organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl (2E)-2-cyano-3-(4-meth­­oxy­phen­yl)acrylate

aDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, bDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, cDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, and dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore, India
*Correspondence e-mail: drsreenivasa@yahoo.co.in

(Received 27 September 2013; accepted 30 September 2013; online 5 October 2013)

In the title compound, C13H13NO3, the conformation across the C=C bond is synperiplanar, the torsion angle of the segment C(ring)—C=C—C(N) being 3.2 (5)°. In the crystal, mol­ecules are linked into inversion dimers, arranged in a zigzag pattern, through two C—H⋯O inter­actions generating R22(10) and R22(14) motifs. These dimers are arranged in a zigzag pattern in the crystal structure. The mol­ecules are further linked along the c axis through weak C—H⋯π inter­actions, and weak ππ inter­actions [centroid–centroid separation = 3.9986 (17) Å] are also observed.

Related literature

For use of the title compound in the synthesis of prop-2-enoyl­amides, see: Santos et al.. (2004[Santos, S. A., Pereira, N., Da Silva, I. M., Sarquis, M. I. M. & Antunes, O. A. C. (2004). Process Biochem. 39, 2269-2275.]). For use of the title compound in the synthesis of prop-2-enoates, see: Sousa et al. (2006[Sousa, J. B., Calheiros, R., Rio, V., Borges, F. & Marques, M. P. M. (2006). J. Mol. Struct. 783, 122-128.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO3

  • Mr = 231.24

  • Monoclinic, P 21 /n

  • a = 8.4889 (12) Å

  • b = 8.3552 (16) Å

  • c = 17.143 (3) Å

  • β = 91.294 (11)°

  • V = 1215.6 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 296 K

  • 0.40 × 0.33 × 0.27 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 4798 measured reflections

  • 1937 independent reflections

  • 1354 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.201

  • S = 1.02

  • 1937 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.54 3.414 (3) 157
C8—H8⋯O2i 0.93 2.59 3.475 (3) 159
C12—H12ACgii 0.97 2.90 3.803 (3) 156
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ethyl (2E)-2-cyano-3-(4-methoxyphenyl)acrylate is an important starting material for the synthesis of biologically and pharmacologically important 2-propenoylamides (Santos et al.., 2004) and 2-propenoates (Sousa et al., 2006). Keeping this in mind, the title compound was synthesized.

In the title compound, C13H13NO3, the conformation across the C=C bond is syn-periplanar (Fig.1), the C4—C8—C9—C10 torsion angle being 3.2 (5)°. The molecules are linked into inversion dimers (Fig.2) through C3—H3···O2 and C8—H8···O2 interactions, generating R22(10) and R22(14) ring motifs (Bernstein et al., 1995). These dimers are arranged in a zigzag pattern in the crystal structure (Fig.3). The molecules are further linked along the c axis through weak C12—H12A···Cg interactions (Fig.4), and weak Cg···Cg interactions (centroid···centroid separation = 3.9986 (17) Å) are also observed (Fig.5).

Related literature top

For use of the title compound in the synthesis of prop-2-enoylamides, see: Santos et al.. (2004). For use of the title compound in the synthesis of prop-2-enoates, see: Sousa et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of tetra-n-butylammonium bromide (TBAB) (3.47 g, 10 mmol), palladium acetate (0.060 g, 0.27 mmol), triphenylphosphine (2.97 g, 11 mmol), 1-bromo-4-methoxybenzene (1 g, 5.4 mmol) and potassium carbonate (1.12 g, 8.1 mmol) were dissolved in 10 ml of DMF in a three-necked round bottom flask and the reaction mixture was heated to 120 °C under nitrogen atmosphere with constant stirring for 10–15 minutes until a yellowish brown solution was obtained. Ethyl-2-cyanoacrylate (0.81 g, 6.4 mmol) was added to the solution and the reaction mixture was heated to 120 °C for 10 h, cooled and filtered under vacuum to obtain the crude compound. This was further purified by column chromatography using petroleum ether: ethyl acetate (7:3) as eluent (Rf value = 0.69), to yield pale green colored crystals.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2–1.5 times Ueq of the parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINTPlus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound displaying R22(10) and R22(14)rings chains. H atoms not involved in H-bonding are omitted for clarity.
[Figure 3] Fig. 3. The zigzag pattern of inversion dimers viewed along a.
[Figure 4] Fig. 4. Linking of molecules along the c axis through C—H···Cg interactions.
[Figure 5] Fig. 5. π-π stacking interactions observed in the crystal structure. H atoms are omitted for clarity.
Ethyl (2E)-2-cyano-3-(4-methoxyphenyl)acrylate top
Crystal data top
C13H13NO3Prism
Mr = 231.24Dx = 1.264 Mg m3
Monoclinic, P21/nMelting point: 401 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54178 Å
a = 8.4889 (12) ÅCell parameters from 776 reflections
b = 8.3552 (16) Åθ = 5.2–64.3°
c = 17.143 (3) ŵ = 0.74 mm1
β = 91.294 (11)°T = 296 K
V = 1215.6 (3) Å3Prism, green
Z = 40.40 × 0.33 × 0.27 mm
F(000) = 488
Data collection top
Bruker APEXII CCD
diffractometer
1354 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
Graphite monochromatorθmax = 64.3°, θmin = 5.2°
Detector resolution: 1 pixels mm-1h = 93
ϕ and ω scansk = 99
4798 measured reflectionsl = 1919
1937 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.201H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.124P)2]
where P = (Fo2 + 2Fc2)/3
1937 reflections(Δ/σ)max = 0.012
156 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H13NO3V = 1215.6 (3) Å3
Mr = 231.24Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.4889 (12) ŵ = 0.74 mm1
b = 8.3552 (16) ÅT = 296 K
c = 17.143 (3) Å0.40 × 0.33 × 0.27 mm
β = 91.294 (11)°
Data collection top
Bruker APEXII CCD
diffractometer
1354 reflections with I > 2σ(I)
4798 measured reflectionsRint = 0.069
1937 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.201H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
1937 reflectionsΔρmin = 0.25 e Å3
156 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1331 (3)0.3418 (3)0.46205 (14)0.0559 (7)
C21.0569 (3)0.2415 (4)0.51365 (14)0.0599 (7)
H21.10670.20890.55990.072*
C30.9066 (3)0.1912 (4)0.49517 (14)0.0597 (7)
H30.85470.12660.53050.072*
C40.8284 (3)0.2330 (3)0.42574 (13)0.0510 (7)
C50.9065 (3)0.3398 (4)0.37625 (14)0.0593 (7)
H50.85660.37430.33040.071*
C61.0549 (3)0.3931 (4)0.39481 (14)0.0621 (7)
H61.10400.46500.36180.074*
C71.3670 (3)0.3435 (5)0.54148 (17)0.0817 (10)
H7A1.31180.37610.58710.122*
H7B1.47050.38990.54250.122*
H7C1.37560.22890.54070.122*
C80.6735 (3)0.1658 (3)0.41146 (14)0.0550 (7)
H80.63200.11380.45430.066*
C90.5784 (3)0.1645 (3)0.34770 (14)0.0540 (7)
C100.6207 (3)0.2301 (4)0.27376 (14)0.0639 (8)
C110.4219 (3)0.0864 (4)0.35228 (14)0.0577 (7)
C120.1752 (3)0.0439 (4)0.28684 (17)0.0698 (8)
H12A0.12210.07300.33430.084*
H12B0.17900.07200.28350.084*
C130.0891 (3)0.1113 (5)0.21740 (18)0.0856 (11)
H13A0.08780.22590.22090.128*
H13B0.01710.07170.21590.128*
H13C0.14130.07950.17080.128*
N10.6549 (3)0.2803 (5)0.21466 (14)0.0962 (11)
O11.2826 (2)0.3962 (3)0.47346 (11)0.0737 (7)
O20.3775 (2)0.0120 (3)0.40764 (12)0.0812 (7)
O30.33402 (18)0.1098 (3)0.28756 (9)0.0649 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0466 (14)0.0676 (18)0.0535 (13)0.0088 (12)0.0015 (10)0.0033 (12)
C20.0525 (14)0.078 (2)0.0488 (13)0.0068 (13)0.0061 (10)0.0058 (12)
C30.0525 (14)0.0777 (19)0.0489 (13)0.0081 (13)0.0002 (10)0.0077 (12)
C40.0431 (13)0.0640 (16)0.0458 (12)0.0001 (11)0.0003 (9)0.0013 (11)
C50.0536 (15)0.0757 (19)0.0486 (13)0.0014 (13)0.0028 (10)0.0082 (12)
C60.0575 (15)0.077 (2)0.0520 (13)0.0105 (14)0.0036 (11)0.0077 (13)
C70.0549 (16)0.118 (3)0.0713 (18)0.0178 (17)0.0162 (13)0.0095 (17)
C80.0470 (13)0.0680 (18)0.0501 (13)0.0007 (12)0.0017 (10)0.0037 (11)
C90.0402 (13)0.0707 (17)0.0512 (13)0.0026 (11)0.0027 (10)0.0018 (11)
C100.0443 (13)0.099 (2)0.0477 (14)0.0013 (14)0.0023 (10)0.0015 (14)
C110.0454 (13)0.0742 (19)0.0534 (13)0.0030 (12)0.0029 (11)0.0020 (13)
C120.0458 (15)0.079 (2)0.0841 (18)0.0014 (13)0.0088 (13)0.0056 (15)
C130.0530 (16)0.128 (3)0.0748 (19)0.0064 (17)0.0112 (13)0.0004 (19)
N10.0689 (16)0.167 (3)0.0526 (14)0.0126 (17)0.0023 (11)0.0125 (16)
O10.0546 (11)0.0997 (17)0.0665 (11)0.0192 (10)0.0074 (8)0.0085 (11)
O20.0605 (12)0.1123 (19)0.0705 (12)0.0192 (11)0.0087 (9)0.0250 (12)
O30.0449 (10)0.0925 (16)0.0570 (10)0.0033 (9)0.0067 (8)0.0006 (9)
Geometric parameters (Å, º) top
C1—O11.358 (3)C7—H7C0.9600
C1—C61.385 (4)C8—C91.344 (3)
C1—C21.389 (4)C8—H80.9300
C2—C31.374 (3)C9—C101.434 (4)
C2—H20.9300C9—C111.483 (4)
C3—C41.394 (3)C10—N11.140 (3)
C3—H30.9300C11—O21.203 (3)
C4—C51.407 (4)C11—O31.337 (3)
C4—C81.446 (3)C12—O31.456 (3)
C5—C61.367 (4)C12—C131.493 (4)
C5—H50.9300C12—H12A0.9700
C6—H60.9300C12—H12B0.9700
C7—O11.425 (3)C13—H13A0.9600
C7—H7A0.9600C13—H13B0.9600
C7—H7B0.9600C13—H13C0.9600
O1—C1—C6116.4 (2)C9—C8—C4131.9 (2)
O1—C1—C2123.9 (2)C9—C8—H8114.0
C6—C1—C2119.7 (2)C4—C8—H8114.0
C3—C2—C1118.8 (2)C8—C9—C10123.9 (2)
C3—C2—H2120.6C8—C9—C11118.9 (2)
C1—C2—H2120.6C10—C9—C11117.2 (2)
C2—C3—C4122.8 (2)N1—C10—C9179.1 (4)
C2—C3—H3118.6O2—C11—O3123.4 (2)
C4—C3—H3118.6O2—C11—C9124.5 (2)
C3—C4—C5116.9 (2)O3—C11—C9112.1 (2)
C3—C4—C8117.4 (2)O3—C12—C13107.5 (3)
C5—C4—C8125.7 (2)O3—C12—H12A110.2
C6—C5—C4120.7 (2)C13—C12—H12A110.2
C6—C5—H5119.6O3—C12—H12B110.2
C4—C5—H5119.6C13—C12—H12B110.2
C5—C6—C1121.0 (2)H12A—C12—H12B108.5
C5—C6—H6119.5C12—C13—H13A109.5
C1—C6—H6119.5C12—C13—H13B109.5
O1—C7—H7A109.5H13A—C13—H13B109.5
O1—C7—H7B109.5C12—C13—H13C109.5
H7A—C7—H7B109.5H13A—C13—H13C109.5
O1—C7—H7C109.5H13B—C13—H13C109.5
H7A—C7—H7C109.5C1—O1—C7117.7 (2)
H7B—C7—H7C109.5C11—O3—C12116.8 (2)
O1—C1—C2—C3178.6 (3)C4—C8—C9—C103.2 (5)
C6—C1—C2—C32.1 (4)C4—C8—C9—C11178.8 (3)
C1—C2—C3—C41.8 (4)C8—C9—C11—O26.2 (5)
C2—C3—C4—C54.2 (4)C10—C9—C11—O2171.9 (3)
C2—C3—C4—C8176.9 (2)C8—C9—C11—O3173.1 (2)
C3—C4—C5—C62.8 (4)C10—C9—C11—O38.8 (4)
C8—C4—C5—C6178.5 (3)C6—C1—O1—C7179.0 (3)
C4—C5—C6—C11.0 (4)C2—C1—O1—C71.7 (4)
O1—C1—C6—C5177.2 (3)O2—C11—O3—C121.7 (4)
C2—C1—C6—C53.5 (4)C9—C11—O3—C12177.6 (2)
C3—C4—C8—C9169.8 (3)C13—C12—O3—C11168.8 (3)
C5—C4—C8—C911.4 (5)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1···C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.543.414 (3)157
C8—H8···O2i0.932.593.475 (3)159
C12—H12A···Cgii0.972.903.803 (3)156
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1···C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.543.414 (3)157
C8—H8···O2i0.932.593.475 (3)159
C12—H12A···Cgii0.972.903.803 (3)156
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the IOE X-ray diffractometer Facility, University of Mysore, Mysore, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSantos, S. A., Pereira, N., Da Silva, I. M., Sarquis, M. I. M. & Antunes, O. A. C. (2004). Process Biochem. 39, 2269–2275.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSousa, J. B., Calheiros, R., Rio, V., Borges, F. & Marques, M. P. M. (2006). J. Mol. Struct. 783, 122–128.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds