metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages m545-m546

m-Xylylenediaminium di­aqua­bis­­[di­hydrogen diphosphato(2−)]cobaltate(II) dihydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: mohamedrzaigui@yahoo.fr

(Received 6 September 2013; accepted 12 September 2013; online 18 September 2013)

In the title complex, (C8H14N2)[Co(H2P2O7)2(H2O)2]·2H2O, the CoII ion lies on an inversion center and is coordinated by two bidentate diphosphate ligands and two water mol­ecules in a slightly distorted octa­hedral coordination geometry. The m-xylylenediaminium cation is located on a twofold rotation axis. In the crystal, a three-dimensional supra­molecular assembly is constructed by O—H⋯O and N—H⋯O hydrogen bonds between the organic cations, complex anions and uncoordin­ated water mol­ecules.

Related literature

For applications of diphosphate compounds containing trans­ition metals, see: Erragh et al. (1998[Erragh, F., Boukhari, A., Sadel, A. & Holt, E. M. (1998). Acta Cryst. C54, 1373-1376.]); Handizi et al. (1994[Handizi, A., Boukhari, A., Holt, E. M., Aride, J., Belaiche, M. & Drillon, M. (1994). Eur. J. Solid State Inorg. Chem. 31, 123-135.]); Dridi et al. (2000[Dridi, N., Boukhari, A., Réau, J. M., Arbib, E. & Holt, E. M. (2000). Solid State Ionics, 127, 141-149.]); Cheetham et al. (1999[Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. Engl. 38, 3268-3292.]); Clearfield (1998[Clearfield, A. (1998). Chem. Mater. 10, 2801-2810.]). For bond-valence-sum calculations, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]). For geometrical features in related structures, see: Selmi et al. (2006a[Selmi, A., Akriche, S. & Rzaigui, M. (2006a). Anal. Sci. 22, x135-x136.],b[Selmi, A., Akriche, S. & Rzaigui, M. (2006b). Acta Cryst. E62, m1796-m1798.], 2009[Selmi, A., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m1487.]); Gharbi et al. (1994[Gharbi, A., Jouini, A., Averbuch-Pouchot, M. T. & Durif, A. (1994). J. Solid State Chem. 111, 330-337.]); Gharbi & Jouini (2004[Gharbi, A. & Jouini, A. (2004). J. Chem. Crystallogr. 34, 11-13.]); Nelson et al. (2007[Nelson, J. H., Narducci Sarjeant, A. & Norquist, A. J. (2007). Acta Cryst. E63, m1442-m1444.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H14N2)[Co(H2P2O7)2(H2O)2]·2H2O

  • Mr = 621.12

  • Monoclinic, C 2/c

  • a = 11.933 (2) Å

  • b = 9.132 (4) Å

  • c = 21.441 (3) Å

  • β = 101.20 (2)°

  • V = 2291.8 (11) Å3

  • Z = 4

  • Ag Kα radiation

  • λ = 0.56087 Å

  • μ = 0.58 mm−1

  • T = 293 K

  • 0.27 × 0.21 × 0.15 mm

Data collection
  • Enraf Nonius CAD4 diffractometer

  • 7386 measured reflections

  • 5609 independent reflections

  • 4197 reflections with I > 2σ(I)

  • Rint = 0.019

  • 2 standard reflections every 120 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.06

  • 5609 reflections

  • 167 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O2⋯O6i 0.82 1.74 2.5574 (18) 172
O7—H7⋯O3ii 0.82 1.74 2.5268 (18) 160
O1W—H1W1⋯O6i 0.84 (1) 1.99 (1) 2.8289 (17) 174 (2)
O1W—H2W1⋯O3iii 0.85 (1) 1.94 (1) 2.7891 (17) 174 (2)
O2W—H1W2⋯O3iv 0.85 (1) 2.15 (1) 2.972 (2) 162 (2)
O2W—H2W2⋯O6v 0.86 (1) 2.12 (1) 2.946 (2) 163 (2)
N1—H1A⋯O2i 0.89 2.22 2.9694 (18) 142
N1—H1A⋯O2Wvi 0.89 2.36 2.969 (3) 126
N1—H1B⋯O7iii 0.89 2.01 2.8893 (18) 167
N1—H1C⋯O5 0.89 1.99 2.8701 (19) 171
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x, y, -z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Among a variety of organic inorganic hybrid materials, diphosphate compounds containing transition metals showed promising properties in diverse areas such as catalysis (Erragh et al., 1998), magnetism (Handizi et al., 1994), conductivity (Dridi et al., 2000), ion-exchange or second-order non-linear optics (Cheetham et al., 1999; Clearfield, 1998). Here, we report a new diphosphate of mixed organic-metal cations: (C8H14N2)[Co(H2P2O7)2(H2O)2]·2(H2O) (I). The asymmetric unit of (I) is made up of a half of mononuclear [Co(H2P2O7)2(H2O)2]2- moiety, a half of organic cation and one water of crystallization. As the CoII ion and C3 and C4 atoms are located respectively on inversion center and twofold rotation axis, the complete formula unit is generated by these crystallographic elements of symmetry (Fig. 1).

Each CoII ion is coordinated by four oxygen atoms from two chelating diphosphate ligands and two oxygen atoms from two coordinated (O1W) water molecules to form a slightly distorted CoO6 octahedron. The valence bond calculation (Brown & Altermatt, 1985) based on these six oxygen distances gives an effective bond valence of 2.0185 consistent with the cationic charge of +2. The bond lengths and angles around the CoII ion 2.0695 (11)—2.1044 (11) Å (Co—O) and 85.99 (5)—180.00 (8)° (O—Co—O) are close to those reported for Co metals in (C9H11NH3)2[Co(H2P2O7)2(H2O)2] (Selmi et al., 2006a), (C8H12N)2[Co(H2P2O7)2(H2O)2] (Selmi et al., 2006b) and (C7H10N)2[Co(H2P2O7)2(H2O)2] (Selmi et al., 2009) in related structures. The discrete CoO6 entities are isolated in the structure with Co···Co separations of over 7 Å. In addition, the chelating P2O7 group has a quasi-eclipsed conformation with O—P—P—O torsion angles averaging 18.8 ° and bridges the Co atom through O1—P1 and O5—P2 linkages thus producing a bent P2O7 group, with a P1—O4—P2 angle of 132.91 (7)° as observed in other MII–organic diphosphate frameworks (Selmi et al., 2006a, 2006b and 2009; Gharbi et al., 2004,1994). With regards to the geometrical features of organic cations, the main bond lenghts are comparable to those observed in the p-xylylenediaminium cations in {[C8H14N2]3[Mo9O30]·2H2O}n (Nelson et al., 2007).

As shown in Fig.2 and reported in Table 1, the [Co(H2P2O7)2(H2O)2]2- clusters are interconnected via O—H···O hydrogen bonding interactions involving the hydroxyl groups of [H2P2O7]2- and OW1 water molecules into anionic layers along c-axis at z = 0 and 1/2. The remaining uncoordinated O2W water molecules further link these layers so as to contribute to their cohesion with O···O separations ranging from 2.946 (2)to 2.972 (2) Å (Table 1). The so-obtained two-dimensional-subnetworks stack together by means NH3 groups of the diprotonated m-xylylenediaminium cations via moderate N—H···O hydrogen bonds (mean N···O = 2.924 Å, Table 1) and electrostatic interactions so as to build a three-dimensional supramolecular network.

Related literature top

For applications of diphosphate compounds containing transition metals, see: Erragh et al. (1998); Handizi et al. (1994); Dridi et al. (2000); Cheetham et al. (1999); Clearfield (1998). For bond-valence-sum calculations, see: Brown & Altermatt (1985). For geometrical features in related structures, see: Selmi et al. (2006a,b, 2009); Gharbi et al. (1994); Gharbi & Jouini (2004); Nelson et al. (2007).

Experimental top

Pink prismatic shaped crystals of the title compound were synthesized by the reaction of diphosphoric acid H4P2O7 (2 mmol), CoCl2·6H2O (0.24 g; 1 mmol)and m-xylylenediamine (0.14 g; 1 mmol) carried out in water–ethanol (5:1) at rt. The diphosphoric acid, H4P2O7, was obtained from Na4P2O7 by using an ion-exchange resin (Amberlite IR 120).

Refinement top

All H atoms attached to C, O and N atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C) for the aromatic ring and C—H = 0.97 Å and N—H = 0.89 Å respectively for CH2 and NH3 cation groups and O—H = 0.82 Å for diphosphoric anion with Uiso(H) = 1.5Ueq(C, O or N). The water H atoms were refined using restraints [O—H = 0.85 (1) A °, H···H = 1.44 (2) A ° and Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. A hydrogen bond is represented as a dotted line [Symmetry codes: (i) -x, y, -z+1/2; (ii) -x+1/2, -y+1/2, -z+1].
[Figure 2] Fig. 2. A projection of (I) along the [110] direction. The H-atoms not involved in H-bonding are omitted. Hydrogen bonds are shown as dashed lines.
m-Xylylenediaminium diaquabis[dihydrogen diphosphato(2-)]cobaltate(II) dihydrate top
Crystal data top
(C8H14N2)[Co(H2P2O7)2(H2O)2]·2H2OF(000) = 1276
Mr = 621.12Dx = 1.800 Mg m3
Monoclinic, C2/cAg Kα radiation, λ = 0.56087 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 11.933 (2) Åθ = 9–11°
b = 9.132 (4) ŵ = 0.58 mm1
c = 21.441 (3) ÅT = 293 K
β = 101.20 (2)°Prism, pink
V = 2291.8 (11) Å30.27 × 0.21 × 0.15 mm
Z = 4
Data collection top
Enraf Nonius CAD4
diffractometer
Rint = 0.019
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.2°
Graphite monochromatorh = 1919
non–profiled ω scansk = 215
7386 measured reflectionsl = 235
5609 independent reflections2 standard reflections every 120 min
4197 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0412P)2 + 1.174P]
where P = (Fo2 + 2Fc2)/3
5609 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.87 e Å3
6 restraintsΔρmin = 0.41 e Å3
Crystal data top
(C8H14N2)[Co(H2P2O7)2(H2O)2]·2H2OV = 2291.8 (11) Å3
Mr = 621.12Z = 4
Monoclinic, C2/cAg Kα radiation, λ = 0.56087 Å
a = 11.933 (2) ŵ = 0.58 mm1
b = 9.132 (4) ÅT = 293 K
c = 21.441 (3) Å0.27 × 0.21 × 0.15 mm
β = 101.20 (2)°
Data collection top
Enraf Nonius CAD4
diffractometer
Rint = 0.019
7386 measured reflections2 standard reflections every 120 min
5609 independent reflections intensity decay: 2%
4197 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0356 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.87 e Å3
5609 reflectionsΔρmin = 0.41 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.25000.25000.50000.01705 (6)
P10.02843 (3)0.22128 (4)0.571350 (18)0.01809 (7)
P20.02421 (3)0.29251 (4)0.435477 (17)0.01764 (7)
O10.14860 (8)0.19560 (13)0.56463 (5)0.0244 (2)
O20.01855 (10)0.34054 (12)0.62180 (6)0.0295 (2)
H2O20.05100.41530.61370.044*
O30.03555 (9)0.08962 (12)0.58755 (6)0.0272 (2)
O40.04173 (9)0.29279 (16)0.50765 (6)0.0343 (3)
O50.10009 (8)0.30371 (12)0.43469 (5)0.02264 (19)
O60.10026 (8)0.41352 (11)0.40494 (5)0.0240 (2)
O70.07639 (9)0.14643 (13)0.40722 (7)0.0373 (3)
H70.02750.08220.41350.056*
O1W0.25749 (9)0.47229 (13)0.52445 (7)0.0317 (3)
H1W10.2077 (14)0.501 (3)0.5446 (10)0.050*
H2W10.3230 (10)0.503 (3)0.5427 (10)0.050*
O2W0.31653 (13)0.3286 (2)0.17868 (8)0.0503 (4)
H1W20.3666 (14)0.365 (3)0.1596 (10)0.050*
H2W20.2488 (10)0.355 (3)0.1618 (10)0.050*
N10.20006 (11)0.51928 (16)0.36481 (7)0.0286 (3)
H1A0.15060.59330.35940.043*
H1B0.26860.55180.38360.043*
H1C0.17680.45110.38910.043*
C10.09999 (15)0.3728 (2)0.27477 (8)0.0336 (3)
C20.0986 (2)0.2211 (3)0.27536 (10)0.0499 (5)
H20.16440.16960.29290.060*
C30.00000.1464 (4)0.25000.0578 (9)
H30.00000.04460.25000.069*
C40.00000.4479 (3)0.25000.0305 (4)
H40.00000.54970.25000.037*
C50.20697 (16)0.4554 (3)0.30225 (10)0.0477 (5)
H5A0.27190.38960.30700.057*
H5B0.21860.53300.27330.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01044 (9)0.01735 (11)0.02374 (12)0.00015 (8)0.00423 (8)0.00035 (9)
P10.01487 (12)0.01621 (14)0.02461 (16)0.00092 (10)0.00736 (11)0.00057 (11)
P20.01156 (12)0.01553 (14)0.02536 (16)0.00003 (10)0.00241 (11)0.00060 (12)
O10.0148 (4)0.0313 (5)0.0283 (5)0.0045 (4)0.0073 (4)0.0064 (4)
O20.0363 (6)0.0195 (5)0.0374 (6)0.0048 (4)0.0187 (5)0.0060 (4)
O30.0217 (4)0.0178 (4)0.0446 (6)0.0032 (4)0.0129 (4)0.0008 (4)
O40.0202 (4)0.0539 (8)0.0304 (6)0.0138 (5)0.0085 (4)0.0100 (5)
O50.0124 (3)0.0297 (5)0.0256 (5)0.0013 (3)0.0032 (3)0.0023 (4)
O60.0182 (4)0.0184 (4)0.0339 (5)0.0032 (3)0.0014 (4)0.0034 (4)
O70.0193 (5)0.0182 (5)0.0697 (9)0.0006 (4)0.0025 (5)0.0103 (5)
O1W0.0178 (4)0.0256 (5)0.0525 (7)0.0017 (4)0.0090 (5)0.0130 (5)
O2W0.0372 (7)0.0640 (11)0.0506 (9)0.0005 (7)0.0106 (7)0.0063 (8)
N10.0203 (5)0.0316 (7)0.0327 (7)0.0009 (5)0.0021 (5)0.0041 (5)
C10.0308 (7)0.0460 (10)0.0233 (7)0.0031 (7)0.0037 (6)0.0020 (7)
C20.0589 (13)0.0493 (12)0.0396 (10)0.0199 (10)0.0051 (9)0.0030 (9)
C30.086 (3)0.0330 (14)0.0521 (19)0.0000.0083 (18)0.000
C40.0304 (10)0.0333 (12)0.0271 (10)0.0000.0041 (8)0.000
C50.0262 (8)0.0832 (17)0.0347 (9)0.0055 (9)0.0088 (7)0.0058 (10)
Geometric parameters (Å, º) top
Co1—O1i2.0695 (11)O2W—H1W20.853 (9)
Co1—O12.0695 (11)O2W—H2W20.855 (9)
Co1—O1Wi2.0940 (15)N1—C51.480 (3)
Co1—O1W2.0940 (14)N1—H1A0.8900
Co1—O52.1044 (11)N1—H1B0.8900
Co1—O5i2.1044 (11)N1—H1C0.8900
P1—O11.4873 (10)C1—C21.385 (3)
P1—O31.5007 (12)C1—C41.389 (2)
P1—O21.5554 (12)C1—C51.501 (3)
P1—O41.5965 (12)C2—C31.377 (3)
P2—O51.4901 (10)C2—H20.9300
P2—O61.4975 (11)C3—C2ii1.377 (3)
P2—O71.5452 (13)C3—H30.9300
P2—O41.6012 (13)C4—C1ii1.389 (2)
O2—H2O20.8200C4—H40.9300
O7—H70.8200C5—H5A0.9700
O1W—H1W10.843 (9)C5—H5B0.9700
O1W—H2W10.849 (9)
O1i—Co1—O1180.0P2—O5—Co1134.09 (7)
O1i—Co1—O1Wi93.85 (5)P2—O7—H7109.5
O1—Co1—O1Wi86.15 (5)Co1—O1W—H1W1115.7 (17)
O1i—Co1—O1W86.15 (5)Co1—O1W—H2W1114.9 (17)
O1—Co1—O1W93.85 (5)H1W1—O1W—H2W1109.9 (18)
O1Wi—Co1—O1W180.00 (8)H1W2—O2W—H2W2112.3 (18)
O1i—Co1—O591.75 (4)C5—N1—H1A109.5
O1—Co1—O588.25 (4)C5—N1—H1B109.5
O1Wi—Co1—O594.01 (5)H1A—N1—H1B109.5
O1W—Co1—O585.99 (5)C5—N1—H1C109.5
O1i—Co1—O5i88.25 (4)H1A—N1—H1C109.5
O1—Co1—O5i91.75 (4)H1B—N1—H1C109.5
O1Wi—Co1—O5i85.99 (5)C2—C1—C4119.07 (19)
O1W—Co1—O5i94.01 (5)C2—C1—C5120.64 (19)
O5—Co1—O5i180.00 (5)C4—C1—C5120.3 (2)
O1—P1—O3116.07 (7)C3—C2—C1120.2 (2)
O1—P1—O2112.49 (7)C3—C2—H2119.9
O3—P1—O2106.82 (7)C1—C2—H2119.9
O1—P1—O4109.69 (6)C2ii—C3—C2120.6 (3)
O3—P1—O4108.66 (7)C2ii—C3—H3119.7
O2—P1—O4102.15 (7)C2—C3—H3119.7
O5—P2—O6117.67 (6)C1ii—C4—C1120.8 (2)
O5—P2—O7112.39 (7)C1ii—C4—H4119.6
O6—P2—O7107.56 (7)C1—C4—H4119.6
O5—P2—O4109.15 (7)N1—C5—C1111.18 (15)
O6—P2—O4103.86 (7)N1—C5—H5A109.4
O7—P2—O4105.19 (8)C1—C5—H5A109.4
P1—O1—Co1136.65 (7)N1—C5—H5B109.4
P1—O2—H2O2109.5C1—C5—H5B109.4
P1—O4—P2132.91 (7)H5A—C5—H5B108.0
O3—P1—O1—Co1132.63 (10)O7—P2—O5—Co191.76 (11)
O2—P1—O1—Co1103.92 (11)O4—P2—O5—Co124.54 (12)
O4—P1—O1—Co19.04 (13)O1i—Co1—O5—P2175.43 (10)
O1i—Co1—O1—P1112.8 (17)O1—Co1—O5—P24.57 (10)
O1Wi—Co1—O1—P1109.69 (11)O1Wi—Co1—O5—P281.45 (10)
O1W—Co1—O1—P170.31 (11)O1W—Co1—O5—P298.55 (10)
O5—Co1—O1—P115.56 (11)O5i—Co1—O5—P239 (100)
O5i—Co1—O1—P1164.44 (11)C4—C1—C2—C31.9 (3)
O1—P1—O4—P223.46 (15)C5—C1—C2—C3179.98 (16)
O3—P1—O4—P2104.38 (13)C1—C2—C3—C2ii0.95 (14)
O2—P1—O4—P2142.97 (12)C2—C1—C4—C1ii0.93 (14)
O5—P2—O4—P138.26 (15)C5—C1—C4—C1ii179.09 (18)
O6—P2—O4—P1164.55 (12)C2—C1—C5—N1104.4 (2)
O7—P2—O4—P182.55 (13)C4—C1—C5—N173.8 (2)
O6—P2—O5—Co1142.47 (8)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O2···O6iii0.821.742.5574 (18)172
O7—H7···O3iv0.821.742.5268 (18)160
O1W—H1W1···O6iii0.84 (1)1.99 (1)2.8289 (17)174 (2)
O1W—H2W1···O3v0.85 (1)1.94 (1)2.7891 (17)174 (2)
O2W—H1W2···O3vi0.85 (1)2.15 (1)2.972 (2)162 (2)
O2W—H2W2···O6ii0.86 (1)2.12 (1)2.946 (2)163 (2)
N1—H1A···O2iii0.892.222.9694 (18)142
N1—H1A···O2Wvii0.892.362.969 (3)126
N1—H1B···O7v0.892.012.8893 (18)167
N1—H1C···O50.891.992.8701 (19)171
Symmetry codes: (ii) x, y, z+1/2; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x+1/2, y+1/2, z; (vi) x+1/2, y+1/2, z1/2; (vii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O2···O6i0.821.742.5574 (18)171.5
O7—H7···O3ii0.821.742.5268 (18)159.6
O1W—H1W1···O6i0.843 (9)1.988 (10)2.8289 (17)174 (2)
O1W—H2W1···O3iii0.849 (9)1.944 (10)2.7891 (17)174 (2)
O2W—H1W2···O3iv0.853 (9)2.151 (12)2.972 (2)162 (2)
O2W—H2W2···O6v0.855 (9)2.118 (12)2.946 (2)163 (2)
N1—H1A···O2i0.892.222.9694 (18)141.9
N1—H1A···O2Wvi0.892.362.969 (3)125.9
N1—H1B···O7iii0.892.012.8893 (18)167.3
N1—H1C···O50.891.992.8701 (19)170.8
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z1/2; (v) x, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2.
 

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. Engl. 38, 3268–3292.  CrossRef PubMed CAS Google Scholar
First citationClearfield, A. (1998). Chem. Mater. 10, 2801–2810.  Web of Science CrossRef CAS Google Scholar
First citationDridi, N., Boukhari, A., Réau, J. M., Arbib, E. & Holt, E. M. (2000). Solid State Ionics, 127, 141–149.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationErragh, F., Boukhari, A., Sadel, A. & Holt, E. M. (1998). Acta Cryst. C54, 1373–1376.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGharbi, A. & Jouini, A. (2004). J. Chem. Crystallogr. 34, 11–13.  Web of Science CSD CrossRef Google Scholar
First citationGharbi, A., Jouini, A., Averbuch-Pouchot, M. T. & Durif, A. (1994). J. Solid State Chem. 111, 330–337.  CSD CrossRef CAS Web of Science Google Scholar
First citationHandizi, A., Boukhari, A., Holt, E. M., Aride, J., Belaiche, M. & Drillon, M. (1994). Eur. J. Solid State Inorg. Chem. 31, 123–135.  CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNelson, J. H., Narducci Sarjeant, A. & Norquist, A. J. (2007). Acta Cryst. E63, m1442–m1444.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSelmi, A., Akriche, S. & Rzaigui, M. (2006a). Anal. Sci. 22, x135–x136.  CAS Google Scholar
First citationSelmi, A., Akriche, S. & Rzaigui, M. (2006b). Acta Cryst. E62, m1796–m1798.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSelmi, A., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages m545-m546
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds