metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tetra­methyl­ammonium [tri-μ2-formato-κ6O:O′-manganate(II)]]

aSchool of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China
*Correspondence e-mail: dangqq820116@163.com

(Received 24 July 2013; accepted 27 August 2013; online 12 September 2013)

In the title compound, {(C4H12N)[Mn(HCO2)3]}n, the MnII atom lies on an inversion centre and is coordinated by O-atom donors from the three double-bridging formate ligands, one of which lies across a crystallographic mirror plane, giving a slightly distorted octahedral coordination sphere. A three-dimensional NaCl-type framework is generated in which the tetra­methyl­ammonium cations, which lie across mirror planes and occupy the cavities in the polymer structure, form weak C—H⋯O hydrogen bonds with the formate ligands.

Related literature

For related structures, see: Gao & Ng (2010[Gao, S. & Ng, S. W. (2010). Acta Cryst. E66, m1599.]); Wang et al. (2004[Wang, Z. M., Zhang, B., Otsuka, T., Inoue, K., Kobayashi, H. & Kurmoo, M. (2004). Dalton Trans. pp. 2209-2216.], 2010[Wang, Z. M., Hu, K. L., Gao, S. & Kobayashi, H. (2010). Adv. Mater. 22, 1526-1533.]). For background to the properties of structures with metal–formate frameworks templated by protonated amines, see: Liu et al. (2012[Liu, B., Shang, R. H. K. L., Wang, Z. M. & Gao, S. (2012). Inorg. Chem. 24, 13363-13372.]); Zhang et al. (2007[Zhang, B., Wang, Z. M., Kurmoo, M., Gao, S., Inoue, K. & Kobayashi, H. (2007). Adv. Funct. Mater. 17, 577-584.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H12N)[Mn(HCO2)3]

  • Mr = 264.14

  • Orthorhombic, P n m a

  • a = 8.926 (4) Å

  • b = 12.767 (6) Å

  • c = 9.196 (4) Å

  • V = 1048.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 298 K

  • 0.22 × 0.22 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.768, Tmax = 0.833

  • 5907 measured reflections

  • 1189 independent reflections

  • 1012 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.075

  • S = 0.98

  • 1189 reflections

  • 77 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 2.2176 (16)
Mn1—O2 2.2010 (15)
Mn1—O3i 2.2089 (16)
Mn1—O1ii 2.2176 (16)
Mn1—O2ii 2.2010 (15)
Mn1—O3iii 2.2089 (16)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O3ii 0.96 2.40 3.355 (3) 176
C4—H4B⋯O2iv 0.96 2.41 3.367 (3) 171
C5—H5B⋯O1iii 0.96 2.41 3.349 (3) 167
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Recently, metal formate frameworks templated by protonated amines attract considerable attention because their special structures and interesting properties (Liu et al., 2012; Zhang et al., 2007). A series of protonated ammonium cations (methylamine, ethylamine, dimethylamine, cyclotrimethyleneamine, N,N-dimethylethylenediammonium) have been employed to synthesize metal formate frameworks (Gao et al., 2010; Wang et al., 2010; Wang et al., 2004). In the present contribution, we report a new manganese formate complex {(Me4N) [Mn(HCO2)]3}n, templated using tetramethylamine cations. The formate ligand and tetramethylamine cation result from an in situ decomposition reaction of the N,N-dimethylformamide solvent.

In the title complex (Fig. 1), the MnII cations lie on crystallographic inversion centres and are coordinated by six O-atom donors from bridging formate ligands, one of which lies across a crystallographic mirror plane and gives an anti-anti mode. A slightly distorted octahedral geometry is found about MnII[Mn1—O1, Mn1—O2 and Mn1—O3 are 2.2176 (16), 2.2010 (15) and 2.2089 (16) Å, respectively (Table 1)] while the Mn—Mn separations across the bridging formates are 6.3835 (20)–6.4078 (20) Å. A three-dimensional NaCl-type framework is generated in which the protonated tetramethylamine cations, which also lie on crystallographic mirror planes, occupy the polymer cavities, acting as templates for charge-compensation and space-filling (Fig.2) and are weakly associated with the formate cations through C—H···O hydrogen bonds (Table 2).

Related literature top

For related structures, see: Gao & Ng (2010); Wang et al. (2004, 2010). For background to the properties of structures with metal formate frameworks templated by protonated amines, see: Liu et al. (2012); Zhang et al. (2007).

Experimental top

The title compound compound was synthesized hydrothermally under autogenous pressure. Typically, a mixture of manganese(II) acetate (0.049 g, 0.2 mmol), sodium hydroxide(0.008 g, 0.2 mmol), N,N-dimethylformamide (4 ml) and methanol (2.5 ml) was loaded into a 15 ml Teflon-lined stainless container and stirred in air for 20 minutes, then heated to 180 °C for 5 days. After cooling to room temperature and filtering, colorless block crystals were recovered in 90% yield.

Refinement top

Hydrogen atoms of the organic groups were placed at calculated positions with C—H = 0.96 Å (methyl) or C—H = 0.93 Å (formyl) and allowed to ride, with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Atom numbering scheme for the cation and anion species in the title complex, with displacement ellipsoids drawn at the 50% probability level. For symmetry codes: (a) -x +1, -y +1, -z +1; (b) x +1/2, y, -z +1/2; (c) -x +1/2, -y +1, z +1/2; (e) x, -y +3/2, z.
[Figure 2] Fig. 2. A view of the three-dimensional NaCl-like structure of the title compound
Poly[tetramethylammonium [tri-µ2-formato-κ6O:O'-manganate(II)]] top
Crystal data top
(C4H12N)[Mn(HCO2)3]F(000) = 548
Mr = 264.14Dx = 1.674 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2391 reflections
a = 8.926 (4) Åθ = 3.2–28.6°
b = 12.767 (6) ŵ = 1.27 mm1
c = 9.196 (4) ÅT = 298 K
V = 1048.0 (8) Å3Block, colorless
Z = 40.22 × 0.22 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1189 independent reflections
Radiation source: fine-focus sealed tube1012 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Φ and ω scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 118
Tmin = 0.768, Tmax = 0.833k = 1616
5907 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.041P)2 + 0.4246P]
where P = (Fo2 + 2Fc2)/3
1189 reflections(Δ/σ)max < 0.001
77 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
(C4H12N)[Mn(HCO2)3]V = 1048.0 (8) Å3
Mr = 264.14Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 8.926 (4) ŵ = 1.27 mm1
b = 12.767 (6) ÅT = 298 K
c = 9.196 (4) Å0.22 × 0.22 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1189 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1012 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.833Rint = 0.023
5907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 0.98Δρmax = 0.27 e Å3
1189 reflectionsΔρmin = 0.43 e Å3
77 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.500000.500000.500000.0196 (1)
O10.48275 (14)0.66330 (9)0.41954 (13)0.0353 (4)
O20.29850 (13)0.45825 (9)0.37482 (12)0.0328 (3)
O30.13485 (14)0.45849 (10)0.19299 (12)0.0370 (4)
C10.4883 (3)0.750000.4754 (3)0.0294 (7)
C20.25485 (17)0.48251 (13)0.25112 (16)0.0264 (5)
N11.0114 (2)0.750000.4921 (2)0.0310 (7)
C31.0293 (4)0.750000.6524 (3)0.0565 (12)
C40.8494 (3)0.750000.4525 (4)0.0515 (10)
C51.0830 (2)0.65471 (15)0.4312 (2)0.0461 (6)
H10.498300.750000.576100.0350*
H20.319800.523400.196000.0320*
H3A1.134000.750000.676400.0680*
H3B0.982800.688600.692300.0680*
H4A0.839400.750000.348600.0620*
H4B0.802300.811400.491700.0620*
H5A1.187700.654800.454700.0690*
H5B1.070800.654100.327400.0690*
H5C1.036600.593600.472000.0690*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0205 (2)0.0185 (2)0.0197 (2)0.0002 (1)0.0002 (1)0.0001 (1)
O10.0513 (8)0.0212 (6)0.0335 (7)0.0006 (5)0.0021 (5)0.0020 (5)
O20.0316 (6)0.0361 (6)0.0306 (6)0.0047 (5)0.0094 (5)0.0038 (5)
O30.0361 (7)0.0417 (7)0.0332 (6)0.0044 (6)0.0128 (5)0.0073 (5)
C10.0396 (15)0.0277 (13)0.0210 (10)0.00000.0014 (9)0.0000
C20.0277 (9)0.0245 (7)0.0271 (9)0.0021 (6)0.0012 (7)0.0010 (6)
N10.0359 (13)0.0271 (12)0.0301 (12)0.00000.0039 (8)0.0000
C30.103 (3)0.0385 (16)0.0279 (14)0.00000.0075 (15)0.0000
C40.0307 (14)0.0389 (15)0.085 (2)0.00000.0086 (15)0.0000
C50.0478 (11)0.0430 (11)0.0474 (11)0.0158 (9)0.0043 (9)0.0143 (9)
Geometric parameters (Å, º) top
Mn1—O12.2176 (16)N1—C5iv1.484 (2)
Mn1—O22.2010 (15)C1—H10.9300
Mn1—O3i2.2089 (16)C2—H20.9300
Mn1—O1ii2.2176 (16)C3—H3A0.9600
Mn1—O2ii2.2010 (15)C3—H3B0.9600
Mn1—O3iii2.2089 (16)C3—H3Biv0.9600
O1—C11.2213 (17)C4—H4A0.9600
O2—C21.2417 (19)C4—H4B0.9600
O3—C21.236 (2)C4—H4Biv0.9600
N1—C41.491 (3)C5—H5A0.9600
N1—C51.484 (2)C5—H5B0.9600
N1—C31.483 (3)C5—H5C0.9600
O1—Mn1—O289.80 (4)O1—C1—O1iv130.0 (2)
O1—Mn1—O3i90.27 (5)O2—C2—O3127.33 (15)
O1—Mn1—O1ii180.00O1—C1—H1115.00
O1—Mn1—O2ii90.20 (4)O1iv—C1—H1115.00
O1—Mn1—O3iii89.73 (5)O3—C2—H2116.00
O2—Mn1—O3i91.89 (4)O2—C2—H2116.00
O1ii—Mn1—O290.20 (4)N1—C3—H3A109.00
O2—Mn1—O2ii180.00N1—C3—H3B109.00
O2—Mn1—O3iii88.11 (4)N1—C3—H3Biv109.00
O1ii—Mn1—O3i89.73 (5)H3A—C3—H3B109.00
O2ii—Mn1—O3i88.11 (4)H3A—C3—H3Biv109.00
O3i—Mn1—O3iii180.00H3B—C3—H3Biv110.00
O1ii—Mn1—O2ii89.80 (4)N1—C4—H4A109.00
O1ii—Mn1—O3iii90.27 (5)N1—C4—H4B109.00
O2ii—Mn1—O3iii91.89 (4)N1—C4—H4Biv109.00
Mn1—O1—C1135.15 (14)H4A—C4—H4B109.00
Mn1—O2—C2132.47 (11)H4A—C4—H4Biv109.00
Mn1v—O3—C2139.49 (11)H4B—C4—H4Biv110.00
C3—N1—C5109.20 (13)N1—C5—H5A109.00
C3—N1—C5iv109.20 (13)N1—C5—H5B109.00
C4—N1—C5108.99 (13)N1—C5—H5C109.00
C4—N1—C5iv108.99 (13)H5A—C5—H5B110.00
C5—N1—C5iv110.13 (15)H5A—C5—H5C109.00
C3—N1—C4110.3 (2)H5B—C5—H5C109.00
O2—Mn1—O1—C1132.4 (2)O1ii—Mn1—O2—C2139.34 (14)
O3i—Mn1—O1—C140.5 (2)O3iii—Mn1—O2—C249.08 (14)
O2ii—Mn1—O1—C147.7 (2)Mn1—O1—C1—O1iv176.99 (17)
O3iii—Mn1—O1—C1139.5 (2)Mn1—O2—C2—O3176.16 (12)
O1—Mn1—O2—C240.66 (14)Mn1v—O3—C2—O2168.34 (12)
O3i—Mn1—O2—C2130.92 (14)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y, z+1/2; (iv) x, y+3/2, z; (v) x+1/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O3ii0.962.403.355 (3)176
C4—H4B···O2vi0.962.413.367 (3)171
C5—H5B···O1iii0.962.413.349 (3)167
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1/2, y, z+1/2; (vi) x+1, y+1/2, z+1.
Selected bond lengths (Å) top
Mn1—O12.2176 (16)Mn1—O1ii2.2176 (16)
Mn1—O22.2010 (15)Mn1—O2ii2.2010 (15)
Mn1—O3i2.2089 (16)Mn1—O3iii2.2089 (16)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O3ii0.962.403.355 (3)176
C4—H4B···O2iv0.962.413.367 (3)171
C5—H5B···O1iii0.962.413.349 (3)167
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1/2, y, z+1/2; (iv) x+1, y+1/2, z+1.
 

Acknowledgements

The authors thank the Shanxi Province Science Foundation for Youths (2012021008–2), the National Natural Science Foundation of China (21101102) and the National Science Fund for Distinguished Young Scholars (20925101).

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2007). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, S. & Ng, S. W. (2010). Acta Cryst. E66, m1599.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, B., Shang, R. H. K. L., Wang, Z. M. & Gao, S. (2012). Inorg. Chem. 24, 13363–13372.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z. M., Hu, K. L., Gao, S. & Kobayashi, H. (2010). Adv. Mater. 22, 1526–1533.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, Z. M., Zhang, B., Otsuka, T., Inoue, K., Kobayashi, H. & Kurmoo, M. (2004). Dalton Trans. pp. 2209–2216.  Web of Science CSD CrossRef Google Scholar
First citationZhang, B., Wang, Z. M., Kurmoo, M., Gao, S., Inoue, K. & Kobayashi, H. (2007). Adv. Funct. Mater. 17, 577–584.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds