organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1694-o1695

Second monoclinic form of (E)-3-(4-fluoro­phen­yl)-1-phenyl­prop-2-en-1-one

aDivisión Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, AP 24, 86690 Cunduacán, Tab., Mexico, and bCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: angel.mendoza@correo.buap.mx

(Received 11 September 2013; accepted 12 October 2013; online 23 October 2013)

The unit-cell dimensions and space group of the second monoclinic polymorph of the title compound, C15H11FO, differ from those of the previously reported form [Jing (2009[Jing, L.-H. (2009). Acta Cryst. E65, o2515.]). Acta Cryst. E65, o2515]. The title compound shows an E conformation of the C=C bond with the 4-fluoro­phenyl group opposite to the benzoyl group. The torsion angle of between the planes of the 4-fluoro­phenyl and benzoyl groups is 10.53 (6)°. In the crystal, weak C—H⋯O and C—H⋯F inter­actions form a cross-linked packing motif, building sheets parallel to (-102).

Related literature

For the first monoclinic polymorph of the title compound, see: Jing (2009[Jing, L.-H. (2009). Acta Cryst. E65, o2515.]). For related crystal structures, see: Li et al. (1992[Li, Z., Pa, F. & Su, G. (1992). Acta Cryst. C48, 712-714.]); Li & Su (1994[Li, Z. & Su, G. (1994). Acta Cryst. C50, 126-127.]); For biological properties reports of chalcones, see: Foresti et al. (2005[Foresti, R., Hoque, M., Monti, D., Green, C. J. & Motterlini, R. J. (2005). J. Pharmacol. Exp. Ther. 312, 686-693.]); Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]); Kouskoura et al. (2008[Kouskoura, M., Hadjipavlou-Litina, D. & Giakoumakou, M. (2008). Med. Chem. 4, 586-596.]); Zhang et al. (2010[Zhang, X.-W., Zhao, D.-H., Quan, Y.-C., Sun, L.-P., Yin, X.-M. & Guan, L.-P. (2010). Med. Chem. Res. 19, 403-412.]); Doan & Tran (2011[Doan, T. N. & Tran, D. T. (2011). Pharmacol. Pharmacy, 2, 282-288.]). For solvent-free synthesis of chalcones, see: Srivastava (2008[Srivastava, Y. K. (2008). Rasayan J. Chem. 1, 884-886.]); Krishnakumar & Swaminathan (2011[Krishnakumar, B. & Swaminathan, M. (2011). J. Mol. Catal. A Chem. 350, 16-25.]); Thirunarayanan et al. (2012[Thirunarayanan, G., Mayavel, P. & Thirumurthy, K. (2012). Spectrochim. Acta Part A, 91, 18-22.]). For applications of chalcones in organic synthesis, see: Prakash et al. (2009[Prakash, O., Kumar, R. & Sehrawat, R. (2009). Eur. J. Med. Chem. 44, 1763-1767.]); Bandgar et al. (2009[Bandgar, B. P., Gawande, S. S., Bodade, R. G., Gawande, N. M. & Khobragade, C. N. (2009). Bioorg. Med. Chem. 17, 8168-8173.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11FO

  • Mr = 226.24

  • Monoclinic, P 21 /c

  • a = 8.6925 (4) Å

  • b = 5.9266 (2) Å

  • c = 22.6456 (9) Å

  • β = 95.423 (4)°

  • V = 1161.41 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.59 × 0.15 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur (Atlas, Gemini) diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.993, Tmax = 0.999

  • 22101 measured reflections

  • 2276 independent reflections

  • 1471 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.131

  • S = 1.01

  • 2276 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.49 3.244 (2) 138
C13—H13⋯F1ii 0.93 2.68 3.465 (2) 142
Symmetry codes: (i) -x+1, -y, -z; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Chalcones, like the title compound, are highly interesting materials due to their antioxidant, antibacterial, antifungal, antitumor and anti-inflammatory properties (Zhang et al., 2010; Kouskoura et al., 2008; Nowakowska, 2007; Foresti et al., 2005 and Doan & Tran, 2011). The title compound was obtained by a green Claisen-Schimdt condensation of 4-fluorobenzaldehyde with acetophenone. This reaction was carried out by a free solvent and microwave assisted method, with p-toluenesulfonic acid as catalyst (Thirunarayanan et al., 2012; Krishnakumar & Swaminathan, 2011; Srivastava, 2008). Also, chalcones are valuable intermediates in organic synthesis because of the α,β-unsaturated carbonyl system, which is considered as a key building block (Prakash et al., 2009; Bandgar et al., 2009).

The crystal structure of the title compound, C15H11FO, has been reported previously at 93 K (Jing, 2009). However, here we report the structure of a second monoclinic polymorph, which was elucidated at 293 (2) K. The new polymorph crystallizes in space group P21/c, which is different from the previous space group, Cc. The cell parameters of the current monoclinic polymorph vary significantly from the earlier form [a = 24.926 (9), b = 5.6940 (19), c = 7.749 (3) Å and β = 94.747 (5)°]. Furthermore, two more halo-chalcones were reported previously: 4-bromochalcone [Li et al., 1992; unit-cell parameters: a = 29.027 (7), b = 7.26 (2), c = 5.917 (3) Å and β = 101.38 (3)°] and 4-chlorochalcone [Li & Su, 1994; unit-cell parameters: a = 8.211 (2), b = 5.869 (2), c = 25.291 (5) Å and β = 99.18 °]. Both compounds show similar cell parameters to current polymorphs of the F-chalcone, however the space group is P21/c for the Cl derivative and Cc for the Br-chalcone, both characterized at room temperature.

The title compound shows a configuration E on the CC bond with p-fluorophenyl group opposite to the 1-phenylketone. Torsion angle of p-fluorophenyl to 1-phenylketone group is 10.53 (6)°. The crystal packing presents two intermolecular interactions of the type hydrogen bond (Table 1), C5—H5···O1 and C13—H13···F1 with the symmetry codes (i) -x + 1, -y, -z and (ii) x + 1, -y + 3/2, z + 1/2, respectively. These interactions form a cross-linked crystal packing, building sheets parallel to the (102) plane.

Related literature top

For the first monoclinic polymorph of the title compound, see: Jing (2009). For related crystal structures, see: Li et al. (1992); Li & Su (1994); For biological properties reports of chalcones, see: Foresti et al. (2005); Nowakowska (2007); Kouskoura et al. (2008); Zhang et al. (2010); Doan & Tran (2011). For solvent-free synthesis of chalcones, see: Srivastava (2008); Krishnakumar & Swaminathan (2011); Thirunarayanan et al. (2012). For applications of chalcones in organic synthesis, see: Prakash et al. (2009); Bandgar et al. (2009).

Experimental top

To a mixture of acetophenone (1.15 mmol) and 4-fluorobenzaldehyde (1.15 mmol) in dry media, 0.1 g of p-TsOH was added and the mixture was irradiated in a microwave oven at 480 W for 10 min. Completion of the reaction was tested by thin layer chromatography (TLC), and the crude product was purified by column chromatography on silica gel (eluent: hexane), to afford a yellow solid, (E)-3-(4-fluorophenyl)-1-phenylprop-2-en-1-one, in 85.4% yield, m. p. 79 °C. The pure product was recrystallized from hexane. The microwave oven VICHI: MW-600 (600 W) MOD: MICV/Vichy/F-814 was used; all the chemicals were purchased from Sigma-Aldrich and were used without further preparation. Spectroscopic analysis: νmax/cm-1 (neat KBr)= 3438, 1661, 1604, 1588, 1509, 1217, 1016, 829, 772. 1H-NMR (400 MHz, CDCl3): δ (p.p.m.) = 7.09 (tt, J= 2.0, 8.4 Hz, 2H), 7.46 (d, J=16 Hz, 1H), 7.49 (dd, J= 6.4, 8.4 Hz, 2H), 7.56 (dt, J=1.2, 6.4 Hz, 1H), 7.61 (ddt, J=2.0, 5.2, 8.4 Hz, 2H), 7.76 (d, J=16 Hz, 1H), 8.01 (dd, J=1.2, 8.4 Hz, 2H). 13C-NMR (101 MHz, CDCl3): δ (p.p.m.) = 115.91, 116.13, 121.58, 128.38 (2 C), 128.56 (2 C), 130.22, 130.31, 132.77, 137.98, 143.38, 162.69, 165.19, 190.15.

Refinement top

H atoms linked to C atoms were placed in idealized positions and refined as riding on their parent atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2 Ueq(carrier C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with 30% probability displacement ellipsoids for non-H atoms.
(E)-3-(4-Fluorophenyl)-1-phenylprop-2-en-1-one top
Crystal data top
C15H11FOF(000) = 472
Mr = 226.24Dx = 1.294 Mg m3
Monoclinic, P21/cMelting point: 352 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.6925 (4) ÅCell parameters from 4193 reflections
b = 5.9266 (2) Åθ = 3.6–23.2°
c = 22.6456 (9) ŵ = 0.09 mm1
β = 95.423 (4)°T = 293 K
V = 1161.41 (8) Å3Prism, colourless
Z = 40.59 × 0.15 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini)
diffractometer
2276 independent reflections
Graphite monochromator1471 reflections with I > 2σ(I)
Detector resolution: 10.5564 pixels mm-1Rint = 0.044
ω scansθmax = 26.1°, θmin = 2.8°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1010
Tmin = 0.993, Tmax = 0.999k = 77
22101 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.1205P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2276 reflectionsΔρmax = 0.11 e Å3
155 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL2013
0 constraintsExtinction coefficient: 0.0047 (18)
Primary atom site location: structure-invariant direct methods
Crystal data top
C15H11FOV = 1161.41 (8) Å3
Mr = 226.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6925 (4) ŵ = 0.09 mm1
b = 5.9266 (2) ÅT = 293 K
c = 22.6456 (9) Å0.59 × 0.15 × 0.07 mm
β = 95.423 (4)°
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini)
diffractometer
2276 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
1471 reflections with I > 2σ(I)
Tmin = 0.993, Tmax = 0.999Rint = 0.044
22101 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.01Δρmax = 0.11 e Å3
2276 reflectionsΔρmin = 0.11 e Å3
155 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.48635 (19)0.3169 (3)0.11626 (7)0.0677 (5)
H20.47430.45870.13280.081*
C40.31624 (17)0.4186 (3)0.02499 (7)0.0603 (4)
O10.58960 (17)0.0451 (2)0.13196 (6)0.0977 (5)
C30.41537 (18)0.2726 (3)0.06357 (7)0.0657 (4)
H30.43080.12830.04910.079*
C10.58376 (19)0.1497 (3)0.14973 (7)0.0680 (5)
F10.02919 (14)0.8135 (2)0.08612 (6)0.1173 (5)
C100.67648 (18)0.2155 (3)0.20579 (7)0.0620 (4)
C80.1728 (2)0.7614 (3)0.00570 (9)0.0815 (5)
H80.14110.90220.0180.098*
C50.2652 (2)0.3477 (3)0.03154 (7)0.0733 (5)
H50.29620.20740.04450.088*
C90.2692 (2)0.6298 (3)0.04281 (8)0.0735 (5)
H90.30340.68270.08040.088*
C70.1246 (2)0.6831 (3)0.04919 (9)0.0791 (5)
C60.1692 (2)0.4803 (3)0.06940 (8)0.0818 (6)
H60.13630.43170.10760.098*
C150.7800 (2)0.0620 (3)0.23197 (9)0.0910 (6)
H150.79070.07750.2140.109*
C110.6644 (2)0.4203 (3)0.23317 (8)0.0818 (5)
H110.59620.52820.21620.098*
C130.8525 (2)0.3131 (4)0.31101 (8)0.0909 (6)
H130.91050.34530.34660.109*
C120.7521 (3)0.4682 (4)0.28558 (9)0.0928 (6)
H120.74250.60770.30370.111*
C140.8678 (3)0.1097 (4)0.28394 (10)0.1066 (8)
H140.93760.00360.30070.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0750 (11)0.0601 (10)0.0658 (10)0.0067 (8)0.0043 (8)0.0066 (8)
C40.0562 (9)0.0621 (9)0.0614 (9)0.0056 (8)0.0005 (7)0.0005 (8)
O10.1263 (12)0.0693 (8)0.0905 (9)0.0259 (7)0.0263 (8)0.0201 (7)
C30.0668 (10)0.0602 (9)0.0688 (10)0.0014 (8)0.0003 (8)0.0053 (8)
C10.0740 (11)0.0621 (10)0.0665 (10)0.0091 (8)0.0008 (8)0.0073 (8)
F10.1054 (9)0.1264 (10)0.1130 (9)0.0174 (7)0.0265 (7)0.0378 (8)
C100.0658 (10)0.0610 (9)0.0587 (9)0.0044 (8)0.0028 (7)0.0012 (7)
C80.0795 (12)0.0741 (12)0.0888 (13)0.0132 (10)0.0026 (10)0.0048 (10)
C50.0779 (11)0.0716 (11)0.0683 (11)0.0064 (9)0.0043 (9)0.0043 (9)
C90.0758 (11)0.0729 (11)0.0699 (11)0.0071 (9)0.0032 (9)0.0054 (9)
C70.0642 (11)0.0878 (13)0.0824 (13)0.0012 (10)0.0073 (9)0.0216 (11)
C60.0807 (12)0.0935 (14)0.0675 (11)0.0128 (11)0.0132 (9)0.0056 (10)
C150.1073 (15)0.0710 (11)0.0887 (13)0.0170 (11)0.0233 (11)0.0078 (10)
C110.0900 (13)0.0775 (12)0.0751 (11)0.0183 (10)0.0077 (10)0.0150 (9)
C130.1022 (15)0.1003 (15)0.0659 (11)0.0081 (13)0.0140 (10)0.0003 (11)
C120.1098 (16)0.0867 (13)0.0791 (13)0.0040 (12)0.0051 (12)0.0251 (11)
C140.1241 (18)0.0903 (14)0.0954 (15)0.0148 (13)0.0433 (13)0.0021 (12)
Geometric parameters (Å, º) top
C2—C31.317 (2)C5—C61.383 (2)
C2—C11.467 (2)C5—H50.93
C2—H20.93C9—H90.93
C4—C51.380 (2)C7—C61.356 (3)
C4—C91.388 (2)C6—H60.93
C4—C31.453 (2)C15—C141.370 (3)
O1—C11.2255 (19)C15—H150.93
C3—H30.93C11—C121.378 (2)
C1—C101.490 (2)C11—H110.93
F1—C71.3615 (19)C13—C121.358 (3)
C10—C111.372 (2)C13—C141.365 (3)
C10—C151.374 (2)C13—H130.93
C8—C71.356 (3)C12—H120.93
C8—C91.372 (2)C14—H140.93
C8—H80.93
C3—C2—C1122.11 (15)C4—C9—H9119.5
C3—C2—H2118.9C8—C7—C6122.65 (17)
C1—C2—H2118.9C8—C7—F1119.12 (19)
C5—C4—C9117.80 (15)C6—C7—F1118.23 (18)
C5—C4—C3119.76 (15)C7—C6—C5118.00 (17)
C9—C4—C3122.44 (15)C7—C6—H6121
C2—C3—C4128.77 (15)C5—C6—H6121
C2—C3—H3115.6C14—C15—C10121.52 (18)
C4—C3—H3115.6C14—C15—H15119.2
O1—C1—C2120.43 (15)C10—C15—H15119.2
O1—C1—C10119.37 (15)C10—C11—C12120.78 (17)
C2—C1—C10120.20 (14)C10—C11—H11119.6
C11—C10—C15117.77 (16)C12—C11—H11119.6
C11—C10—C1123.94 (15)C12—C13—C14119.57 (18)
C15—C10—C1118.29 (15)C12—C13—H13120.2
C7—C8—C9118.99 (18)C14—C13—H13120.2
C7—C8—H8120.5C13—C12—C11120.46 (18)
C9—C8—H8120.5C13—C12—H12119.8
C4—C5—C6121.60 (17)C11—C12—H12119.8
C4—C5—H5119.2C13—C14—C15119.88 (19)
C6—C5—H5119.2C13—C14—H14120.1
C8—C9—C4120.94 (17)C15—C14—H14120.1
C8—C9—H9119.5
C1—C2—C3—C4179.76 (16)C9—C8—C7—C60.8 (3)
C5—C4—C3—C2173.35 (17)C9—C8—C7—F1179.91 (16)
C9—C4—C3—C26.9 (3)C8—C7—C6—C51.4 (3)
C3—C2—C1—O17.3 (3)F1—C7—C6—C5179.52 (16)
C3—C2—C1—C10172.77 (16)C4—C5—C6—C70.7 (3)
O1—C1—C10—C11171.95 (19)C11—C10—C15—C140.5 (3)
C2—C1—C10—C118.0 (3)C1—C10—C15—C14179.2 (2)
O1—C1—C10—C157.7 (3)C15—C10—C11—C120.8 (3)
C2—C1—C10—C15172.33 (18)C1—C10—C11—C12178.88 (17)
C9—C4—C5—C60.6 (2)C14—C13—C12—C110.8 (3)
C3—C4—C5—C6179.19 (16)C10—C11—C12—C130.1 (3)
C7—C8—C9—C40.5 (3)C12—C13—C14—C151.1 (4)
C5—C4—C9—C81.2 (3)C10—C15—C14—C130.4 (4)
C3—C4—C9—C8178.60 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.493.244 (2)138
C13—H13···F1ii0.932.683.465 (2)142
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.493.244 (2)138
C13—H13···F1ii0.932.683.465 (2)142
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+3/2, z+1/2.
 

Acknowledgements

The authors wish to acknowledge CONACyT–Gobierno del Estado Tabasco and the Universidad Juárez Autónoma de Tabasco for financial support via projects TAB-2009-C18–122141 and UJAT-2011-C07–22, respectively.

References

First citationBandgar, B. P., Gawande, S. S., Bodade, R. G., Gawande, N. M. & Khobragade, C. N. (2009). Bioorg. Med. Chem. 17, 8168–8173.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDoan, T. N. & Tran, D. T. (2011). Pharmacol. Pharmacy, 2, 282–288.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationForesti, R., Hoque, M., Monti, D., Green, C. J. & Motterlini, R. J. (2005). J. Pharmacol. Exp. Ther. 312, 686–693.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJing, L.-H. (2009). Acta Cryst. E65, o2515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKouskoura, M., Hadjipavlou-Litina, D. & Giakoumakou, M. (2008). Med. Chem. 4, 586–596.  Web of Science PubMed Google Scholar
First citationKrishnakumar, B. & Swaminathan, M. (2011). J. Mol. Catal. A Chem. 350, 16–25.  Web of Science CrossRef CAS Google Scholar
First citationLi, Z., Pa, F. & Su, G. (1992). Acta Cryst. C48, 712–714.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationLi, Z. & Su, G. (1994). Acta Cryst. C50, 126–127.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPrakash, O., Kumar, R. & Sehrawat, R. (2009). Eur. J. Med. Chem. 44, 1763–1767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, Y. K. (2008). Rasayan J. Chem. 1, 884–886.  CAS Google Scholar
First citationThirunarayanan, G., Mayavel, P. & Thirumurthy, K. (2012). Spectrochim. Acta Part A, 91, 18–22.  CrossRef CAS Google Scholar
First citationZhang, X.-W., Zhao, D.-H., Quan, Y.-C., Sun, L.-P., Yin, X.-M. & Guan, L.-P. (2010). Med. Chem. Res. 19, 403–412.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1694-o1695
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds