis (Erragh et al., 1998), magnetism (Handizi et al., 1994), conductivity (Dridi et al., 2000), ion-exchange or second-order non-linear optics (Cheetham et al., 1999; Clearfield, 1998). Here, we report a new diphosphate of mixed organic-metal cations: (C8H14N2)[Co(H2P2O7)2(H2O)2]·2(H2O) (I). The asymmetric unit of (I) is made up of a half of mononuclear [Co(H2P2O7)2(H2O)2]2- moiety, a half of organic cation and one water of crystallization. As the CoII ion and C3 and C4 atoms are located respectively on inversion center and twofold rotation axis, the complete formula unit is generated by these crystallographic elements of symmetry (Fig. 1).
Each CoII ion is coordinated by four oxygen atoms from two chelating diphosphate ligands and two oxygen atoms from two coordinated (O1W) water molecules to form a slightly distorted CoO6 octahedron. The valence bond calculation (Brown & Altermatt, 1985) based on these six oxygen distances gives an effective bond valence of 2.0185 consistent with the cationic charge of +2. The bond lengths and angles around the CoII ion 2.0695 (11)—2.1044 (11) Å (Co—O) and 85.99 (5)—180.00 (8)° (O—Co—O) are close to those reported for Co metals in (C9H11NH3)2[Co(H2P2O7)2(H2O)2] (Selmi et al., 2006a), (C8H12N)2[Co(H2P2O7)2(H2O)2] (Selmi et al., 2006b) and (C7H10N)2[Co(H2P2O7)2(H2O)2] (Selmi et al., 2009) in related structures. The discrete CoO6 entities are isolated in the structure with Co···Co separations of over 7 Å. In addition, the chelating P2O7 group has a quasi-eclipsed conformation with O—P—P—O torsion angles averaging 18.8 ° and bridges the Co atom through O1—P1 and O5—P2 linkages thus producing a bent P2O7 group, with a P1—O4—P2 angle of 132.91 (7)° as observed in other MII–organic diphosphate frameworks (Selmi et al., 2006a, 2006b and 2009; Gharbi et al., 2004,1994). With regards to the geometrical features of organic cations, the main bond lenghts are comparable to those observed in the p-xylylenediaminium cations in {[C8H14N2]3[Mo9O30]·2H2O}n (Nelson et al., 2007).
As shown in Fig.2 and reported in Table 1, the [Co(H2P2O7)2(H2O)2]2- clusters are interconnected via O—H···O hydrogen bonding interactions involving the hydroxyl groups of [H2P2O7]2- and OW1 water molecules into anionic layers along c-axis at z = 0 and 1/2. The remaining uncoordinated O2W water molecules further link these layers so as to contribute to their cohesion with O···O separations ranging from 2.946 (2)to 2.972 (2) Å (Table 1). The so-obtained two-dimensional-subnetworks stack together by means NH3 groups of the diprotonated m-xylylenediaminium cations via moderate N—H···O hydrogen bonds (mean N···O = 2.924 Å, Table 1) and electrostatic interactions so as to build a three-dimensional supramolecular network.