metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,10-phenanthroline-κ2N,N′)(sulfato-κO)zinc(II) propane-1,2-diol monosolvate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing, 210048, People's Republic of China
*Correspondence e-mail: zklong76@163.com

(Received 6 September 2013; accepted 21 September 2013; online 28 September 2013)

In the title compound, [Zn(SO4)(C12H8N2)2]·C3H8O2, the ZnII ion is in a distorted square-pyramidal coordination environment composed of four N atoms from two chelating 1,10-phenanthroline ligands and one O atom from a monodentate sulfate ligand. The ZnII ion lies on a twofold rotation axis. The sulfate ligand and propane-1,2-diol mol­ecules are disordered across the twofold rotation axis. The dihedral angle between the two chelating N2C2 groups is 83.26 (13)°. In the crystal, the complex mol­ecule and the propane-1,2-diol mol­ecule are connected through a pair of O—H⋯O hydrogen bonds.

Related literature

For the ethane-1,2-diol solvate of the title complex, see: Zhu et al. (2006[Zhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006). Acta Cryst. E62, m2725-m2726.]) and for the propane-1,3-diol solvate of the title complex, see: Cui et al. (2010[Cui, J.-D., Zhong, K.-L. & Liu, Y.-Y. (2010). Acta Cryst. E66, m564.]). For related structures and background references, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Chem. Commun. pp. 1067-1068.]); Zhang et al. (2010[Zhang, L.-P., Ma, J.-F., Yang, J., Pang, Y.-Y. & Ma, J.-C. (2010). Inorg. Chem. 49, 1535-1550.]); Zhong (2010[Zhong, K.-L. (2010). Acta Cryst. E66, m131.]); Zhong et al. (2011[Zhong, K.-L., Chen, L. & Chen, L. (2011). Acta Cryst. C67, m62-m64.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(SO4)(C12H8N2)2]·C3H8O2

  • Mr = 597.93

  • Monoclinic, C 2/c

  • a = 17.3913 (10) Å

  • b = 12.9247 (7) Å

  • c = 13.2214 (7) Å

  • β = 123.248 (5)°

  • V = 2485.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 223 K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.968, Tmax = 1.000

  • 5735 measured reflections

  • 2191 independent reflections

  • 1878 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.102

  • S = 1.06

  • 2191 reflections

  • 186 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O3 0.83 2.00 2.74 (3) 149
O6—H6⋯O4 0.83 2.11 2.89 (2) 155

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of metal-organic complexes or polymeric coordination networks is a rapidly developing field in coordination and supramolecular chemistry during the past decades (Batten & Robson, 1998; Zhang et al., 2010; Zhong et al., 2011). In our inverstigation, we have focused on the synthesis of complexes with N containing bidentate ligands, such as 1,10-phenanthroline (phen), 4,4'-bipyridine and 2,2'-bipyridine as auxiliary ligands, meanwhile retaining some of the solvent molcecules capable of hydrogen bonding to form higher dimensional supramolecular network. In the past few years, we have synthesized and reported Zn-complexes with bidentate-chelating sulfate ions, in which uncoordinated O atoms of the sulfate ligand and dihydric alcohol solvent molecules formed classical O—H···O hydrogen bonds vis a solvothermal reaction, e.g. [ZnSO4(phen)2]·C2H6O2, (II), (C2H6O2 is ethane-1,2-diol; Zhu et al., 2006). [ZnSO4(phen)2]·C3H8O2, (III), (C3H8O2 is propane-1,3-diol; Cui et al., 2010) and [ZnSO4(2,2'-bipy)2]·C2H6O2 (Cui et al., 2010). The crystal structure of the title complex is reported herein.

The title compound consists of a neutral monomeric [ZnSO4(C10H8N2)2] complex and a propane-1,2-diol solvent molecule. The ZnII ion has fivefold coordination by four N atoms from two phen ligands and one O atom from an monodentate sulfate ion, in a distorted ZnN4O square-pyramidal environment. This is different from that observed in previously reported zinc complexes (II) and (III). The Zn—N bond distances, the Zn—O bond distance, the N—Zn—N bite angle and the dihedral angle between the two chelating NCCN groups are 2.123 (3)–2.142 (2) Å, 1.959 (4) Å, 78.32 (9)° and 83.26 (13)°, respectively. The ZnII ion is located on a twofold rotation axis (symmetry code: -x, y, - z + 1/2)(Fig.1). The sulfate ligand and propane-1,2-diol molecules are disordered across the twofold rotation axis. Depending on the symmetry unique component of disorder, either N2 or N2 (-x, y, -z+1/2) forms the apical atom of the disordered square-pyramidal coordination geometry. The [ZnSO4(C10H8N2)2] and C3H8O3 units are connected by a pair of intermolecular O—H···O hydrogen bonds involving the uncoordinated O atoms of the sulfate ligand.

Related literature top

For the ethane-1,2-diol solvate of the title complex, see: Zhu et al. (2006) and for the propane-1,3-diol solvate of the title complex, see: Cui et al. (2010). For related structures and background references, see: Batten & Robson (1998); Zhang et al. (2010); Zhong (2010); Zhong et al. (2011).

Experimental top

0.2 mmol phen, 0.1 mmol melamine, 0.1 mmol ZnSO4·7H2O, 2.0 ml propane-1,2-diol and 1.0 ml water were mixed and placed in a thick Pyrex tube, which was sealed and heated to 453 K for 72 h, whereupon colorless block-shaped crystals of (I) were obtained.

Refinement top

All non-hydrogen atoms were refined anisotropically. The H atoms of phen were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of propane-1,2-diol were placed in geometrically idealized positions and refined as riding atoms, with C—H(CH3) = 0.96 Å, C—H(CH2) = 0.97 Å C—H(CH) = 0.98 Å and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

The solvent molecule propane-1,2-diol and the sulfate ion are disordered over the twofold rotation axis and the unique sites were refined with 0.50 site occupancy.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Figure 1. The molecular structure showing displacement ellipsoids drawn at the 30% probability level. The light broken lines depict O—H···O hydrogen bonds. The propane-1,2-diol molecule and the sulfate ligand are disordered over two symmetry-related positions but the disorder is not shown. Unlabeled atoms are related to the labeled atoms by the symmetry operator (-x, y, -z + 1/2).
Bis(1,10-phenanthroline-κ2N,N')(sulfato-κO)zinc(II) propane-1,2-diol monosolvate top
Crystal data top
[Zn(SO4)(C12H8N2)2]·C3H8O2F(000) = 1232
Mr = 597.93Dx = 1.598 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2296 reflections
a = 17.3913 (10) Åθ = 3.5–28.8°
b = 12.9247 (7) ŵ = 1.13 mm1
c = 13.2214 (7) ÅT = 223 K
β = 123.248 (5)°Block, colourless
V = 2485.4 (2) Å30.35 × 0.20 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2191 independent reflections
Radiation source: fine-focus sealed tube1878 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.035
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.8°
ω scansh = 2020
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1514
Tmin = 0.968, Tmax = 1.000l = 1415
5735 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0486P)2 + 2.9011P]
where P = (Fo2 + 2Fc2)/3
2191 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.73 e Å3
4 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Zn(SO4)(C12H8N2)2]·C3H8O2V = 2485.4 (2) Å3
Mr = 597.93Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.3913 (10) ŵ = 1.13 mm1
b = 12.9247 (7) ÅT = 223 K
c = 13.2214 (7) Å0.35 × 0.20 × 0.15 mm
β = 123.248 (5)°
Data collection top
Rigaku Mercury CCD
diffractometer
2191 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1878 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 1.000Rint = 0.035
5735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0414 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.06Δρmax = 0.73 e Å3
2191 reflectionsΔρmin = 0.54 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.00000.30049 (4)0.25000.02159 (19)
S10.0034 (2)0.54103 (11)0.2316 (3)0.0167 (6)0.50
O10.0136 (3)0.4449 (3)0.3022 (4)0.0257 (5)0.50
O20.0007 (3)0.5122 (3)0.1220 (4)0.0257 (5)0.50
O30.0811 (6)0.6077 (9)0.3077 (9)0.0257 (5)0.50
O40.0835 (7)0.5935 (8)0.1998 (10)0.0257 (5)0.50
O50.0562 (14)0.7871 (13)0.1824 (16)0.046 (2)0.50
H50.04230.73090.19880.069*0.50
O60.0460 (14)0.7974 (14)0.3059 (16)0.046 (2)0.50
H60.04230.74290.27560.069*0.50
N10.09382 (15)0.27777 (19)0.1947 (2)0.0222 (6)
N20.10269 (16)0.2072 (2)0.3926 (2)0.0228 (6)
C10.0913 (2)0.3167 (2)0.1003 (3)0.0261 (7)
H1A0.04590.36600.05200.031*
C20.1535 (2)0.2875 (3)0.0694 (3)0.0284 (7)
H2A0.14970.31700.00180.034*
C30.2194 (2)0.2159 (3)0.1382 (3)0.0297 (8)
H3A0.26070.19470.11730.036*
C40.2257 (2)0.1735 (2)0.2406 (3)0.0248 (7)
C50.2950 (2)0.1021 (3)0.3207 (3)0.0284 (7)
H5A0.33800.07860.30380.034*
C60.3001 (2)0.0674 (3)0.4204 (3)0.0293 (8)
H6A0.34650.02020.47190.035*
C70.2354 (2)0.1019 (2)0.4489 (3)0.0242 (7)
C80.2402 (2)0.0709 (3)0.5542 (3)0.0303 (8)
H8A0.28580.02440.60880.036*
C90.1776 (2)0.1094 (3)0.5760 (3)0.0338 (8)
H9A0.18050.09060.64660.041*
C100.1096 (2)0.1765 (3)0.4932 (3)0.0297 (8)
H10A0.06650.20140.50910.036*
C110.16579 (19)0.1707 (2)0.3712 (3)0.0219 (7)
C120.16033 (19)0.2076 (2)0.2646 (3)0.0209 (7)
C130.0615 (9)0.8631 (8)0.2607 (13)0.082 (2)0.50
H13A0.07820.92870.24040.098*0.50
H13B0.11130.84480.34320.098*0.50
C140.0247 (9)0.8802 (6)0.2597 (14)0.082 (2)0.50
H14A0.07590.88750.17390.098*0.50
C150.0222 (8)0.9778 (6)0.3227 (11)0.082 (2)0.50
H15A0.00191.03470.29500.123*0.50
H15B0.02020.96930.40930.123*0.50
H15C0.08320.99250.30460.123*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0229 (3)0.0194 (3)0.0300 (3)0.0000.0193 (2)0.000
S10.0167 (8)0.0184 (7)0.0179 (19)0.0003 (7)0.0114 (10)0.0012 (7)
O10.0256 (9)0.0259 (17)0.0295 (12)0.0019 (12)0.0175 (9)0.0001 (12)
O20.0256 (9)0.0259 (17)0.0295 (12)0.0019 (12)0.0175 (9)0.0001 (12)
O30.0256 (9)0.0259 (17)0.0295 (12)0.0019 (12)0.0175 (9)0.0001 (12)
O40.0256 (9)0.0259 (17)0.0295 (12)0.0019 (12)0.0175 (9)0.0001 (12)
O50.077 (4)0.033 (3)0.070 (3)0.001 (3)0.067 (3)0.004 (3)
O60.077 (4)0.033 (3)0.070 (3)0.001 (3)0.067 (3)0.004 (3)
N10.0208 (12)0.0242 (14)0.0252 (14)0.0010 (11)0.0150 (11)0.0031 (11)
N20.0233 (13)0.0260 (15)0.0242 (14)0.0001 (11)0.0162 (11)0.0012 (11)
C10.0269 (16)0.0261 (18)0.0290 (18)0.0022 (14)0.0176 (14)0.0056 (14)
C20.0328 (17)0.034 (2)0.0276 (18)0.0024 (15)0.0223 (15)0.0040 (15)
C30.0285 (17)0.036 (2)0.0334 (19)0.0027 (15)0.0226 (15)0.0001 (15)
C40.0247 (15)0.0268 (18)0.0260 (17)0.0018 (13)0.0159 (14)0.0026 (14)
C50.0256 (15)0.0322 (19)0.0317 (19)0.0062 (14)0.0183 (14)0.0049 (15)
C60.0281 (16)0.0296 (19)0.0315 (19)0.0078 (14)0.0171 (15)0.0004 (14)
C70.0252 (15)0.0253 (17)0.0220 (16)0.0016 (13)0.0129 (13)0.0025 (13)
C80.0309 (17)0.031 (2)0.0263 (18)0.0050 (14)0.0140 (15)0.0049 (14)
C90.0384 (18)0.044 (2)0.0231 (18)0.0017 (17)0.0198 (16)0.0039 (16)
C100.0302 (16)0.038 (2)0.0285 (19)0.0045 (15)0.0208 (15)0.0007 (15)
C110.0248 (15)0.0199 (16)0.0251 (17)0.0014 (13)0.0163 (14)0.0029 (13)
C120.0198 (14)0.0196 (16)0.0259 (17)0.0012 (13)0.0141 (13)0.0024 (13)
C130.134 (8)0.031 (3)0.146 (6)0.012 (3)0.119 (6)0.008 (4)
C140.134 (8)0.031 (3)0.146 (6)0.012 (3)0.119 (6)0.008 (4)
C150.134 (8)0.031 (3)0.146 (6)0.012 (3)0.119 (6)0.008 (4)
Geometric parameters (Å, º) top
Zn1—O11.959 (4)N2—C111.358 (4)
Zn1—O1i1.959 (4)C1—C21.402 (4)
Zn1—N2i2.123 (3)C1—H1A0.9400
Zn1—N22.123 (3)C2—C31.362 (5)
Zn1—N12.142 (2)C2—H2A0.9400
Zn1—N1i2.142 (2)C3—C41.408 (4)
S1—O1i1.298 (5)C3—H3A0.9400
S1—O4i1.355 (11)C4—C121.408 (4)
S1—O31.446 (11)C4—C51.424 (4)
S1—O21.459 (4)C5—C61.348 (5)
S1—O41.492 (12)C5—H5A0.9400
S1—O11.505 (4)C6—C71.440 (4)
S1—O3i1.529 (12)C6—H6A0.9400
S1—O2i1.998 (4)C7—C111.396 (4)
O1—S1i1.298 (4)C7—C81.407 (4)
O1—O2i1.435 (6)C8—C91.362 (4)
O2—O1i1.435 (6)C8—H8A0.9400
O2—S1i1.998 (4)C9—C101.389 (5)
O3—O4i0.223 (14)C9—H9A0.9400
O3—S1i1.529 (12)C10—H10A0.9400
O4—O3i0.223 (14)C11—C121.441 (4)
O4—S1i1.355 (11)C13—C141.508 (8)
O5—C131.394 (9)C13—H13A0.9800
O5—H50.8300C13—H13B0.9800
O6—C141.380 (8)C14—C151.499 (9)
O6—H60.8300C14—H14A0.9900
N1—C11.324 (4)C15—H15A0.9700
N1—C121.357 (4)C15—H15B0.9700
N2—C101.329 (4)C15—H15C0.9700
O1—Zn1—N2i137.27 (13)C10—N2—C11117.7 (3)
O1i—Zn1—N2i110.38 (13)C10—N2—Zn1129.0 (2)
O1—Zn1—N2110.38 (13)C11—N2—Zn1113.3 (2)
O1i—Zn1—N2137.27 (13)N1—C1—C2122.7 (3)
N2i—Zn1—N2110.75 (14)N1—C1—H1A118.6
O1—Zn1—N1106.45 (13)C2—C1—H1A118.6
O1i—Zn1—N188.75 (13)C3—C2—C1119.3 (3)
N2i—Zn1—N192.67 (9)C3—C2—H2A120.3
N2—Zn1—N178.32 (9)C1—C2—H2A120.3
O1—Zn1—N1i88.75 (13)C2—C3—C4120.0 (3)
O1i—Zn1—N1i106.45 (13)C2—C3—H3A120.0
N2i—Zn1—N1i78.32 (9)C4—C3—H3A120.0
N2—Zn1—N1i92.67 (9)C3—C4—C12116.6 (3)
N1—Zn1—N1i164.24 (14)C3—C4—C5123.7 (3)
O1i—S1—O4i131.8 (5)C12—C4—C5119.6 (3)
O1i—S1—O3139.5 (5)C6—C5—C4121.2 (3)
O4i—S1—O2105.4 (5)C6—C5—H5A119.4
O3—S1—O2111.2 (5)C4—C5—H5A119.4
O1i—S1—O4109.5 (5)C5—C6—C7120.7 (3)
O4i—S1—O4118.1 (7)C5—C6—H6A119.6
O3—S1—O4109.9 (3)C7—C6—H6A119.6
O2—S1—O4110.2 (5)C11—C7—C8117.8 (3)
O4i—S1—O1105.6 (6)C11—C7—C6119.5 (3)
O3—S1—O1108.2 (6)C8—C7—C6122.7 (3)
O2—S1—O1109.3 (2)C9—C8—C7119.0 (3)
O4—S1—O1107.9 (3)C9—C8—H8A120.5
O1i—S1—O3i115.3 (5)C7—C8—H8A120.5
O4i—S1—O3i112.9 (3)C8—C9—C10119.7 (3)
O3—S1—O3i104.9 (7)C8—C9—H9A120.2
O2—S1—O3i107.0 (5)C10—C9—H9A120.2
O1—S1—O3i116.1 (3)N2—C10—C9123.1 (3)
O1i—S1—O2i91.9 (2)N2—C10—H10A118.5
O4i—S1—O2i90.3 (5)C9—C10—H10A118.5
O3—S1—O2i86.9 (5)N2—C11—C7122.8 (3)
O2—S1—O2i154.2 (3)N2—C11—C12117.5 (3)
O4—S1—O2i78.4 (4)C7—C11—C12119.7 (3)
O3i—S1—O2i84.5 (4)N1—C12—C4123.3 (3)
O1i—O1—S1i74.3 (2)N1—C12—C11117.4 (2)
O1i—O1—O2i134.1 (3)C4—C12—C11119.2 (3)
S1i—O1—O2i64.3 (3)O5—C13—C14115.9 (14)
O1i—O1—S156.15 (18)O5—C13—H13A108.3
O2i—O1—S185.6 (3)C14—C13—H13A108.3
O1i—O1—Zn172.35 (12)O5—C13—H13B108.3
S1i—O1—Zn1146.1 (3)C14—C13—H13B108.3
O2i—O1—Zn1142.0 (3)H13A—C13—H13B107.4
S1—O1—Zn1128.1 (2)O6—C14—C15109.9 (13)
O1i—O2—S153.3 (2)O6—C14—C13112.9 (16)
O1i—O2—S1i48.7 (2)C15—C14—C13113.1 (8)
O4i—O3—S162 (5)O6—C14—H14A106.9
O4i—O3—S1i76 (6)C15—C14—H14A106.9
O3i—O4—S1i110 (5)C13—C14—H14A106.9
O3i—O4—S195 (6)C14—C15—H15A109.5
C13—O5—H5109.5C14—C15—H15B109.5
C14—O6—H6109.5H15A—C15—H15B109.5
C1—N1—C12118.1 (2)C14—C15—H15C109.5
C1—N1—Zn1129.2 (2)H15A—C15—H15C109.5
C12—N1—Zn1112.58 (19)H15B—C15—H15C109.5
S1i—S1—O1—O1i144.5 (10)O2i—S1—O3—S1i14.0 (4)
O4i—S1—O1—O1i132.2 (5)S1i—S1—O4—O3i132 (6)
O3—S1—O1—O1i140.5 (5)O1i—S1—O4—O3i135 (6)
O2—S1—O1—O1i19.2 (4)O4i—S1—O4—O3i53 (6)
O4—S1—O1—O1i100.7 (6)O3—S1—O4—O3i54 (7)
O3i—S1—O1—O1i101.9 (7)O2—S1—O4—O3i69 (6)
O2i—S1—O1—O1i153.1 (5)O1—S1—O4—O3i172 (6)
O1i—S1—O1—S1i144.5 (10)O2i—S1—O4—O3i137 (6)
O4i—S1—O1—S1i83.3 (9)O1i—S1—O4—S1i92.8 (5)
O3—S1—O1—S1i75.1 (8)O4i—S1—O4—S1i79.2 (8)
O2—S1—O1—S1i163.7 (10)O3—S1—O4—S1i77.5 (7)
O4—S1—O1—S1i43.8 (8)O2—S1—O4—S1i159.6 (5)
O3i—S1—O1—S1i42.6 (8)O1—S1—O4—S1i40.3 (5)
O2i—S1—O1—S1i8.7 (8)O3i—S1—O4—S1i132 (6)
S1i—S1—O1—O2i8.7 (8)O2i—S1—O4—S1i4.9 (4)
O1i—S1—O1—O2i153.1 (5)O1—Zn1—N1—C168.4 (3)
O4i—S1—O1—O2i74.7 (4)O1i—Zn1—N1—C137.4 (3)
O3—S1—O1—O2i66.4 (4)N2i—Zn1—N1—C172.9 (3)
O2—S1—O1—O2i172.3 (2)N2—Zn1—N1—C1176.4 (3)
O4—S1—O1—O2i52.5 (6)N1i—Zn1—N1—C1127.4 (3)
O3i—S1—O1—O2i51.2 (6)O1—Zn1—N1—C12116.5 (2)
S1i—S1—O1—Zn1152.2 (8)O1i—Zn1—N1—C12147.5 (2)
O1i—S1—O1—Zn17.8 (2)N2i—Zn1—N1—C12102.2 (2)
O4i—S1—O1—Zn1124.4 (4)N2—Zn1—N1—C128.5 (2)
O3—S1—O1—Zn1132.7 (4)N1i—Zn1—N1—C1247.68 (19)
O2—S1—O1—Zn111.4 (5)O1—Zn1—N2—C1072.9 (3)
O4—S1—O1—Zn1108.4 (6)O1i—Zn1—N2—C10101.2 (3)
O3i—S1—O1—Zn1109.7 (6)N2i—Zn1—N2—C1095.3 (3)
O2i—S1—O1—Zn1160.9 (4)N1—Zn1—N2—C10176.3 (3)
N2i—Zn1—O1—O1i50.2 (4)N1i—Zn1—N2—C1016.8 (3)
N2—Zn1—O1—O1i146.2 (3)O1—Zn1—N2—C11111.1 (2)
N1—Zn1—O1—O1i62.8 (4)O1i—Zn1—N2—C1182.9 (3)
N1i—Zn1—O1—O1i121.4 (4)N2i—Zn1—N2—C1180.7 (2)
O1i—Zn1—O1—S1i11.1 (3)N1—Zn1—N2—C117.7 (2)
N2i—Zn1—O1—S1i39.1 (6)N1i—Zn1—N2—C11159.2 (2)
N2—Zn1—O1—S1i157.3 (5)C12—N1—C1—C20.8 (5)
N1—Zn1—O1—S1i73.9 (5)Zn1—N1—C1—C2174.1 (2)
N1i—Zn1—O1—S1i110.3 (5)N1—C1—C2—C30.3 (5)
O1i—Zn1—O1—O2i141.2 (8)C1—C2—C3—C41.3 (5)
N2i—Zn1—O1—O2i91.0 (5)C2—C3—C4—C121.2 (5)
N2—Zn1—O1—O2i72.6 (5)C2—C3—C4—C5176.9 (3)
N1—Zn1—O1—O2i155.9 (5)C3—C4—C5—C6177.1 (3)
N1i—Zn1—O1—O2i19.8 (5)C12—C4—C5—C61.0 (5)
O1i—Zn1—O1—S16.76 (18)C4—C5—C6—C70.1 (5)
N2i—Zn1—O1—S156.9 (4)C5—C6—C7—C111.0 (5)
N2—Zn1—O1—S1139.5 (3)C5—C6—C7—C8177.5 (3)
N1—Zn1—O1—S156.1 (3)C11—C7—C8—C90.3 (5)
N1i—Zn1—O1—S1128.2 (3)C6—C7—C8—C9178.2 (3)
S1i—S1—O2—O1i30 (2)C7—C8—C9—C101.2 (5)
O4i—S1—O2—O1i129.5 (6)C11—N2—C10—C90.2 (5)
O3—S1—O2—O1i135.8 (6)Zn1—N2—C10—C9175.6 (2)
O4—S1—O2—O1i102.0 (4)C8—C9—C10—N21.0 (5)
O1—S1—O2—O1i16.4 (4)C10—N2—C11—C71.2 (4)
O3i—S1—O2—O1i110.1 (4)Zn1—N2—C11—C7175.3 (2)
O2i—S1—O2—O1i3.7 (5)C10—N2—C11—C12177.5 (3)
O1i—S1—O2—S1i30 (2)Zn1—N2—C11—C126.1 (3)
O4i—S1—O2—S1i159 (2)C8—C7—C11—N20.9 (5)
O3—S1—O2—S1i165 (2)C6—C7—C11—N2179.5 (3)
O4—S1—O2—S1i72 (2)C8—C7—C11—C12177.7 (3)
O1—S1—O2—S1i46 (2)C6—C7—C11—C120.9 (4)
O3i—S1—O2—S1i81 (2)C1—N1—C12—C40.8 (4)
O2i—S1—O2—S1i33.3 (16)Zn1—N1—C12—C4174.9 (2)
S1i—S1—O3—O4i128 (7)C1—N1—C12—C11176.2 (3)
O1i—S1—O3—O4i25 (8)Zn1—N1—C12—C118.1 (3)
O2—S1—O3—O4i47 (7)C3—C4—C12—N10.2 (5)
O4—S1—O3—O4i169 (7)C5—C4—C12—N1178.0 (3)
O1—S1—O3—O4i73 (7)C3—C4—C12—C11177.1 (3)
O3i—S1—O3—O4i162 (7)C5—C4—C12—C111.1 (4)
O2i—S1—O3—O4i114 (7)N2—C11—C12—N11.5 (4)
O1i—S1—O3—S1i103.3 (8)C7—C11—C12—N1177.3 (3)
O4i—S1—O3—S1i128 (7)N2—C11—C12—C4178.6 (3)
O2—S1—O3—S1i175.2 (6)C7—C11—C12—C40.1 (4)
O4—S1—O3—S1i62.4 (7)O5—C13—C14—O667.9 (12)
O1—S1—O3—S1i55.1 (4)O5—C13—C14—C15166.6 (14)
O3i—S1—O3—S1i69.5 (5)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O30.832.002.74 (3)149
O6—H6···O40.832.112.89 (2)155
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O30.832.002.74 (3)148.5
O6—H6···O40.832.112.89 (2)155.4
 

Acknowledgements

This work was partially supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2013–10)

References

First citationBatten, S. R. & Robson, R. (1998). Chem. Commun. pp. 1067–1068.  Google Scholar
First citationCui, J.-D., Zhong, K.-L. & Liu, Y.-Y. (2010). Acta Cryst. E66, m564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L.-P., Ma, J.-F., Yang, J., Pang, Y.-Y. & Ma, J.-C. (2010). Inorg. Chem. 49, 1535–1550.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhong, K.-L. (2010). Acta Cryst. E66, m131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L., Chen, L. & Chen, L. (2011). Acta Cryst. C67, m62–m64.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006). Acta Cryst. E62, m2725–m2726.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds