organic compounds
2-(Benzylcarbamoyl)nicotinic acid
aCollege of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China, bDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China, cMolecular Biology Laboratory of SATCM, First Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China, and dScience and Technology Department, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
*Correspondence e-mail: wuhaomrs@163.com
In the title compound, C14H12N2O3, the pyridine ring is twisted with respect to the phenyl ring and the carboxylic acid group at angles of 37.1 (5) and 8.1 (3)°, respectively; the phenyl ring forms a dihedral angle of 41.4 (1)° with the mean plane of the C—NH—C=O fragment. An intramolecular O—H⋯O hydrogen bond occurs between the carboxylic acid and carbonyl groups. In the crystal, N—H⋯O hydrogen bonds link molecules into a supramolecular chain running along the a-axis direction.
Related literature
For background to the title compound, see: Konshin et al. (2010). For a related structure, see: Koch et al. (2008).
Experimental
Crystal data
|
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536813024483/xu5724sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813024483/xu5724Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813024483/xu5724Isup3.cml
A solution of quinolinic acid anhydride (20 mmol) in CHCl3 (20 ml) was treated with Et3N (20 mmol). Then a solution of phenylmethanamine (20 mmol) in CHCl3 (15 ml) was added gradually at a rate such that the temperature of the mixture did not rise above 303 K. The mixture was left for 12 h. The resulting precipitate was filtered off, dissolved in the minimum amount of water, and precipitated by acetic acid. The precipitate was separated, washed with water and recrystallized from EtOH.
H atoms were positioned geometrically, with O—H = 0.82 Å and N—H = 0.86 Å and C—H = 0.93 and 0.97 Å for aromatic and methine H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x =1.5 for carboxyl H, and x = 1.2 for all other H atoms.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H12N2O3 | F(000) = 1072 |
Mr = 256.26 | Dx = 1.343 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 25 reflections |
a = 13.024 (3) Å | θ = 10–13° |
b = 8.4110 (17) Å | µ = 0.10 mm−1 |
c = 23.143 (5) Å | T = 293 K |
V = 2535.2 (9) Å3 | Block, colorless |
Z = 8 | 0.30 × 0.20 × 0.10 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.096 |
Radiation source: fine-focus sealed tube | θmax = 25.4°, θmin = 1.8° |
Graphite monochromator | h = 0→15 |
ω/2θ scans | k = 0→10 |
4586 measured reflections | l = −27→27 |
2326 independent reflections | 3 standard reflections every 200 reflections |
1242 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.167 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.053P)2] where P = (Fo2 + 2Fc2)/3 |
2326 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.14 e Å−3 |
C14H12N2O3 | V = 2535.2 (9) Å3 |
Mr = 256.26 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 13.024 (3) Å | µ = 0.10 mm−1 |
b = 8.4110 (17) Å | T = 293 K |
c = 23.143 (5) Å | 0.30 × 0.20 × 0.10 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.096 |
4586 measured reflections | 3 standard reflections every 200 reflections |
2326 independent reflections | intensity decay: 1% |
1242 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.167 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.22 e Å−3 |
2326 reflections | Δρmin = −0.14 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.42068 (17) | 0.3451 (3) | 0.54279 (10) | 0.0496 (7) | |
H1A | 0.4839 | 0.3212 | 0.5365 | 0.060* | |
O1 | 0.25706 (15) | 0.3073 (3) | 0.51797 (9) | 0.0653 (7) | |
C1 | 0.4634 (3) | 0.3853 (5) | 0.68730 (14) | 0.0751 (11) | |
H1B | 0.5234 | 0.4402 | 0.6784 | 0.090* | |
N2 | 0.49338 (17) | 0.1694 (3) | 0.46226 (10) | 0.0514 (7) | |
O2 | 0.17921 (17) | −0.0277 (3) | 0.38457 (12) | 0.0857 (8) | |
C2 | 0.4535 (3) | 0.3113 (6) | 0.74105 (17) | 0.0989 (15) | |
H2B | 0.5069 | 0.3171 | 0.7677 | 0.119* | |
O3 | 0.15332 (14) | 0.1519 (3) | 0.45110 (10) | 0.0694 (7) | |
H3B | 0.1874 | 0.2050 | 0.4738 | 0.104* | |
C3 | 0.3665 (3) | 0.2309 (6) | 0.75455 (17) | 0.0930 (13) | |
H3A | 0.3598 | 0.1830 | 0.7906 | 0.112* | |
C4 | 0.2891 (3) | 0.2204 (6) | 0.71546 (18) | 0.0911 (13) | |
H4A | 0.2297 | 0.1646 | 0.7249 | 0.109* | |
C5 | 0.2975 (3) | 0.2918 (5) | 0.66178 (15) | 0.0754 (11) | |
H5A | 0.2444 | 0.2824 | 0.6351 | 0.090* | |
C6 | 0.3857 (2) | 0.3779 (4) | 0.64753 (13) | 0.0538 (8) | |
C7 | 0.3974 (3) | 0.4559 (4) | 0.58954 (13) | 0.0605 (9) | |
H7A | 0.3343 | 0.5117 | 0.5803 | 0.073* | |
H7B | 0.4520 | 0.5342 | 0.5918 | 0.073* | |
C8 | 0.3502 (2) | 0.2801 (4) | 0.50990 (13) | 0.0491 (8) | |
C9 | 0.3895 (2) | 0.1729 (3) | 0.46270 (12) | 0.0426 (7) | |
C10 | 0.3298 (2) | 0.0857 (3) | 0.42331 (13) | 0.0478 (7) | |
C11 | 0.3839 (3) | −0.0003 (4) | 0.38152 (14) | 0.0584 (9) | |
H11A | 0.3478 | −0.0579 | 0.3539 | 0.070* | |
C12 | 0.4897 (3) | −0.0013 (4) | 0.38041 (15) | 0.0615 (9) | |
H12A | 0.5255 | −0.0579 | 0.3524 | 0.074* | |
C13 | 0.5402 (2) | 0.0838 (4) | 0.42194 (13) | 0.0576 (8) | |
H13A | 0.6116 | 0.0817 | 0.4219 | 0.069* | |
C14 | 0.2149 (2) | 0.0680 (4) | 0.41832 (14) | 0.0546 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0415 (13) | 0.0663 (17) | 0.0410 (14) | 0.0020 (13) | 0.0024 (11) | −0.0069 (13) |
O1 | 0.0363 (11) | 0.1000 (16) | 0.0595 (13) | 0.0078 (11) | 0.0056 (11) | −0.0135 (14) |
C1 | 0.072 (2) | 0.103 (3) | 0.050 (2) | −0.014 (2) | −0.0011 (18) | −0.019 (2) |
N2 | 0.0376 (12) | 0.0689 (17) | 0.0478 (15) | 0.0004 (12) | 0.0062 (11) | −0.0022 (15) |
O2 | 0.0640 (15) | 0.1065 (19) | 0.0865 (18) | −0.0091 (15) | −0.0183 (14) | −0.0250 (18) |
C2 | 0.097 (3) | 0.155 (4) | 0.045 (2) | 0.000 (3) | −0.010 (2) | −0.016 (3) |
O3 | 0.0432 (12) | 0.0951 (18) | 0.0701 (15) | 0.0013 (12) | −0.0042 (11) | −0.0104 (15) |
C3 | 0.121 (4) | 0.115 (3) | 0.043 (2) | 0.011 (3) | 0.014 (2) | 0.002 (3) |
C4 | 0.090 (3) | 0.111 (3) | 0.072 (3) | −0.003 (3) | 0.022 (2) | 0.017 (3) |
C5 | 0.057 (2) | 0.104 (3) | 0.065 (2) | 0.000 (2) | 0.0027 (17) | 0.010 (2) |
C6 | 0.0551 (18) | 0.063 (2) | 0.0434 (18) | 0.0046 (16) | 0.0044 (15) | −0.0106 (17) |
C7 | 0.061 (2) | 0.066 (2) | 0.054 (2) | 0.0011 (16) | 0.0074 (16) | −0.0053 (19) |
C8 | 0.0407 (16) | 0.064 (2) | 0.0428 (17) | 0.0004 (15) | 0.0053 (14) | 0.0043 (16) |
C9 | 0.0425 (14) | 0.0538 (17) | 0.0316 (15) | −0.0007 (14) | 0.0031 (12) | 0.0031 (15) |
C10 | 0.0486 (17) | 0.0525 (17) | 0.0425 (17) | 0.0008 (14) | 0.0033 (14) | 0.0076 (17) |
C11 | 0.068 (2) | 0.069 (2) | 0.0390 (17) | 0.0004 (18) | 0.0001 (16) | −0.0058 (19) |
C12 | 0.064 (2) | 0.070 (2) | 0.050 (2) | 0.0057 (18) | 0.0082 (17) | −0.0099 (19) |
C13 | 0.0458 (18) | 0.071 (2) | 0.0562 (19) | 0.0061 (16) | 0.0127 (16) | −0.0013 (19) |
C14 | 0.0488 (19) | 0.0655 (19) | 0.0494 (19) | −0.0037 (17) | −0.0065 (15) | 0.0055 (19) |
N1—C8 | 1.312 (3) | C4—C5 | 1.384 (5) |
N1—C7 | 1.460 (4) | C4—H4A | 0.9300 |
N1—H1A | 0.8600 | C5—C6 | 1.398 (5) |
O1—C8 | 1.249 (3) | C5—H5A | 0.9300 |
C1—C6 | 1.369 (4) | C6—C7 | 1.502 (4) |
C1—C2 | 1.397 (5) | C7—H7A | 0.9700 |
C1—H1B | 0.9300 | C7—H7B | 0.9700 |
N2—C13 | 1.327 (4) | C8—C9 | 1.506 (4) |
N2—C9 | 1.353 (3) | C9—C10 | 1.405 (4) |
O2—C14 | 1.214 (4) | C10—C11 | 1.398 (4) |
C2—C3 | 1.357 (5) | C10—C14 | 1.508 (4) |
C2—H2B | 0.9300 | C11—C12 | 1.378 (4) |
O3—C14 | 1.310 (4) | C11—H11A | 0.9300 |
O3—H3B | 0.8200 | C12—C13 | 1.367 (4) |
C3—C4 | 1.357 (5) | C12—H12A | 0.9300 |
C3—H3A | 0.9300 | C13—H13A | 0.9300 |
C8—N1—C7 | 123.4 (2) | C6—C7—H7A | 108.8 |
C8—N1—H1A | 118.3 | N1—C7—H7B | 108.8 |
C7—N1—H1A | 118.3 | C6—C7—H7B | 108.8 |
C6—C1—C2 | 120.7 (4) | H7A—C7—H7B | 107.7 |
C6—C1—H1B | 119.7 | O1—C8—N1 | 121.1 (3) |
C2—C1—H1B | 119.7 | O1—C8—C9 | 123.3 (3) |
C13—N2—C9 | 118.5 (3) | N1—C8—C9 | 115.6 (2) |
C3—C2—C1 | 120.3 (4) | N2—C9—C10 | 122.5 (3) |
C3—C2—H2B | 119.9 | N2—C9—C8 | 111.0 (2) |
C1—C2—H2B | 119.9 | C10—C9—C8 | 126.5 (2) |
C14—O3—H3B | 109.5 | C11—C10—C9 | 116.1 (3) |
C2—C3—C4 | 120.0 (4) | C11—C10—C14 | 113.3 (3) |
C2—C3—H3A | 120.0 | C9—C10—C14 | 130.6 (3) |
C4—C3—H3A | 120.0 | C12—C11—C10 | 121.3 (3) |
C3—C4—C5 | 120.7 (4) | C12—C11—H11A | 119.3 |
C3—C4—H4A | 119.6 | C10—C11—H11A | 119.3 |
C5—C4—H4A | 119.6 | C13—C12—C11 | 117.7 (3) |
C4—C5—C6 | 120.1 (4) | C13—C12—H12A | 121.2 |
C4—C5—H5A | 119.9 | C11—C12—H12A | 121.1 |
C6—C5—H5A | 119.9 | N2—C13—C12 | 123.9 (3) |
C1—C6—C5 | 118.2 (3) | N2—C13—H13A | 118.1 |
C1—C6—C7 | 120.4 (3) | C12—C13—H13A | 118.1 |
C5—C6—C7 | 121.4 (3) | O2—C14—O3 | 119.7 (3) |
N1—C7—C6 | 113.9 (2) | O2—C14—C10 | 119.6 (3) |
N1—C7—H7A | 108.8 | O3—C14—C10 | 120.7 (3) |
C6—C1—C2—C3 | −0.1 (7) | N1—C8—C9—N2 | −2.3 (4) |
C1—C2—C3—C4 | 0.9 (7) | O1—C8—C9—C10 | −2.5 (5) |
C2—C3—C4—C5 | −0.4 (7) | N1—C8—C9—C10 | 177.7 (3) |
C3—C4—C5—C6 | −1.0 (6) | N2—C9—C10—C11 | −2.8 (4) |
C2—C1—C6—C5 | −1.2 (6) | C8—C9—C10—C11 | 177.2 (3) |
C2—C1—C6—C7 | −179.2 (3) | N2—C9—C10—C14 | 177.0 (3) |
C4—C5—C6—C1 | 1.7 (5) | C8—C9—C10—C14 | −3.0 (5) |
C4—C5—C6—C7 | 179.7 (3) | C9—C10—C11—C12 | 1.5 (4) |
C8—N1—C7—C6 | 93.2 (4) | C14—C10—C11—C12 | −178.4 (3) |
C1—C6—C7—N1 | 102.4 (4) | C10—C11—C12—C13 | 0.5 (5) |
C5—C6—C7—N1 | −75.5 (4) | C9—N2—C13—C12 | 0.2 (5) |
C7—N1—C8—O1 | −1.8 (5) | C11—C12—C13—N2 | −1.4 (5) |
C7—N1—C8—C9 | 178.1 (2) | C11—C10—C14—O2 | 7.7 (4) |
C13—N2—C9—C10 | 2.1 (4) | C9—C10—C14—O2 | −172.1 (3) |
C13—N2—C9—C8 | −178.0 (3) | C11—C10—C14—O3 | −174.0 (3) |
O1—C8—C9—N2 | 177.6 (3) | C9—C10—C14—O3 | 6.2 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.86 | 2.24 | 3.033 (3) | 154 |
O3—H3B···O1 | 0.82 | 1.62 | 2.435 (3) | 179 |
Symmetry code: (i) x+1/2, −y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.86 | 2.24 | 3.033 (3) | 154 |
O3—H3B···O1 | 0.82 | 1.62 | 2.435 (3) | 179 |
Symmetry code: (i) x+1/2, −y+1/2, −z+1. |
Acknowledgements
The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.
References
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Koch, C., Görls, H. & Westerhausen, M. (2008). Acta Cryst. E64, o2358. Web of Science CSD CrossRef IUCr Journals Google Scholar
Konshin, M. E., Syropyatov, B. Y., Vakhrin, M. I., Neifel'd, P. G., Feshin, V. P., Shurov, S. N. & Odegova1, T. F. (2010). Pharm. Chem. J. 44, 476–479. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Drugs that reduce blood coagulation and are widely used for therapy and prevention in surgical operations and for ischemic heart disease and other diseases are known to have several serious shortcomings (Konshin et al., 2010). Our research on biologically active amides and hydrazides of pyridinecarboxylic acids led to the synthesis of substituted 3-carboxypicolinic acid amides.
The molecular structure of the title compound is shown in Fig. 1. The pyridine ring is twisted by 37.1 (5) and 8.1 (3)°, with respect to the benzene ring and carboxyl group; the benzene ring forms a dihedral angle of 41.4 (1)° with the mean plane of the C—NH—C═O fragment.
As shown in Figure 2, the molecules are linked by N—H···O hydrogen bonds into chain in the crystal lattice (Table 1).