organic compounds
1-Acetyl-5-(4-fluorophenyl)-2-sulfanylideneimidazolidin-4-one
aDivision of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
*Correspondence e-mail: kunimoto@se.kanazawa-u.ac.jp
In the title compound, C11H9FN2O2S, the 2-sulfanylideneimidazolidin-4-one moiety is essentially planar, with a maximum deviation of 0.0183 (14) Å. The mean plane of this moiety is approximately coplanar with the attached acetyl group and perpendicular to the benzene ring, making dihedral angles of 9.70 (14) and 86.70 (6)°, respectively. In the crystal, molecules are linked by N—H⋯O hydrogen bonds between the amide NH and acetyl C=O groups, forming a C(6) chain along the a-axis direction.
CCDC reference: 966945
Related literature
For applications and the biological activity of 2-sulfanylideneimidazolidin-4-ones, see: Marton et al. (1993). For the crystal structures of related compounds, see: Casas et al. (1998); Sulbaran et al. (2007); Taniguchi et al. (2009). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Etter (1990). For the synthetic procedure, see: Schlack & Kumpf (1926).
Experimental
Crystal data
|
|
Data collection: CrystalClear (Rigaku, 2006); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2008 in Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).
Supporting information
CCDC reference: 966945
10.1107/S1600536813028560/is5315sup1.cif
contains datablocks General, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813028560/is5315Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813028560/is5315Isup3.cml
The title compound was synthesized using a slight modification of a reported method (Schlack & Kumpf, 1926). 4-Fluorophenylglycine (0.507 g, 3.00 mmol) was allowed to react with a mixture of ammonium thiocyanate (0.234 g, 3.07 mmol), acetic anhydride (10 ml), and acetic acid (2 ml) at 100 °C for 1 h. A white precipitate was obtained by adding 25 ml distilled water and subsequent cooling the solution in a refrigerator. The crude product was purified by recrystallization from an ethanol solution (yield: 47%). Single crystals suitable for X-ray diffraction were obtained from the ethanol solution.
The N-bound H atom was located in a difference map and refined freely [N2—H2 = 0.84 (2) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95, 0.98 or 1.00 Å) and refined using a riding model, with Uiso(H) = 1.2 Ueq(C). A rotating group model was applied to the methyl group.
Data collection: CrystalClear (Rigaku, 2006); cell
CrystalClear (Rigaku, 2006); data reduction: CrystalClear (Rigaku, 2006); program(s) used to solve structure: SIR2008 in Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).C11H9FN2O2S | F(000) = 520 |
Mr = 252.27 | Dx = 1.463 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -P 2yn | Cell parameters from 4829 reflections |
a = 7.1327 (9) Å | θ = 3.0–27.5° |
b = 23.852 (3) Å | µ = 0.29 mm−1 |
c = 7.3437 (10) Å | T = 123 K |
β = 113.541 (3)° | Prism, colorless |
V = 1145.4 (3) Å3 | 0.30 × 0.10 × 0.08 mm |
Z = 4 |
Rigaku/MSC Mercury CCD diffractometer | 2418 reflections with F2 > 2σ(F2) |
Detector resolution: 7.314 pixels mm-1 | Rint = 0.024 |
ω scans | θmax = 27.5°, θmin = 3.4° |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | h = −9→9 |
Tmin = 0.829, Tmax = 0.977 | k = −30→30 |
12234 measured reflections | l = −9→8 |
2612 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0441P)2 + 0.4044P] where P = (Fo2 + 2Fc2)/3 |
2612 reflections | (Δ/σ)max = 0.001 |
159 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
Primary atom site location: structure-invariant direct methods |
C11H9FN2O2S | V = 1145.4 (3) Å3 |
Mr = 252.27 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.1327 (9) Å | µ = 0.29 mm−1 |
b = 23.852 (3) Å | T = 123 K |
c = 7.3437 (10) Å | 0.30 × 0.10 × 0.08 mm |
β = 113.541 (3)° |
Rigaku/MSC Mercury CCD diffractometer | 2612 independent reflections |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | 2418 reflections with F2 > 2σ(F2) |
Tmin = 0.829, Tmax = 0.977 | Rint = 0.024 |
12234 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.32 e Å−3 |
2612 reflections | Δρmin = −0.23 e Å−3 |
159 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
S1 | 0.92257 (4) | 0.464054 (12) | 0.18414 (4) | 0.02040 (10) | |
F1 | 0.66717 (16) | 0.18005 (4) | 0.78913 (15) | 0.0472 (3) | |
O1 | 1.28538 (13) | 0.37499 (4) | 0.83947 (13) | 0.0254 (2) | |
O2 | 0.53419 (13) | 0.42791 (4) | 0.53528 (13) | 0.0240 (2) | |
N1 | 0.81733 (14) | 0.42098 (4) | 0.47872 (14) | 0.0166 (2) | |
N2 | 1.14408 (15) | 0.41667 (4) | 0.53118 (15) | 0.0180 (2) | |
C1 | 0.95711 (17) | 0.43386 (4) | 0.39663 (17) | 0.0164 (3) | |
C2 | 1.14023 (17) | 0.39352 (5) | 0.70131 (17) | 0.0186 (3) | |
C3 | 0.91869 (16) | 0.39534 (5) | 0.67800 (16) | 0.0166 (3) | |
C4 | 0.61024 (17) | 0.43576 (5) | 0.41600 (18) | 0.0187 (3) | |
C5 | 0.49412 (19) | 0.45857 (6) | 0.21277 (19) | 0.0265 (3) | |
C6 | 0.84028 (17) | 0.33792 (5) | 0.69937 (17) | 0.0184 (3) | |
C7 | 0.7772 (2) | 0.32809 (5) | 0.8518 (2) | 0.0264 (3) | |
C8 | 0.7187 (3) | 0.27457 (6) | 0.8832 (2) | 0.0338 (4) | |
C9 | 0.7236 (3) | 0.23252 (6) | 0.7578 (3) | 0.0314 (3) | |
C10 | 0.7823 (3) | 0.24057 (6) | 0.6034 (2) | 0.0304 (3) | |
C11 | 0.8411 (2) | 0.29430 (5) | 0.57419 (19) | 0.0249 (3) | |
H2 | 1.252 (3) | 0.4205 (7) | 0.513 (3) | 0.027 (4)* | |
H3 | 0.9063 | 0.4211 | 0.7800 | 0.0199* | |
H5A | 0.3491 | 0.4617 | 0.1885 | 0.0318* | |
H5B | 0.5095 | 0.4333 | 0.1143 | 0.0318* | |
H5C | 0.5474 | 0.4957 | 0.2019 | 0.0318* | |
H7 | 0.7738 | 0.3581 | 0.9356 | 0.0317* | |
H8 | 0.6765 | 0.2673 | 0.9884 | 0.0406* | |
H10 | 0.7828 | 0.2104 | 0.5189 | 0.0364* | |
H11 | 0.8822 | 0.3012 | 0.4681 | 0.0299* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.02194 (17) | 0.02105 (16) | 0.02123 (17) | 0.00019 (10) | 0.01181 (13) | 0.00233 (10) |
F1 | 0.0632 (7) | 0.0242 (5) | 0.0522 (6) | −0.0180 (4) | 0.0208 (5) | 0.0062 (4) |
O1 | 0.0181 (5) | 0.0278 (5) | 0.0267 (5) | 0.0001 (4) | 0.0052 (4) | 0.0056 (4) |
O2 | 0.0175 (4) | 0.0300 (5) | 0.0283 (5) | 0.0008 (4) | 0.0131 (4) | 0.0028 (4) |
N1 | 0.0148 (5) | 0.0173 (5) | 0.0188 (5) | −0.0003 (4) | 0.0078 (4) | 0.0014 (4) |
N2 | 0.0141 (5) | 0.0196 (5) | 0.0223 (5) | −0.0004 (4) | 0.0095 (4) | −0.0004 (4) |
C1 | 0.0170 (5) | 0.0122 (5) | 0.0220 (6) | −0.0019 (4) | 0.0099 (5) | −0.0034 (4) |
C2 | 0.0183 (6) | 0.0156 (5) | 0.0231 (6) | −0.0024 (4) | 0.0094 (5) | −0.0016 (4) |
C3 | 0.0162 (6) | 0.0163 (6) | 0.0179 (6) | −0.0008 (4) | 0.0075 (5) | 0.0006 (4) |
C4 | 0.0153 (6) | 0.0183 (6) | 0.0235 (6) | −0.0011 (5) | 0.0087 (5) | −0.0018 (5) |
C5 | 0.0174 (6) | 0.0386 (8) | 0.0229 (6) | 0.0029 (5) | 0.0072 (5) | 0.0036 (5) |
C6 | 0.0151 (5) | 0.0180 (6) | 0.0218 (6) | −0.0016 (4) | 0.0072 (5) | 0.0006 (5) |
C7 | 0.0316 (7) | 0.0243 (7) | 0.0279 (7) | −0.0064 (5) | 0.0168 (6) | −0.0020 (5) |
C8 | 0.0424 (8) | 0.0321 (8) | 0.0323 (7) | −0.0116 (6) | 0.0205 (7) | 0.0034 (6) |
C9 | 0.0326 (7) | 0.0207 (6) | 0.0370 (8) | −0.0097 (6) | 0.0098 (6) | 0.0061 (6) |
C10 | 0.0363 (8) | 0.0187 (6) | 0.0353 (8) | −0.0058 (6) | 0.0135 (6) | −0.0051 (5) |
C11 | 0.0284 (7) | 0.0219 (6) | 0.0278 (7) | −0.0035 (5) | 0.0146 (6) | −0.0022 (5) |
S1—C1 | 1.6454 (13) | C7—C8 | 1.391 (2) |
F1—C9 | 1.3621 (19) | C8—C9 | 1.372 (3) |
O1—C2 | 1.2073 (13) | C9—C10 | 1.370 (3) |
O2—C4 | 1.2150 (19) | C10—C11 | 1.392 (2) |
N1—C1 | 1.3899 (19) | N2—H2 | 0.84 (2) |
N1—C3 | 1.4810 (14) | C3—H3 | 1.000 |
N1—C4 | 1.4053 (16) | C5—H5A | 0.980 |
N2—C1 | 1.3676 (14) | C5—H5B | 0.980 |
N2—C2 | 1.3762 (18) | C5—H5C | 0.980 |
C2—C3 | 1.5206 (18) | C7—H7 | 0.950 |
C3—C6 | 1.5111 (18) | C8—H8 | 0.950 |
C4—C5 | 1.4906 (17) | C10—H10 | 0.950 |
C6—C7 | 1.383 (3) | C11—H11 | 0.950 |
C6—C11 | 1.3900 (19) | ||
C1—N1—C3 | 111.61 (9) | C8—C9—C10 | 123.48 (15) |
C1—N1—C4 | 130.13 (10) | C9—C10—C11 | 117.85 (14) |
C3—N1—C4 | 117.51 (11) | C6—C11—C10 | 120.41 (15) |
C1—N2—C2 | 114.14 (12) | C1—N2—H2 | 123.1 (10) |
S1—C1—N1 | 130.27 (8) | C2—N2—H2 | 122.7 (10) |
S1—C1—N2 | 123.36 (11) | N1—C3—H3 | 109.392 |
N1—C1—N2 | 106.37 (11) | C2—C3—H3 | 109.399 |
O1—C2—N2 | 126.05 (13) | C6—C3—H3 | 109.408 |
O1—C2—C3 | 127.51 (13) | C4—C5—H5A | 109.473 |
N2—C2—C3 | 106.44 (9) | C4—C5—H5B | 109.477 |
N1—C3—C2 | 101.43 (11) | C4—C5—H5C | 109.470 |
N1—C3—C6 | 114.97 (9) | H5A—C5—H5B | 109.474 |
C2—C3—C6 | 111.93 (10) | H5A—C5—H5C | 109.461 |
O2—C4—N1 | 116.01 (10) | H5B—C5—H5C | 109.473 |
O2—C4—C5 | 123.27 (12) | C6—C7—H7 | 119.804 |
N1—C4—C5 | 120.71 (13) | C8—C7—H7 | 119.807 |
C3—C6—C7 | 119.42 (11) | C7—C8—H8 | 120.984 |
C3—C6—C11 | 120.67 (13) | C9—C8—H8 | 120.972 |
C7—C6—C11 | 119.82 (12) | C9—C10—H10 | 121.071 |
C6—C7—C8 | 120.39 (14) | C11—C10—H10 | 121.082 |
C7—C8—C9 | 118.04 (17) | C6—C11—H11 | 119.797 |
F1—C9—C8 | 118.03 (16) | C10—C11—H11 | 119.789 |
F1—C9—C10 | 118.50 (14) | ||
C1—N1—C3—C2 | −1.25 (11) | O1—C2—C3—C6 | −55.41 (16) |
C1—N1—C3—C6 | −122.21 (10) | N2—C2—C3—N1 | 0.71 (11) |
C3—N1—C1—S1 | −178.11 (9) | N2—C2—C3—C6 | 123.78 (9) |
C3—N1—C1—N2 | 1.32 (11) | N1—C3—C6—C7 | −126.90 (11) |
C1—N1—C4—O2 | −166.54 (10) | N1—C3—C6—C11 | 56.50 (14) |
C1—N1—C4—C5 | 14.60 (17) | C2—C3—C6—C7 | 118.06 (11) |
C4—N1—C1—S1 | −8.49 (18) | C2—C3—C6—C11 | −58.54 (12) |
C4—N1—C1—N2 | 170.93 (10) | C3—C6—C7—C8 | −175.27 (9) |
C3—N1—C4—O2 | 2.57 (15) | C3—C6—C11—C10 | 175.46 (9) |
C3—N1—C4—C5 | −176.29 (9) | C7—C6—C11—C10 | −1.12 (16) |
C4—N1—C3—C2 | −172.31 (9) | C11—C6—C7—C8 | 1.35 (17) |
C4—N1—C3—C6 | 66.73 (13) | C6—C7—C8—C9 | −0.67 (18) |
C1—N2—C2—O1 | 179.24 (10) | C7—C8—C9—F1 | 179.71 (11) |
C1—N2—C2—C3 | 0.04 (12) | C7—C8—C9—C10 | −0.3 (2) |
C2—N2—C1—S1 | 178.64 (9) | F1—C9—C10—C11 | −179.49 (10) |
C2—N2—C1—N1 | −0.83 (12) | C8—C9—C10—C11 | 0.5 (2) |
O1—C2—C3—N1 | −178.48 (12) | C9—C10—C11—C6 | 0.21 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2i | 0.84 (2) | 1.96 (2) | 2.7836 (16) | 167 (2) |
Symmetry code: (i) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2i | 0.84 (2) | 1.96 (2) | 2.7836 (16) | 167 (2) |
Symmetry code: (i) x+1, y, z. |
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Casas, J. S., Castiñeiras, A., Couce, D., Playá, N., Sordo, J. & Varela, J. M. (1998). Acta Cryst. C54, 427–428. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marton, J., Enisz, J., Hosztafi, S. & Timar, T. (1993). J. Agric. Food Chem. 41, 148–152. CrossRef CAS Web of Science Google Scholar
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Schlack, P. & Kumpf, W. (1926). Z. Physiol. Chem. 154, 125–170. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sulbaran, M. E., Delgado, G. E., Mora, A. J., Bahsas, A., Novoa de Armas, H. & Blaton, N. (2007). Acta Cryst. C63, o543–o545. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Taniguchi, K., Okumura, H., Honda, M., Suda, M., Fujinami, S., Kuwae, A., Hanai, K., Maeda, S. & Kunimoto, K.-K. (2009). Anal. Sci. X-ray Struct. Anal. Online, 25, 93–94. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2-Sulfanylideneimidazolidin-4-one (2-thiohydantoin) derivatives are useful synthetic intermediates in a wide range of applications, such as therapeutics, fungicides and herbicides (Marton et al., 1993). We have been studying crystal structures and hydrogen-bonding patterns of the polymorphic forms of 2-thiohydantoin derivatives. The Cambridge Structural Database survey (Ver. 5.34; Allen, 2002) indicates that 1-acetyl-2-thiohydantoins with an unsubstituted N atom show three types of N—H···O hydrogen-bonding patterns: (i) the amide NH and the acetyl C═O groups form a chain with a C(6) graph-set motif (Etter et al., 1990) [triclinic polymorph of 1-acetyl-2-thiohydantoin (NIFHIT01) (Taniguchi et al., 2009) and two other derivatives (KABRIQ and KOMGUO)]; (ii) the amide NH and the amide C═ O groups form a chain with C(4) [monoclinic polymorph of 1-acetyl-2-thiohydantoin (NIFHIT) (Casas et al., 1998) and one other derivative (DOKXUX)]; (iii) the amide NH and the amide C═O groups form a ring with R22(8) [1-acetyl-5-methyl-2-thiohydantoin (DIKWAW) (Sulbaran et al., 2007)]. As an extension of our research, we report on the crystal structure of the title compound, C11H9FN2O2S.
In the title molecule (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the reported 1-acetyl-2-thiohydantoins with an unsubstituted N atom. The 2-thiohydantoin moiety (N1/C1/S1/N2/C2/O1/C3) is essentially planar, with maximum deviations of 0.0183 (14) Å for C3 atom and -0.0138 (13) Å for N1 atom. The acetyl group (C4/O2/C5) is almost coplanar with the 2-thiohydantoin moiety, and the dihedral angle between the acetyl group and the 2-thiohydantoin moiety is 9.70 (14)°.
In the crystal structure (Fig. 2), the molecules are linked by an N—H···O hydrogen bond between the amide NH and acetyl C═O groups, forming a infinite one-dimensional chain along the a axis, with a C(6) graph-set motif (Table 1).