organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-[1-(3-methyl­but­yl)-4-phenyl-1H-1,2,3-triazol-5-yl]-2-oxo­acetate

aDepartment of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 17 October 2013; accepted 6 November 2013; online 13 November 2013)

In the title compound, C17H21N3O3, the non-planar (r.m.s. deviation = 0.212 Å) ethyl (oxo)acetate group is oriented towards the phenyl substituent. The triazole and benzene rings are twisted with respect to each other, making a dihedral angle of 41.69 (6)°. In the crystal, mol­ecules are arranged into centrosymmetric R22(10) dimers via pairs of C—H⋯O inter­actions involving the ethyl (oxo)acetate groups. In addition, the triazole rings show ππ stacking inter­actions, with their centroids at a distance of 3.745 (2) Å.

Related literature

For the biological activity of 1,4,5-trisubstituted 1,2,3-triazoles, see: Siddiqi & Ahsan (2010[Siddiqi, N. & Ahsan, W. (2010). Eur. J. Med. Chem. 45, 1536-1543.]); Siddiqi et al. (2011[Siddiqi, N., Ahsan, W., Alam, M. S., Ali, R., Jain, S., Azad, B. & Akhtar, J. (2011). Int. J. Pharm. Sci. Rev. Res. 8, 161-169.]). For the synthesis, see: Wang et al. (2013[Wang, B., Ahmed, M. N., Zhang, J., Chen, W., Wang, X. & Hu, Y. (2013). Tetrahedron Lett. 54, 6097-6100.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H21N3O3

  • Mr = 315.37

  • Triclinic, [P \overline 1]

  • a = 8.1710 (8) Å

  • b = 10.0684 (9) Å

  • c = 10.6066 (10) Å

  • α = 98.331 (3)°

  • β = 94.220 (3)°

  • γ = 95.367 (3)°

  • V = 856.23 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.32 × 0.25 × 0.21 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.982

  • 11605 measured reflections

  • 4189 independent reflections

  • 3196 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.156

  • S = 1.06

  • 4189 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O2i 0.97 2.59 3.338 (2) 134
Symmetry code: (i) -x+3, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,4,5-Trisubstituted 1,2,3-triazoles are important compounds due to their diverse biological activities including antibacterial, antifungal, antimalarial, antiviral, anticonvulsant, antidepressant and anticancer (Siddiqi & Ahsan, 2010; Siddiqi et al., 2011). Taking the biological activity of 1,2,3-triazole derivatives into account some novel 1, 2, 3-triazoles have been designed and synthesized. Here we report the crystal structure of title compound (Fig. 1).

The benzene ring A (C1–C6) and the triazol ring B (C7/C8/N1/N2/N3) are planar with r. m. s. deviations of 0.0062 Å and 0.0066 Å, respectively. The dihedral angle between A/B is 41.69 (6)°. The intermolecular C—H···O hydrogen bond (Table 1, Fig. 2) generates centrosymmetric R22(10) motif (Bernstein et al., 1995) and molecules form dimers. There is also ππ interaction between the triazole rings with their centroids at a distance of 3.745 (2) Å [CgCgi: i = 2 - x, 1 - y, -z, where Cg is the centroid of triazol ring].

Related literature top

For related studies, see: Siddiqi & Ahsan (2010); Siddiqi et al. (2011). For the synthesis, see: Wang et al. (2013). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a suspension of 1-azido-3-methylbutane (0.068 g, 0.6 mmol) and 1-copper(I)phenylethyne (0.082 g, 0.5 mmol) in chlorobenzene (1 ml) was added ethyl chloro(oxo)acetate (0.068 g, 0.5 mmol). The resultant mixture was stirred at room temperature for 4 h and then passed through a column [silica gel, 10% EtOAc in petroleum ether (333–363 K)] to give the title compound as a white solid (yield 89%, m.p. 340–342 K).Crystals suitable for crystallographic study were grown by slow evaporation of an ethanol solution at room temperature (Wang et al., 2013).

Refinement top

The H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and refined as riding on their carriers with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. The dimers formed via C-H···O inteactions (PLATON: Spek, 2009).
Ethyl 2-[1-(3-methylbutyl)-4-phenyl-1H-1,2,3-triazol-5-yl]-2-oxoacetate top
Crystal data top
C17H21N3O3Z = 2
Mr = 315.37F(000) = 336
Triclinic, P1Dx = 1.223 Mg m3
a = 8.1710 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0684 (9) ÅCell parameters from 3196 reflections
c = 10.6066 (10) Åθ = 2.0–28.4°
α = 98.331 (3)°µ = 0.09 mm1
β = 94.220 (3)°T = 296 K
γ = 95.367 (3)°Block, colorless
V = 856.23 (14) Å30.32 × 0.25 × 0.21 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4189 independent reflections
Radiation source: fine-focus sealed tube3196 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 7.50 pixels mm-1θmax = 28.4°, θmin = 2.0°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.973, Tmax = 0.982l = 814
11605 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0847P)2 + 0.1314P]
where P = (Fo2 + 2Fc2)/3
4189 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H21N3O3γ = 95.367 (3)°
Mr = 315.37V = 856.23 (14) Å3
Triclinic, P1Z = 2
a = 8.1710 (8) ÅMo Kα radiation
b = 10.0684 (9) ŵ = 0.09 mm1
c = 10.6066 (10) ÅT = 296 K
α = 98.331 (3)°0.32 × 0.25 × 0.21 mm
β = 94.220 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4189 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3196 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.021
11605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
4189 reflectionsΔρmin = 0.18 e Å3
211 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.02397 (18)0.67468 (12)0.33208 (13)0.0700 (4)
O21.21537 (16)0.52473 (15)0.48236 (11)0.0699 (4)
O31.28070 (12)0.43994 (10)0.28644 (10)0.0466 (3)
N10.82997 (15)0.30393 (13)0.04196 (12)0.0477 (3)
N20.78007 (16)0.41791 (14)0.01373 (12)0.0510 (3)
N30.84537 (14)0.51779 (12)0.10506 (11)0.0423 (3)
C10.99415 (18)0.22438 (14)0.34572 (14)0.0440 (3)
H10.94920.29330.39560.053*
C21.0607 (2)0.12404 (16)0.40227 (16)0.0533 (4)
H21.06250.12650.49040.064*
C31.1249 (2)0.01966 (16)0.32834 (17)0.0554 (4)
H31.16980.04760.36690.067*
C41.1224 (2)0.01532 (15)0.19828 (16)0.0513 (4)
H41.16420.05560.14880.062*
C51.05780 (18)0.11619 (14)0.14049 (14)0.0436 (3)
H51.05680.11300.05240.052*
C60.99416 (16)0.22261 (12)0.21412 (13)0.0363 (3)
C70.92856 (16)0.33138 (13)0.15338 (12)0.0366 (3)
C80.94279 (16)0.46949 (13)0.19486 (12)0.0371 (3)
C91.04460 (18)0.55757 (14)0.29903 (14)0.0434 (3)
C101.18948 (18)0.50382 (15)0.36822 (14)0.0450 (3)
C111.4239 (2)0.3868 (2)0.34301 (17)0.0611 (4)
H11A1.39110.33390.40820.073*
H11B1.50470.46050.38270.073*
C121.4958 (2)0.3015 (2)0.2411 (2)0.0755 (6)
H12A1.41730.22590.20580.113*
H12B1.59390.26960.27600.113*
H12C1.52300.35340.17500.113*
C130.7973 (2)0.65445 (16)0.10329 (16)0.0499 (4)
H13A0.75480.66300.01740.060*
H13B0.89350.71980.12740.060*
C140.6661 (2)0.68401 (19)0.19540 (19)0.0588 (4)
H14A0.69400.64830.27350.071*
H14B0.56080.63750.15730.071*
C150.6481 (2)0.8346 (2)0.22911 (18)0.0639 (5)
H150.75640.88090.26360.077*
C160.5290 (4)0.8555 (3)0.3333 (3)0.1128 (11)
H16A0.51970.95010.35580.169*
H16B0.57010.82010.40740.169*
H16C0.42240.80930.30200.169*
C170.5911 (3)0.8960 (2)0.1140 (2)0.0793 (6)
H17A0.48500.85180.07860.119*
H17B0.66910.88470.05090.119*
H17C0.58290.99040.13940.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0919 (9)0.0403 (6)0.0726 (8)0.0232 (6)0.0114 (7)0.0099 (5)
O20.0643 (7)0.0953 (10)0.0446 (6)0.0281 (7)0.0090 (5)0.0131 (6)
O30.0415 (5)0.0511 (6)0.0460 (5)0.0120 (4)0.0003 (4)0.0009 (4)
N10.0489 (7)0.0491 (7)0.0431 (7)0.0109 (5)0.0040 (5)0.0006 (5)
N20.0509 (7)0.0575 (8)0.0442 (7)0.0152 (6)0.0049 (5)0.0045 (6)
N30.0432 (6)0.0440 (6)0.0428 (6)0.0167 (5)0.0026 (5)0.0095 (5)
C10.0544 (8)0.0363 (7)0.0429 (7)0.0117 (6)0.0101 (6)0.0037 (5)
C20.0700 (10)0.0466 (8)0.0471 (8)0.0130 (7)0.0080 (7)0.0136 (6)
C30.0622 (9)0.0414 (8)0.0678 (10)0.0170 (7)0.0071 (8)0.0173 (7)
C40.0579 (9)0.0342 (7)0.0631 (10)0.0159 (6)0.0125 (7)0.0010 (6)
C50.0511 (8)0.0343 (7)0.0439 (7)0.0078 (6)0.0074 (6)0.0027 (5)
C60.0379 (6)0.0292 (6)0.0412 (7)0.0068 (5)0.0043 (5)0.0004 (5)
C70.0368 (6)0.0365 (6)0.0363 (6)0.0101 (5)0.0038 (5)0.0005 (5)
C80.0380 (6)0.0366 (7)0.0383 (6)0.0128 (5)0.0035 (5)0.0053 (5)
C90.0485 (7)0.0357 (7)0.0451 (7)0.0111 (6)0.0019 (6)0.0003 (5)
C100.0434 (7)0.0426 (7)0.0450 (8)0.0072 (6)0.0027 (6)0.0046 (6)
C110.0444 (8)0.0788 (12)0.0589 (10)0.0218 (8)0.0053 (7)0.0015 (8)
C120.0546 (10)0.0810 (13)0.0877 (14)0.0252 (9)0.0058 (10)0.0090 (11)
C130.0537 (8)0.0490 (8)0.0548 (9)0.0249 (7)0.0094 (7)0.0193 (7)
C140.0534 (9)0.0615 (10)0.0717 (11)0.0276 (8)0.0182 (8)0.0240 (8)
C150.0625 (10)0.0658 (11)0.0666 (11)0.0318 (9)0.0047 (8)0.0055 (8)
C160.137 (2)0.129 (2)0.0923 (18)0.086 (2)0.0459 (17)0.0216 (16)
C170.0965 (15)0.0644 (12)0.0859 (14)0.0416 (11)0.0122 (12)0.0181 (10)
Geometric parameters (Å, º) top
O1—C91.2115 (17)C9—C101.530 (2)
O2—C101.1978 (19)C11—C121.473 (2)
O3—C101.3209 (17)C11—H11A0.9700
O3—C111.4565 (18)C11—H11B0.9700
N1—N21.3199 (18)C12—H12A0.9600
N1—C71.3585 (18)C12—H12B0.9600
N2—N31.3325 (18)C12—H12C0.9600
N3—C81.3684 (17)C13—C141.524 (2)
N3—C131.4680 (18)C13—H13A0.9700
C1—C21.381 (2)C13—H13B0.9700
C1—C61.3934 (19)C14—C151.530 (2)
C1—H10.9300C14—H14A0.9700
C2—C31.385 (2)C14—H14B0.9700
C2—H20.9300C15—C171.509 (3)
C3—C41.373 (2)C15—C161.530 (3)
C3—H30.9300C15—H150.9800
C4—C51.385 (2)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C61.3964 (17)C16—H16C0.9600
C5—H50.9300C17—H17A0.9600
C6—C71.4714 (17)C17—H17B0.9600
C7—C81.3877 (18)C17—H17C0.9600
C8—C91.464 (2)
C10—O3—C11115.68 (12)O3—C11—H11B110.0
N2—N1—C7108.62 (12)C12—C11—H11B110.0
N1—N2—N3108.25 (11)H11A—C11—H11B108.4
N2—N3—C8110.66 (11)C11—C12—H12A109.5
N2—N3—C13119.48 (12)C11—C12—H12B109.5
C8—N3—C13129.67 (13)H12A—C12—H12B109.5
C2—C1—C6120.11 (13)C11—C12—H12C109.5
C2—C1—H1119.9H12A—C12—H12C109.5
C6—C1—H1119.9H12B—C12—H12C109.5
C1—C2—C3120.28 (15)N3—C13—C14110.78 (13)
C1—C2—H2119.9N3—C13—H13A109.5
C3—C2—H2119.9C14—C13—H13A109.5
C4—C3—C2120.11 (14)N3—C13—H13B109.5
C4—C3—H3119.9C14—C13—H13B109.5
C2—C3—H3119.9H13A—C13—H13B108.1
C3—C4—C5120.21 (13)C13—C14—C15113.33 (15)
C3—C4—H4119.9C13—C14—H14A108.9
C5—C4—H4119.9C15—C14—H14A108.9
C4—C5—C6120.22 (14)C13—C14—H14B108.9
C4—C5—H5119.9C15—C14—H14B108.9
C6—C5—H5119.9H14A—C14—H14B107.7
C1—C6—C5119.05 (12)C17—C15—C14112.37 (17)
C1—C6—C7120.60 (11)C17—C15—C16110.58 (17)
C5—C6—C7120.36 (12)C14—C15—C16109.5 (2)
N1—C7—C8108.50 (11)C17—C15—H15108.1
N1—C7—C6121.22 (12)C14—C15—H15108.1
C8—C7—C6130.19 (12)C16—C15—H15108.1
N3—C8—C7103.94 (12)C15—C16—H16A109.5
N3—C8—C9122.89 (12)C15—C16—H16B109.5
C7—C8—C9132.91 (12)H16A—C16—H16B109.5
O1—C9—C8123.30 (13)C15—C16—H16C109.5
O1—C9—C10116.91 (13)H16A—C16—H16C109.5
C8—C9—C10119.75 (12)H16B—C16—H16C109.5
O2—C10—O3126.60 (14)C15—C17—H17A109.5
O2—C10—C9121.89 (14)C15—C17—H17B109.5
O3—C10—C9111.44 (12)H17A—C17—H17B109.5
O3—C11—C12108.46 (14)C15—C17—H17C109.5
O3—C11—H11A110.0H17A—C17—H17C109.5
C12—C11—H11A110.0H17B—C17—H17C109.5
C7—N1—N2—N30.13 (16)N1—C7—C8—N31.65 (15)
N1—N2—N3—C80.96 (16)C6—C7—C8—N3174.92 (13)
N1—N2—N3—C13174.42 (12)N1—C7—C8—C9172.46 (15)
C6—C1—C2—C31.3 (2)C6—C7—C8—C911.0 (2)
C1—C2—C3—C40.1 (3)N3—C8—C9—O117.4 (2)
C2—C3—C4—C50.9 (3)C7—C8—C9—O1169.39 (16)
C3—C4—C5—C60.3 (2)N3—C8—C9—C10160.12 (13)
C2—C1—C6—C51.9 (2)C7—C8—C9—C1013.1 (2)
C2—C1—C6—C7177.97 (14)C11—O3—C10—O22.0 (2)
C4—C5—C6—C11.1 (2)C11—O3—C10—C9178.99 (14)
C4—C5—C6—C7178.75 (13)O1—C9—C10—O246.5 (2)
N2—N1—C7—C81.15 (16)C8—C9—C10—O2135.78 (17)
N2—N1—C7—C6175.78 (12)O1—C9—C10—O3130.63 (16)
C1—C6—C7—N1136.58 (14)C8—C9—C10—O347.07 (19)
C5—C6—C7—N143.59 (19)C10—O3—C11—C12171.29 (15)
C1—C6—C7—C839.6 (2)N2—N3—C13—C1499.01 (17)
C5—C6—C7—C8140.22 (15)C8—N3—C13—C1475.4 (2)
N2—N3—C8—C71.60 (15)N3—C13—C14—C15162.54 (15)
C13—N3—C8—C7173.17 (13)C13—C14—C15—C1763.3 (2)
N2—N3—C8—C9173.26 (13)C13—C14—C15—C16173.43 (19)
C13—N3—C8—C912.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O2i0.972.593.338 (2)134
Symmetry code: (i) x+3, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O2i0.972.593.338 (2)134
Symmetry code: (i) x+3, y+1, z+1.
 

Acknowledgements

MNA is very thankful to the Higher Education Commission, Pakistan, for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqi, N. & Ahsan, W. (2010). Eur. J. Med. Chem. 45, 1536–1543.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSiddiqi, N., Ahsan, W., Alam, M. S., Ali, R., Jain, S., Azad, B. & Akhtar, J. (2011). Int. J. Pharm. Sci. Rev. Res. 8, 161–169.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, B., Ahmed, M. N., Zhang, J., Chen, W., Wang, X. & Hu, Y. (2013). Tetrahedron Lett. 54, 6097–6100.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds