metal-organic compounds
Poly[tetramethylammonium [tri-μ2-formato-κ6O:O′-manganate(II)]]
aSchool of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China
*Correspondence e-mail: dangqq820116@163.com
In the title compound, {(C4H12N)[Mn(HCO2)3]}n, the MnII atom lies on an inversion centre and is coordinated by O-atom donors from the three double-bridging formate ligands, one of which lies across a crystallographic mirror plane, giving a slightly distorted octahedral coordination sphere. A three-dimensional NaCl-type framework is generated in which the tetramethylammonium cations, which lie across mirror planes and occupy the cavities in the polymer structure, form weak C—H⋯O hydrogen bonds with the formate ligands.
Related literature
For related structures, see: Gao & Ng (2010); Wang et al. (2004, 2010). For background to the properties of structures with metal–formate frameworks templated by protonated see: Liu et al. (2012); Zhang et al. (2007).
Experimental
Crystal data
|
|
|
Data collection: SMART (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536813024045/zs2272sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813024045/zs2272Isup2.hkl
The title compound compound was synthesized hydrothermally under autogenous pressure. Typically, a mixture of manganese(II) acetate (0.049 g, 0.2 mmol), sodium hydroxide(0.008 g, 0.2 mmol), N,N-dimethylformamide (4 ml) and methanol (2.5 ml) was loaded into a 15 ml Teflon-lined stainless container and stirred in air for 20 minutes, then heated to 180 °C for 5 days. After cooling to room temperature and filtering, colorless block crystals were recovered in 90% yield.
Hydrogen atoms of the organic groups were placed at calculated positions with C—H = 0.96 Å (methyl) or C—H = 0.93 Å (formyl) and allowed to ride, with Uiso(H) = 1.2 or 1.5Ueq(C).
Data collection: SMART (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).(C4H12N)[Mn(HCO2)3] | F(000) = 548 |
Mr = 264.14 | Dx = 1.674 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 2391 reflections |
a = 8.926 (4) Å | θ = 3.2–28.6° |
b = 12.767 (6) Å | µ = 1.27 mm−1 |
c = 9.196 (4) Å | T = 298 K |
V = 1048.0 (8) Å3 | Block, colorless |
Z = 4 | 0.22 × 0.22 × 0.15 mm |
Bruker SMART CCD area-detector diffractometer | 1189 independent reflections |
Radiation source: fine-focus sealed tube | 1012 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Φ and ω scans | θmax = 27.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −11→8 |
Tmin = 0.768, Tmax = 0.833 | k = −16→16 |
5907 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.041P)2 + 0.4246P] where P = (Fo2 + 2Fc2)/3 |
1189 reflections | (Δ/σ)max < 0.001 |
77 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
(C4H12N)[Mn(HCO2)3] | V = 1048.0 (8) Å3 |
Mr = 264.14 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 8.926 (4) Å | µ = 1.27 mm−1 |
b = 12.767 (6) Å | T = 298 K |
c = 9.196 (4) Å | 0.22 × 0.22 × 0.15 mm |
Bruker SMART CCD area-detector diffractometer | 1189 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 1012 reflections with I > 2σ(I) |
Tmin = 0.768, Tmax = 0.833 | Rint = 0.023 |
5907 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.27 e Å−3 |
1189 reflections | Δρmin = −0.43 e Å−3 |
77 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.50000 | 0.50000 | 0.50000 | 0.0196 (1) | |
O1 | 0.48275 (14) | 0.66330 (9) | 0.41954 (13) | 0.0353 (4) | |
O2 | 0.29850 (13) | 0.45825 (9) | 0.37482 (12) | 0.0328 (3) | |
O3 | 0.13485 (14) | 0.45849 (10) | 0.19299 (12) | 0.0370 (4) | |
C1 | 0.4883 (3) | 0.75000 | 0.4754 (3) | 0.0294 (7) | |
C2 | 0.25485 (17) | 0.48251 (13) | 0.25112 (16) | 0.0264 (5) | |
N1 | 1.0114 (2) | 0.75000 | 0.4921 (2) | 0.0310 (7) | |
C3 | 1.0293 (4) | 0.75000 | 0.6524 (3) | 0.0565 (12) | |
C4 | 0.8494 (3) | 0.75000 | 0.4525 (4) | 0.0515 (10) | |
C5 | 1.0830 (2) | 0.65471 (15) | 0.4312 (2) | 0.0461 (6) | |
H1 | 0.49830 | 0.75000 | 0.57610 | 0.0350* | |
H2 | 0.31980 | 0.52340 | 0.19600 | 0.0320* | |
H3A | 1.13400 | 0.75000 | 0.67640 | 0.0680* | |
H3B | 0.98280 | 0.68860 | 0.69230 | 0.0680* | |
H4A | 0.83940 | 0.75000 | 0.34860 | 0.0620* | |
H4B | 0.80230 | 0.81140 | 0.49170 | 0.0620* | |
H5A | 1.18770 | 0.65480 | 0.45470 | 0.0690* | |
H5B | 1.07080 | 0.65410 | 0.32740 | 0.0690* | |
H5C | 1.03660 | 0.59360 | 0.47200 | 0.0690* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0205 (2) | 0.0185 (2) | 0.0197 (2) | −0.0002 (1) | −0.0002 (1) | 0.0001 (1) |
O1 | 0.0513 (8) | 0.0212 (6) | 0.0335 (7) | 0.0006 (5) | −0.0021 (5) | 0.0020 (5) |
O2 | 0.0316 (6) | 0.0361 (6) | 0.0306 (6) | −0.0047 (5) | −0.0094 (5) | 0.0038 (5) |
O3 | 0.0361 (7) | 0.0417 (7) | 0.0332 (6) | −0.0044 (6) | −0.0128 (5) | 0.0073 (5) |
C1 | 0.0396 (15) | 0.0277 (13) | 0.0210 (10) | 0.0000 | −0.0014 (9) | 0.0000 |
C2 | 0.0277 (9) | 0.0245 (7) | 0.0271 (9) | −0.0021 (6) | 0.0012 (7) | 0.0010 (6) |
N1 | 0.0359 (13) | 0.0271 (12) | 0.0301 (12) | 0.0000 | 0.0039 (8) | 0.0000 |
C3 | 0.103 (3) | 0.0385 (16) | 0.0279 (14) | 0.0000 | 0.0075 (15) | 0.0000 |
C4 | 0.0307 (14) | 0.0389 (15) | 0.085 (2) | 0.0000 | 0.0086 (15) | 0.0000 |
C5 | 0.0478 (11) | 0.0430 (11) | 0.0474 (11) | 0.0158 (9) | −0.0043 (9) | −0.0143 (9) |
Mn1—O1 | 2.2176 (16) | N1—C5iv | 1.484 (2) |
Mn1—O2 | 2.2010 (15) | C1—H1 | 0.9300 |
Mn1—O3i | 2.2089 (16) | C2—H2 | 0.9300 |
Mn1—O1ii | 2.2176 (16) | C3—H3A | 0.9600 |
Mn1—O2ii | 2.2010 (15) | C3—H3B | 0.9600 |
Mn1—O3iii | 2.2089 (16) | C3—H3Biv | 0.9600 |
O1—C1 | 1.2213 (17) | C4—H4A | 0.9600 |
O2—C2 | 1.2417 (19) | C4—H4B | 0.9600 |
O3—C2 | 1.236 (2) | C4—H4Biv | 0.9600 |
N1—C4 | 1.491 (3) | C5—H5A | 0.9600 |
N1—C5 | 1.484 (2) | C5—H5B | 0.9600 |
N1—C3 | 1.483 (3) | C5—H5C | 0.9600 |
O1—Mn1—O2 | 89.80 (4) | O1—C1—O1iv | 130.0 (2) |
O1—Mn1—O3i | 90.27 (5) | O2—C2—O3 | 127.33 (15) |
O1—Mn1—O1ii | 180.00 | O1—C1—H1 | 115.00 |
O1—Mn1—O2ii | 90.20 (4) | O1iv—C1—H1 | 115.00 |
O1—Mn1—O3iii | 89.73 (5) | O3—C2—H2 | 116.00 |
O2—Mn1—O3i | 91.89 (4) | O2—C2—H2 | 116.00 |
O1ii—Mn1—O2 | 90.20 (4) | N1—C3—H3A | 109.00 |
O2—Mn1—O2ii | 180.00 | N1—C3—H3B | 109.00 |
O2—Mn1—O3iii | 88.11 (4) | N1—C3—H3Biv | 109.00 |
O1ii—Mn1—O3i | 89.73 (5) | H3A—C3—H3B | 109.00 |
O2ii—Mn1—O3i | 88.11 (4) | H3A—C3—H3Biv | 109.00 |
O3i—Mn1—O3iii | 180.00 | H3B—C3—H3Biv | 110.00 |
O1ii—Mn1—O2ii | 89.80 (4) | N1—C4—H4A | 109.00 |
O1ii—Mn1—O3iii | 90.27 (5) | N1—C4—H4B | 109.00 |
O2ii—Mn1—O3iii | 91.89 (4) | N1—C4—H4Biv | 109.00 |
Mn1—O1—C1 | 135.15 (14) | H4A—C4—H4B | 109.00 |
Mn1—O2—C2 | 132.47 (11) | H4A—C4—H4Biv | 109.00 |
Mn1v—O3—C2 | 139.49 (11) | H4B—C4—H4Biv | 110.00 |
C3—N1—C5 | 109.20 (13) | N1—C5—H5A | 109.00 |
C3—N1—C5iv | 109.20 (13) | N1—C5—H5B | 109.00 |
C4—N1—C5 | 108.99 (13) | N1—C5—H5C | 109.00 |
C4—N1—C5iv | 108.99 (13) | H5A—C5—H5B | 110.00 |
C5—N1—C5iv | 110.13 (15) | H5A—C5—H5C | 109.00 |
C3—N1—C4 | 110.3 (2) | H5B—C5—H5C | 109.00 |
O2—Mn1—O1—C1 | 132.4 (2) | O1ii—Mn1—O2—C2 | −139.34 (14) |
O3i—Mn1—O1—C1 | 40.5 (2) | O3iii—Mn1—O2—C2 | −49.08 (14) |
O2ii—Mn1—O1—C1 | −47.7 (2) | Mn1—O1—C1—O1iv | 176.99 (17) |
O3iii—Mn1—O1—C1 | −139.5 (2) | Mn1—O2—C2—O3 | −176.16 (12) |
O1—Mn1—O2—C2 | 40.66 (14) | Mn1v—O3—C2—O2 | 168.34 (12) |
O3i—Mn1—O2—C2 | 130.92 (14) |
Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x+1/2, y, −z+1/2; (iv) x, −y+3/2, z; (v) −x+1/2, −y+1, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3B···O3ii | 0.96 | 2.40 | 3.355 (3) | 176 |
C4—H4B···O2vi | 0.96 | 2.41 | 3.367 (3) | 171 |
C5—H5B···O1iii | 0.96 | 2.41 | 3.349 (3) | 167 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x+1/2, y, −z+1/2; (vi) −x+1, y+1/2, −z+1. |
Mn1—O1 | 2.2176 (16) | Mn1—O1ii | 2.2176 (16) |
Mn1—O2 | 2.2010 (15) | Mn1—O2ii | 2.2010 (15) |
Mn1—O3i | 2.2089 (16) | Mn1—O3iii | 2.2089 (16) |
Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x+1/2, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3B···O3ii | 0.96 | 2.40 | 3.355 (3) | 176 |
C4—H4B···O2iv | 0.96 | 2.41 | 3.367 (3) | 171 |
C5—H5B···O1iii | 0.96 | 2.41 | 3.349 (3) | 167 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x+1/2, y, −z+1/2; (iv) −x+1, y+1/2, −z+1. |
Acknowledgements
The authors thank the Shanxi Province Science Foundation for Youths (2012021008–2), the National Natural Science Foundation of China (21101102) and the National Science Fund for Distinguished Young Scholars (20925101).
References
Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2007). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gao, S. & Ng, S. W. (2010). Acta Cryst. E66, m1599. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, B., Shang, R. H. K. L., Wang, Z. M. & Gao, S. (2012). Inorg. Chem. 24, 13363–13372. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z. M., Hu, K. L., Gao, S. & Kobayashi, H. (2010). Adv. Mater. 22, 1526–1533. Web of Science CrossRef CAS PubMed Google Scholar
Wang, Z. M., Zhang, B., Otsuka, T., Inoue, K., Kobayashi, H. & Kurmoo, M. (2004). Dalton Trans. pp. 2209–2216. Web of Science CSD CrossRef Google Scholar
Zhang, B., Wang, Z. M., Kurmoo, M., Gao, S., Inoue, K. & Kobayashi, H. (2007). Adv. Funct. Mater. 17, 577–584. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, metal formate frameworks templated by protonated amines attract considerable attention because their special structures and interesting properties (Liu et al., 2012; Zhang et al., 2007). A series of protonated ammonium cations (methylamine, ethylamine, dimethylamine, cyclotrimethyleneamine, N,N-dimethylethylenediammonium) have been employed to synthesize metal formate frameworks (Gao et al., 2010; Wang et al., 2010; Wang et al., 2004). In the present contribution, we report a new manganese formate complex {(Me4N) [Mn(HCO2)]3}n, templated using tetramethylamine cations. The formate ligand and tetramethylamine cation result from an in situ decomposition reaction of the N,N-dimethylformamide solvent.
In the title complex (Fig. 1), the MnII cations lie on crystallographic inversion centres and are coordinated by six O-atom donors from bridging formate ligands, one of which lies across a crystallographic mirror plane and gives an anti-anti mode. A slightly distorted octahedral geometry is found about MnII[Mn1—O1, Mn1—O2 and Mn1—O3 are 2.2176 (16), 2.2010 (15) and 2.2089 (16) Å, respectively (Table 1)] while the Mn—Mn separations across the bridging formates are 6.3835 (20)–6.4078 (20) Å. A three-dimensional NaCl-type framework is generated in which the protonated tetramethylamine cations, which also lie on crystallographic mirror planes, occupy the polymer cavities, acting as templates for charge-compensation and space-filling (Fig.2) and are weakly associated with the formate cations through C—H···O hydrogen bonds (Table 2).