metal-organic compounds
Bis(η2-ethylene)(η5-indenyl)iridium(I)
aDepartment of Chemistry 0212, Virginia Tech, Blacksburg, VA 24061, USA
*Correspondence e-mail: jmerola@vt.edu
The 9H7)(C2H4)2], consists of two independent molecules. The bonding between iridium and the five-membered ring of the indenyl ligand shows the usual asymmetry associated with the typical ring slippage responsible for the enhanced activity of indenyl metal compounds when compared with the analogous cyclopentadienyl metal compound. There are three short Ir—C bonds of 2.210 (3), 2.190 (4) and 2.220 (3) Å and two long Ir—C bonds to the C atoms that are part of the fused six-membered ring of 2.349 (4) and 2.366 (3) Å for one of the independent molecules [2.208 (4), 2.222 (3), 2.197 (4) Å for the short distances and 2.371 (3) and 2.358 (3) Å for the long distances in the second molecule]. This results in both indenyl ligands being slightly kinked, with dihedral angles of 6.8 (4)° and 6.5 (4)°.
of the title compound, [Ir(CCCDC reference: 960699
Related literature
For the structures of the analogous rhodium(I) complex determined from single crystal X-ray data, see: CCDC:576585 (Marder et al., 1987); CCDC:567925 (Mlekuz et al., 1986). For a variable temperature NMR study of the title compound, see: Szajek et al. (1991). The structure of an η3-indenyliridium complex can be found in CCDC:563532 (Merola et al., 1986). For seminal discussions on the "indenyl effect" see: Hart-Davis et al. (1970); Rerek et al. (1983). The synthesis of [Ir(C2H2)2Cl]2 can be found in Herde et al. (1974).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2013); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 960699
10.1107/S1600536813025300/pk2496sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813025300/pk2496Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813025300/pk2496Isup3.mol
[Ir(C2H2)2Cl]2 was synthesized by the reaction between [Ir(C8H14)2IrCl]2 and ethylene (Herde et al., 1974). The title compound was prepared by the reaction between lithium indenide and [Ir(C2H2)2Cl]2 in anhydrous THF. Crystals of the title compound were grown by the slow evaporation of a pentane solution. The title compound has also been reported previously prepared by this same method (Szajek et al., 1991).
Crystal data, data collection and structure
details are summarized in Table 1. Hydrogen atoms were found in difference maps and refined using a riding model with C-H distances of 0.93 Å (Cindenyl) and 0.97 Å (Cethylene). Uiso(H) values were set to 1.2Ueq of the attached carbon atom.Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Ir(C9H7)(C2H4)2] | F(000) = 1360 |
Mr = 363.45 | Dx = 2.286 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.7107 Å |
a = 7.73182 (11) Å | Cell parameters from 34473 reflections |
b = 10.77708 (13) Å | θ = 3.1–32.0° |
c = 25.6818 (5) Å | µ = 12.57 mm−1 |
β = 98.4034 (15)° | T = 100 K |
V = 2117.00 (5) Å3 | Prism, clear orange |
Z = 8 | 0.45 × 0.33 × 0.22 mm |
Agilent Xcalibur, Sapphire2 diffractometer | 6917 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 6733 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 8.3438 pixels mm-1 | θmax = 32.0°, θmin = 2.9° |
ω and π scans | h = −11→11 |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2013) | k = −15→15 |
Tmin = 0.020, Tmax = 0.142 | l = −38→37 |
55683 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.46 | w = 1/[σ2(Fo2) + (0.P)2 + 12.8207P] where P = (Fo2 + 2Fc2)/3 |
6917 reflections | (Δ/σ)max = 0.001 |
253 parameters | Δρmax = 1.69 e Å−3 |
0 restraints | Δρmin = −2.04 e Å−3 |
[Ir(C9H7)(C2H4)2] | V = 2117.00 (5) Å3 |
Mr = 363.45 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.73182 (11) Å | µ = 12.57 mm−1 |
b = 10.77708 (13) Å | T = 100 K |
c = 25.6818 (5) Å | 0.45 × 0.33 × 0.22 mm |
β = 98.4034 (15)° |
Agilent Xcalibur, Sapphire2 diffractometer | 6917 independent reflections |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2013) | 6733 reflections with I > 2σ(I) |
Tmin = 0.020, Tmax = 0.142 | Rint = 0.027 |
55683 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.46 | w = 1/[σ2(Fo2) + (0.P)2 + 12.8207P] where P = (Fo2 + 2Fc2)/3 |
6917 reflections | Δρmax = 1.69 e Å−3 |
253 parameters | Δρmin = −2.04 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ir1A | 0.306000 (16) | 0.166573 (12) | 0.397616 (5) | 0.00973 (3) | |
Ir1B | 0.187010 (16) | 0.186101 (12) | 0.088370 (5) | 0.01014 (3) | |
C1A | 0.1325 (5) | 0.2945 (3) | 0.43319 (14) | 0.0147 (6) | |
H1A | 0.1386 | 0.3069 | 0.4693 | 0.018* | |
C1B | 0.3647 (5) | 0.0581 (4) | 0.05469 (15) | 0.0177 (7) | |
H1B | 0.3600 | 0.0443 | 0.0187 | 0.021* | |
C2A | 0.2281 (5) | 0.3620 (3) | 0.39842 (15) | 0.0155 (7) | |
H2A | 0.3161 | 0.4197 | 0.4085 | 0.019* | |
C2B | 0.4684 (5) | 0.1505 (4) | 0.08498 (15) | 0.0165 (7) | |
H2B | 0.5327 | 0.2128 | 0.0716 | 0.020* | |
C3A | 0.1632 (5) | 0.3244 (3) | 0.34461 (15) | 0.0146 (6) | |
C3B | 0.4555 (4) | 0.1297 (3) | 0.13992 (14) | 0.0142 (6) | |
C4A | 0.2031 (5) | 0.3653 (4) | 0.29522 (16) | 0.0204 (7) | |
H4A | 0.2846 | 0.4280 | 0.2931 | 0.024* | |
C4B | 0.5348 (5) | 0.1890 (4) | 0.18694 (16) | 0.0183 (7) | |
H4B | 0.6135 | 0.2539 | 0.1856 | 0.022* | |
C5A | 0.1184 (5) | 0.3100 (4) | 0.25073 (17) | 0.0247 (9) | |
H5A | 0.1417 | 0.3368 | 0.2180 | 0.030* | |
C5B | 0.4929 (5) | 0.1488 (4) | 0.23413 (16) | 0.0215 (8) | |
H5B | 0.5450 | 0.1866 | 0.2651 | 0.026* | |
C6A | −0.0051 (6) | 0.2120 (4) | 0.25316 (17) | 0.0241 (8) | |
H6A | −0.0605 | 0.1767 | 0.2221 | 0.029* | |
C6B | 0.3727 (6) | 0.0515 (4) | 0.23698 (16) | 0.0235 (8) | |
H6B | 0.3490 | 0.0260 | 0.2698 | 0.028* | |
C7A | −0.0433 (5) | 0.1694 (4) | 0.30037 (16) | 0.0191 (7) | |
H7A | −0.1209 | 0.1038 | 0.3017 | 0.023* | |
C7B | 0.2895 (5) | −0.0069 (4) | 0.19267 (17) | 0.0200 (7) | |
H7B | 0.2078 | −0.0693 | 0.1952 | 0.024* | |
C8A | 0.0379 (4) | 0.2272 (3) | 0.34746 (14) | 0.0134 (6) | |
C8B | 0.3318 (4) | 0.0306 (3) | 0.14296 (14) | 0.0136 (6) | |
C9A | 0.0265 (4) | 0.2051 (3) | 0.40240 (14) | 0.0138 (6) | |
H9A | −0.0389 | 0.1430 | 0.4155 | 0.017* | |
C9B | 0.2694 (5) | −0.0093 (3) | 0.08948 (15) | 0.0157 (7) | |
H9B | 0.1828 | −0.0681 | 0.0795 | 0.019* | |
C10A | 0.5669 (5) | 0.1874 (4) | 0.43434 (16) | 0.0179 (7) | |
H10A | 0.5961 | 0.2653 | 0.4525 | 0.022* | |
H10B | 0.6203 | 0.1156 | 0.4531 | 0.022* | |
C10B | −0.0726 (5) | 0.1574 (4) | 0.05168 (16) | 0.0180 (7) | |
H10C | −0.1270 | 0.2252 | 0.0304 | 0.022* | |
H10D | −0.0994 | 0.0762 | 0.0362 | 0.022* | |
C11A | 0.5626 (4) | 0.1880 (3) | 0.37850 (15) | 0.0158 (7) | |
H11A | 0.6129 | 0.1165 | 0.3632 | 0.019* | |
H11B | 0.5886 | 0.2663 | 0.3627 | 0.019* | |
C11B | −0.0704 (4) | 0.1672 (3) | 0.10706 (15) | 0.0156 (6) | |
H11C | −0.0953 | 0.0920 | 0.1254 | 0.019* | |
H11D | −0.1230 | 0.2411 | 0.1196 | 0.019* | |
C12A | 0.3065 (5) | −0.0121 (3) | 0.43176 (15) | 0.0164 (7) | |
H12A | 0.4091 | −0.0343 | 0.4565 | 0.020* | |
H12B | 0.1975 | −0.0398 | 0.4424 | 0.020* | |
C12B | 0.1810 (5) | 0.3641 (4) | 0.05277 (16) | 0.0187 (7) | |
H12C | 0.2885 | 0.3920 | 0.0411 | 0.022* | |
H12D | 0.0767 | 0.3846 | 0.0285 | 0.022* | |
C13A | 0.3210 (5) | −0.0231 (3) | 0.37742 (16) | 0.0163 (7) | |
H13A | 0.2208 | −0.0575 | 0.3549 | 0.020* | |
H13B | 0.4324 | −0.0520 | 0.3689 | 0.020* | |
C13B | 0.1702 (5) | 0.3777 (3) | 0.10754 (15) | 0.0155 (6) | |
H13C | 0.0592 | 0.4062 | 0.1166 | 0.019* | |
H13D | 0.2710 | 0.4136 | 0.1292 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ir1A | 0.00901 (5) | 0.00969 (5) | 0.01044 (6) | −0.00009 (4) | 0.00123 (4) | 0.00033 (4) |
Ir1B | 0.00871 (5) | 0.01052 (5) | 0.01127 (6) | 0.00065 (4) | 0.00171 (4) | 0.00062 (4) |
C1A | 0.0151 (15) | 0.0157 (15) | 0.0135 (16) | 0.0026 (12) | 0.0025 (12) | −0.0021 (12) |
C1B | 0.0170 (16) | 0.0220 (18) | 0.0145 (17) | 0.0068 (13) | 0.0036 (13) | −0.0016 (14) |
C2A | 0.0129 (15) | 0.0108 (14) | 0.0222 (18) | −0.0001 (12) | 0.0009 (13) | −0.0015 (13) |
C2B | 0.0113 (14) | 0.0216 (17) | 0.0174 (17) | 0.0029 (12) | 0.0044 (12) | 0.0029 (14) |
C3A | 0.0132 (14) | 0.0140 (15) | 0.0166 (17) | 0.0050 (12) | 0.0016 (12) | 0.0007 (13) |
C3B | 0.0120 (14) | 0.0156 (15) | 0.0146 (16) | 0.0030 (12) | 0.0010 (12) | 0.0016 (12) |
C4A | 0.0213 (18) | 0.0215 (18) | 0.0190 (18) | 0.0057 (14) | 0.0051 (14) | 0.0069 (14) |
C4B | 0.0142 (15) | 0.0195 (17) | 0.0197 (18) | 0.0022 (13) | −0.0028 (13) | −0.0002 (14) |
C5A | 0.0223 (19) | 0.036 (2) | 0.0161 (18) | 0.0099 (17) | 0.0053 (15) | 0.0069 (16) |
C5B | 0.0211 (18) | 0.027 (2) | 0.0148 (17) | 0.0056 (15) | −0.0036 (14) | −0.0030 (15) |
C6A | 0.0212 (18) | 0.036 (2) | 0.0138 (17) | 0.0082 (16) | −0.0027 (14) | −0.0037 (16) |
C6B | 0.026 (2) | 0.031 (2) | 0.0134 (17) | 0.0086 (16) | 0.0046 (15) | 0.0065 (15) |
C7A | 0.0136 (15) | 0.0221 (18) | 0.0201 (18) | 0.0024 (13) | −0.0029 (13) | −0.0050 (14) |
C7B | 0.0170 (16) | 0.0198 (17) | 0.024 (2) | 0.0021 (13) | 0.0065 (14) | 0.0078 (15) |
C8A | 0.0106 (14) | 0.0145 (15) | 0.0146 (16) | 0.0018 (11) | 0.0008 (12) | −0.0007 (12) |
C8B | 0.0119 (14) | 0.0137 (15) | 0.0149 (16) | 0.0020 (12) | 0.0005 (12) | 0.0015 (12) |
C9A | 0.0115 (14) | 0.0157 (15) | 0.0146 (16) | 0.0010 (12) | 0.0029 (12) | 0.0002 (12) |
C9B | 0.0153 (15) | 0.0127 (15) | 0.0183 (17) | 0.0030 (12) | −0.0006 (13) | −0.0013 (13) |
C10A | 0.0117 (15) | 0.0206 (17) | 0.0203 (18) | −0.0031 (13) | −0.0017 (13) | 0.0045 (14) |
C10B | 0.0107 (15) | 0.0224 (18) | 0.0200 (18) | −0.0005 (13) | −0.0004 (13) | 0.0029 (14) |
C11A | 0.0115 (14) | 0.0154 (15) | 0.0211 (18) | −0.0005 (12) | 0.0044 (12) | 0.0015 (13) |
C11B | 0.0103 (14) | 0.0158 (15) | 0.0211 (18) | −0.0017 (12) | 0.0043 (12) | −0.0011 (13) |
C12A | 0.0181 (16) | 0.0116 (15) | 0.0190 (18) | −0.0007 (12) | 0.0012 (13) | 0.0052 (13) |
C12B | 0.0197 (17) | 0.0157 (16) | 0.0220 (19) | 0.0025 (13) | 0.0070 (14) | 0.0059 (14) |
C13A | 0.0167 (16) | 0.0107 (14) | 0.0220 (19) | −0.0010 (12) | 0.0051 (13) | 0.0000 (13) |
C13B | 0.0173 (16) | 0.0132 (15) | 0.0156 (17) | −0.0004 (12) | 0.0014 (13) | −0.0002 (12) |
Ir1A—C1A | 2.210 (3) | C5A—H5A | 0.9300 |
Ir1A—C2A | 2.190 (4) | C5A—C6A | 1.430 (7) |
Ir1A—C3A | 2.349 (4) | C5B—H5B | 0.9300 |
Ir1A—C8A | 2.366 (3) | C5B—C6B | 1.409 (6) |
Ir1A—C9A | 2.220 (3) | C6A—H6A | 0.9300 |
Ir1A—C10A | 2.109 (4) | C6A—C7A | 1.367 (6) |
Ir1A—C11A | 2.123 (3) | C6B—H6B | 0.9300 |
Ir1A—C12A | 2.114 (3) | C6B—C7B | 1.374 (6) |
Ir1A—C13A | 2.115 (4) | C7A—H7A | 0.9300 |
Ir1B—C1B | 2.208 (4) | C7A—C8A | 1.421 (5) |
Ir1B—C2B | 2.222 (3) | C7B—H7B | 0.9300 |
Ir1B—C3B | 2.371 (3) | C7B—C8B | 1.421 (5) |
Ir1B—C8B | 2.358 (3) | C8A—C9A | 1.445 (5) |
Ir1B—C9B | 2.197 (4) | C8B—C9B | 1.451 (5) |
Ir1B—C10B | 2.111 (4) | C9A—H9A | 0.9300 |
Ir1B—C11B | 2.123 (3) | C9B—H9B | 0.9300 |
Ir1B—C12B | 2.121 (4) | C10A—H10A | 0.9700 |
Ir1B—C13B | 2.129 (4) | C10A—H10B | 0.9700 |
C1A—H1A | 0.9300 | C10A—C11A | 1.428 (5) |
C1A—C2A | 1.435 (5) | C10B—H10C | 0.9700 |
C1A—C9A | 1.426 (5) | C10B—H10D | 0.9700 |
C1B—H1B | 0.9300 | C10B—C11B | 1.422 (5) |
C1B—C2B | 1.433 (5) | C11A—H11A | 0.9700 |
C1B—C9B | 1.434 (5) | C11A—H11B | 0.9700 |
C2A—H2A | 0.9300 | C11B—H11C | 0.9700 |
C2A—C3A | 1.456 (5) | C11B—H11D | 0.9700 |
C2B—H2B | 0.9300 | C12A—H12A | 0.9700 |
C2B—C3B | 1.445 (5) | C12A—H12B | 0.9700 |
C3A—C4A | 1.417 (5) | C12A—C13A | 1.419 (5) |
C3A—C8A | 1.435 (5) | C12B—H12C | 0.9700 |
C3B—C4B | 1.422 (5) | C12B—H12D | 0.9700 |
C3B—C8B | 1.442 (5) | C12B—C13B | 1.427 (5) |
C4A—H4A | 0.9300 | C13A—H13A | 0.9700 |
C4A—C5A | 1.367 (6) | C13A—H13B | 0.9700 |
C4B—H4B | 0.9300 | C13B—H13C | 0.9700 |
C4B—C5B | 1.368 (6) | C13B—H13D | 0.9700 |
C1A—Ir1A—C3A | 61.69 (13) | C2B—C3B—Ir1B | 66.12 (19) |
C1A—Ir1A—C8A | 61.10 (13) | C4B—C3B—Ir1B | 126.3 (3) |
C1A—Ir1A—C9A | 37.56 (13) | C4B—C3B—C2B | 132.5 (4) |
C2A—Ir1A—C1A | 38.07 (14) | C4B—C3B—C8B | 119.6 (3) |
C2A—Ir1A—C3A | 37.20 (13) | C8B—C3B—Ir1B | 71.75 (19) |
C2A—Ir1A—C8A | 61.29 (13) | C8B—C3B—C2B | 107.9 (3) |
C2A—Ir1A—C9A | 63.17 (13) | C3A—C4A—H4A | 120.9 |
C3A—Ir1A—C8A | 35.43 (12) | C5A—C4A—C3A | 118.1 (4) |
C9A—Ir1A—C3A | 61.18 (13) | C5A—C4A—H4A | 120.9 |
C9A—Ir1A—C8A | 36.55 (13) | C3B—C4B—H4B | 120.7 |
C10A—Ir1A—C1A | 110.30 (15) | C5B—C4B—C3B | 118.7 (4) |
C10A—Ir1A—C2A | 98.05 (15) | C5B—C4B—H4B | 120.7 |
C10A—Ir1A—C3A | 121.30 (14) | C4A—C5A—H5A | 119.1 |
C10A—Ir1A—C8A | 156.62 (14) | C4A—C5A—C6A | 121.8 (4) |
C10A—Ir1A—C9A | 146.06 (15) | C6A—C5A—H5A | 119.1 |
C10A—Ir1A—C11A | 39.44 (15) | C4B—C5B—H5B | 119.2 |
C10A—Ir1A—C12A | 88.13 (15) | C4B—C5B—C6B | 121.6 (4) |
C10A—Ir1A—C13A | 97.41 (15) | C6B—C5B—H5B | 119.2 |
C11A—Ir1A—C1A | 132.10 (14) | C5A—C6A—H6A | 119.4 |
C11A—Ir1A—C2A | 99.50 (14) | C7A—C6A—C5A | 121.2 (4) |
C11A—Ir1A—C3A | 99.40 (13) | C7A—C6A—H6A | 119.4 |
C11A—Ir1A—C8A | 128.14 (14) | C5B—C6B—H6B | 119.0 |
C11A—Ir1A—C9A | 160.23 (14) | C7B—C6B—C5B | 122.0 (4) |
C12A—Ir1A—C1A | 111.18 (14) | C7B—C6B—H6B | 119.0 |
C12A—Ir1A—C2A | 148.74 (15) | C6A—C7A—H7A | 120.6 |
C12A—Ir1A—C3A | 150.56 (14) | C6A—C7A—C8A | 118.7 (4) |
C12A—Ir1A—C8A | 115.17 (14) | C8A—C7A—H7A | 120.6 |
C12A—Ir1A—C9A | 95.20 (14) | C6B—C7B—H7B | 120.9 |
C12A—Ir1A—C11A | 104.42 (14) | C6B—C7B—C8B | 118.1 (4) |
C12A—Ir1A—C13A | 39.23 (15) | C8B—C7B—H7B | 120.9 |
C13A—Ir1A—C1A | 139.61 (14) | C3A—C8A—Ir1A | 71.65 (19) |
C13A—Ir1A—C2A | 162.85 (14) | C3A—C8A—C9A | 107.9 (3) |
C13A—Ir1A—C3A | 126.52 (14) | C7A—C8A—Ir1A | 125.8 (3) |
C13A—Ir1A—C8A | 102.03 (14) | C7A—C8A—C3A | 119.6 (3) |
C13A—Ir1A—C9A | 106.42 (14) | C7A—C8A—C9A | 132.5 (3) |
C13A—Ir1A—C11A | 87.83 (14) | C9A—C8A—Ir1A | 66.22 (19) |
C1B—Ir1B—C2B | 37.74 (14) | C3B—C8B—Ir1B | 72.7 (2) |
C1B—Ir1B—C3B | 61.00 (13) | C3B—C8B—C9B | 107.4 (3) |
C1B—Ir1B—C8B | 61.37 (13) | C7B—C8B—Ir1B | 125.7 (3) |
C2B—Ir1B—C3B | 36.48 (13) | C7B—C8B—C3B | 120.0 (3) |
C2B—Ir1B—C8B | 61.19 (13) | C7B—C8B—C9B | 132.5 (3) |
C8B—Ir1B—C3B | 35.51 (12) | C9B—C8B—Ir1B | 65.48 (19) |
C9B—Ir1B—C1B | 38.00 (14) | Ir1A—C9A—H9A | 118.0 |
C9B—Ir1B—C2B | 63.37 (14) | C1A—C9A—Ir1A | 70.85 (19) |
C9B—Ir1B—C3B | 61.27 (13) | C1A—C9A—C8A | 108.5 (3) |
C9B—Ir1B—C8B | 36.94 (13) | C1A—C9A—H9A | 125.7 |
C10B—Ir1B—C1B | 109.80 (15) | C8A—C9A—Ir1A | 77.2 (2) |
C10B—Ir1B—C2B | 146.00 (15) | C8A—C9A—H9A | 125.7 |
C10B—Ir1B—C3B | 155.32 (14) | Ir1B—C9B—H9B | 117.0 |
C10B—Ir1B—C8B | 119.92 (14) | C1B—C9B—Ir1B | 71.4 (2) |
C10B—Ir1B—C9B | 96.90 (15) | C1B—C9B—C8B | 108.0 (3) |
C10B—Ir1B—C11B | 39.26 (15) | C1B—C9B—H9B | 126.0 |
C10B—Ir1B—C12B | 88.89 (15) | C8B—C9B—Ir1B | 77.6 (2) |
C10B—Ir1B—C13B | 99.14 (15) | C8B—C9B—H9B | 126.0 |
C11B—Ir1B—C1B | 133.24 (15) | Ir1A—C10A—H10A | 116.5 |
C11B—Ir1B—C2B | 161.22 (14) | Ir1A—C10A—H10B | 116.5 |
C11B—Ir1B—C3B | 128.47 (14) | H10A—C10A—H10B | 113.5 |
C11B—Ir1B—C8B | 100.21 (13) | C11A—C10A—Ir1A | 70.8 (2) |
C11B—Ir1B—C9B | 100.64 (14) | C11A—C10A—H10A | 116.5 |
C11B—Ir1B—C13B | 87.13 (14) | C11A—C10A—H10B | 116.5 |
C12B—Ir1B—C1B | 111.80 (15) | Ir1B—C10B—H10C | 116.5 |
C12B—Ir1B—C2B | 95.70 (14) | Ir1B—C10B—H10D | 116.5 |
C12B—Ir1B—C3B | 115.72 (14) | H10C—C10B—H10D | 113.5 |
C12B—Ir1B—C8B | 151.18 (14) | C11B—C10B—Ir1B | 70.8 (2) |
C12B—Ir1B—C9B | 149.22 (15) | C11B—C10B—H10C | 116.5 |
C12B—Ir1B—C11B | 102.79 (15) | C11B—C10B—H10D | 116.5 |
C12B—Ir1B—C13B | 39.24 (15) | Ir1A—C11A—H11A | 116.7 |
C13B—Ir1B—C1B | 139.24 (15) | Ir1A—C11A—H11B | 116.7 |
C13B—Ir1B—C2B | 105.64 (14) | C10A—C11A—Ir1A | 69.7 (2) |
C13B—Ir1B—C3B | 101.37 (13) | C10A—C11A—H11A | 116.7 |
C13B—Ir1B—C8B | 126.20 (13) | C10A—C11A—H11B | 116.7 |
C13B—Ir1B—C9B | 162.21 (14) | H11A—C11A—H11B | 113.7 |
Ir1A—C1A—H1A | 123.7 | Ir1B—C11B—H11C | 116.6 |
C2A—C1A—Ir1A | 70.2 (2) | Ir1B—C11B—H11D | 116.6 |
C2A—C1A—H1A | 126.2 | C10B—C11B—Ir1B | 69.9 (2) |
C9A—C1A—Ir1A | 71.6 (2) | C10B—C11B—H11C | 116.6 |
C9A—C1A—H1A | 126.2 | C10B—C11B—H11D | 116.6 |
C9A—C1A—C2A | 107.7 (3) | H11C—C11B—H11D | 113.6 |
Ir1B—C1B—H1B | 123.5 | Ir1A—C12A—H12A | 116.6 |
C2B—C1B—Ir1B | 71.6 (2) | Ir1A—C12A—H12B | 116.6 |
C2B—C1B—H1B | 125.9 | H12A—C12A—H12B | 113.6 |
C2B—C1B—C9B | 108.1 (3) | C13A—C12A—Ir1A | 70.4 (2) |
C9B—C1B—Ir1B | 70.6 (2) | C13A—C12A—H12A | 116.6 |
C9B—C1B—H1B | 125.9 | C13A—C12A—H12B | 116.6 |
Ir1A—C2A—H2A | 117.0 | Ir1B—C12B—H12C | 116.5 |
C1A—C2A—Ir1A | 71.7 (2) | Ir1B—C12B—H12D | 116.5 |
C1A—C2A—H2A | 125.9 | H12C—C12B—H12D | 113.5 |
C1A—C2A—C3A | 108.1 (3) | C13B—C12B—Ir1B | 70.7 (2) |
C3A—C2A—Ir1A | 77.4 (2) | C13B—C12B—H12C | 116.5 |
C3A—C2A—H2A | 125.9 | C13B—C12B—H12D | 116.5 |
Ir1B—C2B—H2B | 117.9 | Ir1A—C13A—H13A | 116.6 |
C1B—C2B—Ir1B | 70.6 (2) | Ir1A—C13A—H13B | 116.6 |
C1B—C2B—H2B | 126.0 | C12A—C13A—Ir1A | 70.4 (2) |
C1B—C2B—C3B | 108.0 (3) | C12A—C13A—H13A | 116.6 |
C3B—C2B—Ir1B | 77.4 (2) | C12A—C13A—H13B | 116.6 |
C3B—C2B—H2B | 126.0 | H13A—C13A—H13B | 113.6 |
C2A—C3A—Ir1A | 65.45 (19) | Ir1B—C13B—H13C | 116.6 |
C4A—C3A—Ir1A | 126.7 (3) | Ir1B—C13B—H13D | 116.6 |
C4A—C3A—C2A | 132.2 (4) | C12B—C13B—Ir1B | 70.1 (2) |
C4A—C3A—C8A | 120.5 (3) | C12B—C13B—H13C | 116.6 |
C8A—C3A—Ir1A | 72.9 (2) | C12B—C13B—H13D | 116.6 |
C8A—C3A—C2A | 107.2 (3) | H13C—C13B—H13D | 113.6 |
Experimental details
Crystal data | |
Chemical formula | [Ir(C9H7)(C2H4)2] |
Mr | 363.45 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 7.73182 (11), 10.77708 (13), 25.6818 (5) |
β (°) | 98.4034 (15) |
V (Å3) | 2117.00 (5) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 12.57 |
Crystal size (mm) | 0.45 × 0.33 × 0.22 |
Data collection | |
Diffractometer | Agilent Xcalibur, Sapphire2 diffractometer |
Absorption correction | Gaussian (CrysAlis PRO; Agilent, 2013) |
Tmin, Tmax | 0.020, 0.142 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 55683, 6917, 6733 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.745 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.055, 1.46 |
No. of reflections | 6917 |
No. of parameters | 253 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.P)2 + 12.8207P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.69, −2.04 |
Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
Ir1A—C1A | 2.210 (3) | Ir1B—C1B | 2.208 (4) |
Ir1A—C2A | 2.190 (4) | Ir1B—C2B | 2.222 (3) |
Ir1A—C3A | 2.349 (4) | Ir1B—C3B | 2.371 (3) |
Ir1A—C8A | 2.366 (3) | Ir1B—C8B | 2.358 (3) |
Ir1A—C9A | 2.220 (3) | Ir1B—C9B | 2.197 (4) |
Acknowledgements
The author thanks the National Science Foundation for funds (CHE-01311288) for the purchase of the diffractometer. The author recognizes the payment of the open access fee by Virginia Tech University Libraries.
References
Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hart-Davis, A., White, C. & Mawby, R. (1970). Inorg. Chim. Acta, 4, 441–446. CAS Google Scholar
Herde, J. L., Lambert, J. C., Senoff, C. V. & Cushing, M. A. (1974). Inorganic Syntheses, pp. 18–20 John Wiley & Sons, Inc. Google Scholar
Marder, T. B., Calabrese, J. C., Roe, D. C. & Tulip, T. H. (1987). Organometallics, 6, 2012–2014. CSD CrossRef CAS Web of Science Google Scholar
Merola, J. S., Kacmarcik, R. T. & Van Engen, D. (1986). J. Am. Chem. Soc. 108, 329–331. CSD CrossRef CAS Web of Science Google Scholar
Mlekuz, M., Bougeard, P., Sayer, B. G., McGlinchey, M. J., Rodger, C. A., Churchill, M. R., Ziller, J. W., Kang, S. K. & Albright, T. A. (1986). Organometallics, 5, 1656–1663. CSD CrossRef CAS Web of Science Google Scholar
Rerek, M. E., Ji, L.-N. & Basolo, F. (1983). Chem. Commun. pp. 1208–1209. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Szajek, L. P., Lawson, R. J. & Shapley, J. R. (1991). Organometallics, 10, 357–361. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The indenyl ligand has been shown to be very flexible in terms of its coordination to metals. An increased reactivity that is displayed by indenyl metal complexes compared with cyclopentadienyl complexes has been dubbed the "indenyl effect". The effect was first described by Mawby's group (Hart-Davis et al., 1970) and was further quantified by Basolo's group (Rerek et al., 1983) We have previously reported on the synthesis and structure of η3-indenyliridium complexes formed by reaction of an η5-indenyliridiumbis(olefin) complex and small phosphine ligands such as PMe3 or PhPMe2 (Merola et al., 1986). The smallest olefin complex of indenyl iridium, (η5-Indenyl)bis(η2-ethylene)iridium(I), 1, is the subject of this report. The thermal ellipsoid plot for both independent molecules of 1 is shown in figure 1. The most interesting aspects of the bonding are highlighted in table 1 showing the three short and two long bond distances of the "slipped" indenyl rings.
Figure 2 shows the "fold" of the indenyl ligand which imparts non-planarity of the 6-membered ring from the 5-membered ring. The angle between the planes defined by C1, C2 and C9 and that defined by C3, C8, C7, C4, C5 and C6 is 6.5 (4)° and 6.8 (4)° for the "A" and "B" molecules.