organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1753-o1754

Bis{4-[(E)-2-(1H-indol-3-yl)ethen­yl]-1-methyl­pyridinium} 4-chloro­benzene­sulfonate nitrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bFaculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 2 November 2013; accepted 2 November 2013; online 9 November 2013)

In the title mixed salt, 2C16H15N2+·C6H4ClO3S·NO3, one of the cations shows whole mol­ecule disorder over two sets of sites in a 0.711 (7):0.289 (7) ratio. The 4-chorobenzenesulfon­ate anion is also disordered over two orientations in a 0.503 (6):0.497 (6) ratio. The cations are close to planar, the dihedral angles between the pyridinium and indole rings being 1.48 (3)° in the ordered cation, and 5.62 (3) and 2.45 (3)°, respectively, for the major and minor components of the disordered cation. In the crystal, the cations are stacked in an anti­parallel manner approximately along the a-axis direction and linked with the anions via N—H⋯O hydrogen bonds and C—H⋯O inter­actions, generating a three-dimensional network. Weak C—H⋯π and ππ inter­actions [with centroid–centroid distances of 3.561 (2)–3.969 (7) Å] are also observed.

Related literature

For related structures, see: Chantrapromma et al. (2008[Chantrapromma, S., Kobkeatthawin, T., Chanawanno, K., Karalai, C. & Fun, H.-K. (2008). Acta Cryst. E64, o876-o877.]); Chantrapromma & Fun (2009[Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o258-o259.]). For background to non-linear optical materials, see: Dittrich et al. (2003[Dittrich, Ph., Bartlome, R., Montemezzani, G. & Günter, P. (2003). Appl. Surf. Sci. 220, 88-95.]); Nogi et al. (2000[Nogi, K., Anwar, U., Tsuji, K., Duan, X.-M., Okada, S., Oikawa, H., Matsuda, H. & Nakanishi, H. (2000). Nonlinear Optics, 24, 35-40.]); Raimundo et al. (2002[Raimundo, J.-M., Blanchard, P., Planas, N. G., Mercier, N., Rak, I. L., Hierle, R. & Roncali, J. (2002). J. Org. Chem. 67, 205-218.]); Ruanwas et al. (2010[Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). Synth. Met. 160, 819-824.]); Sato et al. (1999[Sato, N., Rikukawa, M., Sanui, K. & Ogata, N. (1999). Synth. Met. 101, 132-133.]).

[Scheme 1]

Experimental

Crystal data
  • 2C16H15N2+·C6H4ClO3S·NO3

  • Mr = 724.21

  • Triclinic, [P \overline 1]

  • a = 8.7540 (7) Å

  • b = 13.6648 (10) Å

  • c = 15.3465 (11) Å

  • α = 97.206 (1)°

  • β = 91.186 (2)°

  • γ = 99.924 (1)°

  • V = 1792.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 153 K

  • 0.55 × 0.47 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.890, Tmax = 0.970

  • 9106 measured reflections

  • 6217 independent reflections

  • 4480 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.254

  • S = 1.05

  • 6217 reflections

  • 636 parameters

  • 206 restraints

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3, Cg6, Cg7 and Cg9 are the centroids of the C16–C21, C32–C37, N4A/C30A–C32A/C37A and C32A–C37A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O3A 0.78 2.19 2.937 (9) 161
N4—H1N4⋯O4i 0.81 2.43 3.220 (11) 165
N4—H1N4⋯O5i 0.81 2.32 2.987 (8) 141
C3A—H3AA⋯O5ii 0.93 2.43 3.246 (13) 146
C8—H8A⋯O2Aiii 0.93 2.40 3.213 (8) 146
C10—H10A⋯O5iv 0.93 2.51 3.234 (6) 134
C18—H18A⋯O1Av 0.93 2.52 3.345 (8) 148
C22—H22A⋯O1Aiii 0.96 2.45 3.368 (9) 160
C22—H22C⋯O2Avi 0.96 2.32 3.082 (9) 136
C26—H26A⋯O6vii 0.93 2.53 3.440 (7) 168
C15—H15ACg6vii 0.93 2.71 3.550 (6) 151
C15—H15ACg7vii 0.93 2.94 3.844 (10) 165
C15—H15ACg9vii 0.93 2.83 3.656 (13) 149
C34—H34ACg3ii 0.93 2.78 3.602 (7) 149
C38—H38CCg6ii 0.96 2.95 3.714 (8) 137
C38—H38CCg9vii 0.96 2.83 3.627 (14) 141
C34A—H34BCg3ii 0.93 2.89 3.56 (2) 130
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y, -z; (iv) -x+1, -y, -z+1; (v) -x+2, -y+1, -z; (vi) x, y-1, z; (vii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Organic molecules that exhibit second-order NLO properties usually consist of a framework with delocalized π system, end-capped with either a donor or acceptor substituent or both. Several pyridinium derivatives have been reported to exhibit second-order NLO properties such as single crystals of 1-methyl-4-(2-(4-(dimethylamino)phenyl)ethynyl)pyridinium p-toluenesulfonate (DAST) and its analogues (Dittrich et al., 2003; Sato et al., 1999). Based on the knowledge that the organic dipolar compounds with extended π systems having terminal donor and acceptor groups are likely to exhibit large hyperpolarizability (β) (Raimundo et al., 2002), we have synthesized several quinolinium derivatives which exhibit NLO properties (Ruanwas et al., 2010). In a similar manner, the title compound (I) was designed and synthesized in order to study for its NLO property. Unfortunately (I) crystallizes in a centrosymmetric P-1 space group which precluded the second-order NLO properties. Herein the crystal structure of (I) is reported.

In the crystal structure of (I), the asymmetric unit consists of two C16H15N2+ cations, C6H4ClO3S- and NO3- anions (Fig. 1). One cation [C23–C38/N3/N4] exhibits whole molecule disorder over two sets of sites with a refined site-occupancy ratio of 0.711 (7):0.289 (7). The molecule is disordered in such a way that the ethynyl unit in the major and minor (A) components are related by a 180° rotation. The two cations exist in the E conformation with respect to the ethenyl unit and the torsion angle C11–C12–C13–C14 = -178.8 (3)° for the non-disordered cation, and C27–C28–C29–C30 = 176.8 (6)° and -179.8 (15)° for the major and minor (A) components for the disordered cation. The cations are close to planar with the dihedral angles between the pyridinium and the indole rings being 1.28 (3)° for the non-disordered cation, and 5.62 (3) and 2.45 (3)° for the major and minor components respectively for the disordered cation. The 4-chlorobenzenesulfonate anion also shows whole molecule disorder (Fig. 1) with a 0.503 (6):0.497 (6) site occupancy ratio. Bond lengths of the title compound are comparable to those in related structures (Chantrapromma et al., 2008; Chantrapromma & Fun, 2009)

In the crystal (Fig. 2), the cations are stacked in an antiparallel fashion into columns approximately along the a axis and are further linked to the anions via N—H···O hydrogen bonds and C—H···O interactions (Table 1). C—H···π interactions and ππ interactions were observed with Cg1···Cg2iii = 3.6804 (19) Å, Cg2···Cg3iii = 3.561 (2) Å, Cg2···Cg10vi = 3.969 (7) Å, Cg2···Cg11vi = 3.949 (7) Å, Cg5···Cg5viii = 3.729 (5) Å, Cg5···Cg8viii = 3.728 (8) Å and Cg8···Cg8viii = 3.741 (11) Å; Cg1, Cg2, Cg3, Cg5, Cg8, Cg10 and Cg11 are the centroids of N2/C14–C16/C21, N1/C7–C11, C16–C21, N3/C23–C27, N3A/C23A–C27A, C1A–C6A and C1–C6, respectively [symmetry code (viii) = -x, 1 - y, 1 - z].

Related literature top

For related structures, see: Chantrapromma et al. (2008); Chantrapromma & Fun (2009). For background to non-linear optical materials, see: Dittrich et al. (2003); Nogi et al. (2000); Raimundo et al. (2002); Ruanwas et al. (2010); Sato et al. (1999).

Experimental top

4-[(E)-2-(1H-Indol-3-yl)ethenyl]-1-methylpyridinium iodide (compound A) was synthesized from a mixture (1:1:1 molar ratio) of 1,4-dimethylpyridinium iodide (2.00 g, 8.51 mmol), indole-3-carboxaldehyde (1.24 g, 8.51 mmol) and piperidine (0.84 ml, 8.51 mmol) in methanol (40 ml) under reflux for 2 h under a nitrogen atmosphere. The solid which formed was filtered, washed with ether and recrystallized from methanol to give orange single crystals of compound A after several days. The title compound was synthesized by mixing compound A (0.24 g, 0.67 mmol) in hot methanol (30 ml) and silver(I) 4-chlorobenzenesulfonate (0.20 g, 0.67 mmol) in hot methanol (20 ml). The mixture, which turned yellow and cloudy immediately, yielded a gray solid of silver iodide. After stirring the mixture for ca. 30 min, the precipitate of silver iodide was removed and the resulting solution was evaporated to yield an orange solid. Orange blocks of (I) were recrystalized from methanol solution by slow evaporation of the solvent at room temperature after several days.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.78, 0.81 and 0.86 Å, CH and Caryl—H = 0.93 Å and Cmethyl—H = 0.96 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. One cation is whole molecule disordered over two sites with refined site occupancies ratio 0.711 (7):0.289 (7), whereas the 4-chlorobenzenesulfonate anion is disordered over two sites with refined site occupancies ratio 0.503 (6):0.497 (6). Similarity and simulation restraints were applied. The displacement ellipsoids of each of the two pairs of atoms i.e. "CL1 C6" and "N3 C38" were restrained to be almost equal.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids. Open bonds show the minor disorder components.
[Figure 2] Fig. 2. The crystal packing (involving only the major components of the disordered ions) viewed along the c axis. Hydrogen bonds are drawn as dashed lines.
Bis{4-[(E)-2-(1H-indol-3-yl)ethenyl]-1-methylpyridinium} 4-chlorobenzenesulfonate nitrate top
Crystal data top
2C16H15N2+·C6H4ClO3S·NO3Z = 2
Mr = 724.21F(000) = 756
Triclinic, P1Dx = 1.342 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7540 (7) ÅCell parameters from 6217 reflections
b = 13.6648 (10) Åθ = 2.2–25.0°
c = 15.3465 (11) ŵ = 0.22 mm1
α = 97.206 (1)°T = 153 K
β = 91.186 (2)°Block, orange
γ = 99.924 (1)°0.55 × 0.47 × 0.14 mm
V = 1792.3 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6217 independent reflections
Radiation source: sealed tube4480 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.890, Tmax = 0.970k = 1116
9106 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.254H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1598P)2 + 0.6516P]
where P = (Fo2 + 2Fc2)/3
6217 reflections(Δ/σ)max = 0.001
636 parametersΔρmax = 0.87 e Å3
206 restraintsΔρmin = 0.29 e Å3
Crystal data top
2C16H15N2+·C6H4ClO3S·NO3γ = 99.924 (1)°
Mr = 724.21V = 1792.3 (2) Å3
Triclinic, P1Z = 2
a = 8.7540 (7) ÅMo Kα radiation
b = 13.6648 (10) ŵ = 0.22 mm1
c = 15.3465 (11) ÅT = 153 K
α = 97.206 (1)°0.55 × 0.47 × 0.14 mm
β = 91.186 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
6217 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4480 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.970Rint = 0.021
9106 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.074206 restraints
wR(F2) = 0.254H-atom parameters constrained
S = 1.05Δρmax = 0.87 e Å3
6217 reflectionsΔρmin = 0.29 e Å3
636 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O40.7782 (12)0.1160 (6)0.5522 (4)0.262 (4)
N10.3365 (3)0.3639 (2)0.08898 (19)0.0675 (7)
N20.7327 (4)0.2710 (2)0.1516 (2)0.0737 (8)
H1N20.73350.32790.16700.088*
Cl10.6552 (6)0.9687 (3)0.3630 (3)0.0776 (10)0.497 (6)
S10.7770 (6)0.5393 (3)0.1964 (3)0.0744 (15)0.497 (6)
O10.7041 (10)0.5304 (5)0.1112 (4)0.118 (3)0.497 (6)
O20.9408 (8)0.5430 (5)0.1947 (6)0.125 (3)0.497 (6)
O30.7660 (11)0.4712 (6)0.2529 (4)0.085 (3)0.497 (6)
C10.7483 (7)0.6565 (5)0.2512 (6)0.054 (3)0.497 (6)
C20.8661 (9)0.7372 (6)0.2595 (12)0.073 (4)0.497 (6)
H2A0.96750.72840.24930.087*0.497 (6)
C30.8328 (13)0.8344 (6)0.2838 (18)0.085 (6)0.497 (6)
H3A0.90550.89070.27630.102*0.497 (6)
C40.6954 (12)0.8448 (4)0.3177 (9)0.054 (3)0.497 (6)
C50.5768 (13)0.7615 (6)0.3125 (15)0.073 (5)0.497 (6)
H5A0.47980.76850.33340.087*0.497 (6)
C60.6042 (14)0.6676 (7)0.2757 (18)0.104 (9)0.497 (6)
H6A0.52350.61290.26810.124*0.497 (6)
Cl1A0.7176 (7)0.9748 (3)0.3728 (4)0.1076 (17)0.503 (6)
S1A0.7200 (6)0.5307 (3)0.1879 (2)0.0713 (13)0.503 (6)
O1A0.8297 (9)0.5400 (5)0.1208 (5)0.115 (3)0.503 (6)
O2A0.5651 (8)0.4921 (4)0.1546 (5)0.108 (2)0.503 (6)
O3A0.7044 (13)0.4664 (6)0.2478 (5)0.107 (4)0.503 (6)
C1A0.7204 (9)0.6543 (5)0.2395 (8)0.063 (3)0.503 (6)
C2A0.8482 (11)0.7269 (6)0.2379 (12)0.078 (5)0.503 (6)
H2AA0.92990.71490.20270.094*0.503 (6)
C3A0.8555 (13)0.8208 (8)0.2901 (16)0.079 (5)0.503 (6)
H3AA0.94940.86510.30010.095*0.503 (6)
C4A0.7258 (12)0.8453 (6)0.3251 (13)0.108 (8)0.503 (6)
C5A0.5943 (14)0.7713 (7)0.3256 (16)0.086 (7)0.503 (6)
H5AA0.50670.78630.35390.103*0.503 (6)
C6A0.5948 (9)0.6747 (5)0.2832 (12)0.054 (4)0.503 (6)
H6AA0.50880.62460.28510.065*0.503 (6)
C100.3905 (4)0.1910 (3)0.1379 (2)0.0671 (9)
H10A0.36810.13660.17510.080*
C90.3092 (4)0.2839 (3)0.1429 (2)0.0720 (9)
H9A0.23330.29240.18420.086*
C80.4452 (4)0.3513 (3)0.0303 (2)0.0693 (9)
H8A0.46370.40650.00730.083*
C70.5300 (4)0.2594 (3)0.0239 (2)0.0662 (8)
H7A0.60520.25300.01790.079*
C110.5065 (4)0.1757 (2)0.0784 (2)0.0585 (8)
C120.5998 (4)0.0784 (2)0.0709 (2)0.0616 (8)
H12A0.67570.07590.02930.074*
C130.5851 (4)0.0068 (2)0.1188 (2)0.0644 (8)
H13A0.50970.00190.16060.077*
C140.6697 (4)0.1055 (2)0.1148 (2)0.0612 (8)
C150.6401 (5)0.1873 (3)0.1677 (2)0.0735 (10)
H15A0.56500.18520.20970.088*
C160.8290 (4)0.2470 (2)0.0854 (2)0.0625 (8)
C170.9405 (4)0.3088 (3)0.0471 (3)0.0734 (10)
H17A0.96090.37750.06490.088*
C181.0202 (4)0.2658 (3)0.0180 (3)0.0835 (12)
H18A1.09650.30590.04540.100*
C190.9891 (4)0.1619 (3)0.0444 (3)0.0795 (10)
H19A1.04640.13440.08850.095*
C200.8755 (4)0.0995 (3)0.0066 (2)0.0656 (8)
H20A0.85500.03090.02490.079*
C210.7926 (4)0.1428 (2)0.0601 (2)0.0568 (7)
C220.2475 (6)0.4646 (3)0.0955 (3)0.1038 (15)
H22A0.22970.50210.03790.156*
H22B0.14970.45840.12080.156*
H22C0.30520.49880.13200.156*
N30.0284 (13)0.3441 (6)0.4087 (7)0.077 (4)0.711 (8)
N40.6488 (10)0.9026 (5)0.6160 (5)0.085 (2)0.711 (8)
H1N40.67240.96050.60820.102*0.711 (8)
C230.2158 (8)0.3996 (6)0.5264 (4)0.080 (2)0.711 (8)
H23A0.27070.38490.57420.096*0.711 (8)
C240.1017 (14)0.3284 (6)0.4828 (7)0.086 (4)0.711 (8)
H24A0.07370.26760.50460.103*0.711 (8)
C250.0573 (10)0.4327 (7)0.3802 (5)0.0757 (19)0.711 (8)
H25A0.00350.44310.33020.091*0.711 (8)
C260.1654 (9)0.5097 (4)0.4232 (5)0.0779 (17)0.711 (8)
H26A0.18260.57140.40210.093*0.711 (8)
C270.2506 (6)0.4966 (4)0.4985 (4)0.0668 (14)0.711 (8)
C280.3677 (6)0.5739 (4)0.5491 (3)0.0780 (17)0.711 (8)
H28A0.41530.55520.59760.094*0.711 (8)
C290.4126 (6)0.6668 (4)0.5332 (3)0.0790 (17)0.711 (8)
H29A0.36760.68310.48270.095*0.711 (8)
C300.5181 (6)0.7450 (4)0.5811 (4)0.0654 (14)0.711 (8)
C310.5477 (9)0.8421 (7)0.5594 (4)0.0832 (19)0.711 (8)
H31A0.50210.86220.51090.100*0.711 (8)
C320.693 (2)0.8500 (7)0.6800 (10)0.071 (8)0.711 (8)
C330.7919 (17)0.8825 (6)0.7527 (8)0.071 (3)0.711 (8)
H33A0.84190.94890.76360.085*0.711 (8)
C340.8158 (9)0.8159 (6)0.8083 (4)0.0694 (19)0.711 (8)
H34A0.88190.83790.85770.083*0.711 (8)
C350.7454 (9)0.7179 (5)0.7937 (4)0.0687 (15)0.711 (8)
H35A0.76560.67410.83240.082*0.711 (8)
C360.6398 (9)0.6815 (4)0.7187 (5)0.0673 (16)0.711 (8)
H36A0.58980.61510.70910.081*0.711 (8)
C370.6142 (10)0.7501 (4)0.6598 (6)0.062 (2)0.711 (8)
C380.0857 (7)0.2599 (6)0.3651 (5)0.086 (2)0.711 (8)
H38A0.16570.28510.33560.129*0.711 (8)
H38B0.13090.21960.40810.129*0.711 (8)
H38C0.03520.21970.32290.129*0.711 (8)
N3A0.027 (3)0.3295 (12)0.4146 (17)0.068 (8)*0.289 (8)
N4A0.634 (2)0.8785 (9)0.6083 (10)0.068 (6)*0.289 (8)
H2N40.65930.93780.59390.082*0.289 (8)
C23A0.2220 (17)0.4290 (9)0.5133 (9)0.054 (4)*0.289 (8)
H23B0.28330.43580.56470.064*0.289 (8)
C24A0.131 (3)0.3390 (8)0.4829 (12)0.052 (6)*0.289 (8)
H24B0.14120.28290.50970.063*0.289 (8)
C25A0.023 (3)0.4051 (12)0.3690 (13)0.090 (8)*0.289 (8)
H25B0.04770.39720.32150.109*0.289 (8)
C26A0.1219 (18)0.4953 (9)0.3907 (9)0.071 (5)*0.289 (8)
H26B0.12220.54550.35500.085*0.289 (8)
C27A0.2226 (17)0.5127 (8)0.4660 (9)0.062 (5)*0.289 (8)
C28A0.3251 (10)0.6080 (6)0.4976 (6)0.052 (3)*0.289 (8)
H28B0.32300.66010.46440.063*0.289 (8)
C29A0.4198 (12)0.6278 (7)0.5680 (6)0.053 (3)*0.289 (8)
H29B0.42050.57460.60030.063*0.289 (8)
C30A0.5197 (15)0.7169 (8)0.6015 (8)0.058 (4)*0.289 (8)
C31A0.5276 (19)0.8063 (10)0.5659 (9)0.062 (5)*0.289 (8)
H31B0.46590.81440.51820.075*0.289 (8)
C32A0.697 (5)0.8440 (13)0.679 (2)0.058 (16)*0.289 (8)
C33A0.804 (5)0.8938 (15)0.743 (2)0.086 (13)*0.289 (8)
H33B0.84720.96080.74200.104*0.289 (8)
C34A0.847 (3)0.8433 (16)0.8078 (12)0.104 (10)*0.289 (8)
H34B0.92300.87600.85000.125*0.289 (8)
C35A0.783 (3)0.7460 (15)0.8125 (12)0.138 (15)*0.289 (8)
H35B0.80690.71560.86070.166*0.289 (8)
C36A0.678 (2)0.6898 (10)0.7431 (10)0.071 (7)*0.289 (8)
H36B0.64330.62130.74210.085*0.289 (8)
C37A0.628 (3)0.7422 (8)0.6764 (13)0.052 (6)*0.289 (8)
C38A0.069 (2)0.2302 (10)0.3910 (14)0.103 (8)*0.289 (8)
H38D0.17510.23350.40480.155*0.289 (8)
H38E0.03230.18280.42350.155*0.289 (8)
H38F0.06430.20940.32910.155*0.289 (8)
N50.7895 (4)0.1618 (3)0.6196 (2)0.0802 (9)
O50.7699 (5)0.1173 (3)0.6834 (3)0.1369 (14)
O60.8104 (5)0.2515 (3)0.6310 (3)0.1375 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.400 (12)0.290 (8)0.106 (3)0.157 (8)0.058 (5)0.055 (4)
N10.0686 (18)0.0573 (16)0.0730 (17)0.0000 (13)0.0074 (14)0.0121 (13)
N20.092 (2)0.0471 (15)0.0814 (19)0.0150 (14)0.0001 (16)0.0019 (13)
Cl10.096 (3)0.0613 (15)0.0784 (15)0.0338 (16)0.0034 (16)0.0078 (11)
S10.104 (4)0.0507 (14)0.0695 (16)0.0185 (16)0.0162 (19)0.0036 (11)
O10.185 (8)0.086 (4)0.080 (4)0.037 (5)0.036 (5)0.015 (3)
O20.114 (5)0.105 (5)0.159 (6)0.048 (4)0.025 (5)0.017 (4)
O30.116 (6)0.058 (4)0.087 (4)0.032 (4)0.024 (4)0.010 (3)
C10.064 (5)0.050 (5)0.049 (5)0.016 (4)0.000 (4)0.007 (3)
C20.063 (5)0.074 (7)0.076 (8)0.007 (4)0.006 (5)0.004 (4)
C30.094 (8)0.060 (7)0.101 (9)0.011 (5)0.003 (6)0.013 (6)
C40.077 (5)0.045 (5)0.044 (4)0.031 (4)0.009 (4)0.008 (3)
C50.066 (6)0.088 (9)0.068 (7)0.029 (5)0.006 (5)0.006 (6)
C60.107 (12)0.104 (11)0.098 (12)0.015 (8)0.002 (8)0.013 (7)
Cl1A0.127 (4)0.0511 (13)0.136 (3)0.0177 (18)0.016 (3)0.0226 (14)
S1A0.099 (3)0.0487 (13)0.0677 (18)0.0154 (15)0.0049 (16)0.0110 (11)
O1A0.155 (6)0.080 (4)0.115 (6)0.026 (4)0.074 (5)0.008 (4)
O2A0.105 (5)0.076 (4)0.130 (5)0.005 (3)0.024 (4)0.018 (3)
O3A0.139 (8)0.071 (4)0.113 (6)0.014 (4)0.045 (5)0.018 (4)
C1A0.072 (6)0.061 (6)0.056 (5)0.012 (4)0.006 (5)0.009 (4)
C2A0.083 (7)0.078 (7)0.072 (8)0.017 (5)0.013 (5)0.004 (4)
C3A0.082 (7)0.056 (6)0.092 (8)0.001 (5)0.001 (6)0.005 (6)
C4A0.124 (10)0.103 (10)0.097 (10)0.031 (7)0.008 (7)0.000 (7)
C5A0.089 (9)0.081 (9)0.087 (10)0.032 (6)0.009 (7)0.013 (5)
C6A0.050 (5)0.054 (6)0.056 (5)0.008 (4)0.005 (4)0.002 (4)
C100.077 (2)0.0585 (19)0.0656 (19)0.0147 (16)0.0016 (17)0.0026 (15)
C90.069 (2)0.079 (2)0.068 (2)0.0069 (18)0.0054 (16)0.0175 (18)
C80.079 (2)0.0546 (19)0.072 (2)0.0088 (16)0.0008 (18)0.0041 (15)
C70.069 (2)0.0578 (19)0.072 (2)0.0114 (15)0.0063 (16)0.0085 (15)
C110.0589 (18)0.0594 (18)0.0585 (17)0.0113 (14)0.0041 (14)0.0125 (14)
C120.065 (2)0.0570 (18)0.0650 (18)0.0143 (15)0.0060 (15)0.0106 (14)
C130.067 (2)0.0585 (19)0.0684 (19)0.0111 (15)0.0028 (16)0.0112 (15)
C140.066 (2)0.0545 (18)0.0653 (19)0.0144 (14)0.0013 (15)0.0097 (14)
C150.090 (3)0.059 (2)0.074 (2)0.0202 (18)0.0110 (19)0.0053 (16)
C160.0616 (19)0.0528 (17)0.073 (2)0.0091 (14)0.0122 (16)0.0118 (15)
C170.067 (2)0.058 (2)0.094 (3)0.0032 (17)0.0100 (19)0.0187 (18)
C180.060 (2)0.084 (3)0.107 (3)0.0039 (19)0.005 (2)0.040 (2)
C190.068 (2)0.086 (3)0.091 (3)0.0222 (19)0.0137 (19)0.024 (2)
C200.062 (2)0.0618 (19)0.076 (2)0.0162 (15)0.0032 (16)0.0124 (16)
C210.0547 (17)0.0497 (16)0.0670 (18)0.0118 (13)0.0075 (14)0.0104 (13)
C220.117 (4)0.071 (3)0.111 (3)0.025 (2)0.003 (3)0.021 (2)
N30.064 (4)0.093 (6)0.073 (5)0.022 (3)0.006 (2)0.007 (3)
N40.105 (5)0.055 (3)0.092 (4)0.012 (3)0.016 (3)0.008 (3)
C230.081 (4)0.081 (4)0.082 (4)0.013 (4)0.005 (3)0.022 (4)
C240.070 (6)0.088 (6)0.100 (6)0.014 (3)0.014 (4)0.016 (4)
C250.078 (5)0.074 (4)0.081 (4)0.025 (4)0.004 (3)0.016 (4)
C260.084 (5)0.073 (4)0.077 (5)0.019 (3)0.009 (4)0.004 (3)
C270.062 (3)0.073 (4)0.067 (4)0.019 (3)0.011 (3)0.003 (3)
C280.084 (4)0.084 (4)0.071 (3)0.027 (3)0.005 (3)0.009 (3)
C290.086 (4)0.081 (4)0.075 (3)0.024 (3)0.013 (3)0.016 (3)
C300.070 (3)0.058 (3)0.070 (3)0.018 (3)0.001 (3)0.008 (3)
C310.097 (5)0.072 (4)0.083 (4)0.019 (4)0.006 (3)0.017 (4)
C320.067 (8)0.070 (8)0.080 (10)0.018 (3)0.011 (3)0.011 (3)
C330.063 (4)0.066 (5)0.081 (5)0.006 (3)0.002 (4)0.008 (3)
C340.066 (4)0.068 (4)0.072 (4)0.006 (3)0.008 (2)0.011 (3)
C350.079 (4)0.064 (3)0.065 (3)0.019 (3)0.005 (3)0.011 (3)
C360.064 (4)0.064 (4)0.071 (4)0.010 (2)0.003 (3)0.000 (3)
C370.062 (4)0.073 (4)0.057 (4)0.023 (3)0.013 (3)0.010 (3)
C380.073 (4)0.094 (4)0.082 (4)0.012 (3)0.008 (3)0.015 (4)
N50.084 (2)0.084 (2)0.075 (2)0.0217 (18)0.0086 (17)0.0104 (18)
O50.143 (3)0.116 (3)0.163 (4)0.028 (2)0.061 (3)0.048 (3)
O60.129 (3)0.094 (3)0.195 (4)0.014 (2)0.024 (3)0.049 (3)
Geometric parameters (Å, º) top
O4—N51.133 (6)N4—C321.372 (6)
N1—C81.328 (5)N4—H1N40.8081
N1—C91.345 (5)C23—C241.366 (8)
N1—C221.476 (5)C23—C271.429 (9)
N2—C151.336 (5)C23—H23A0.9300
N2—C161.377 (5)C24—H24A0.9300
N2—H1N20.7838C25—C261.376 (11)
Cl1—C41.842 (5)C25—H25A0.9300
S1—O31.342 (4)C26—C271.409 (10)
S1—O11.425 (5)C26—H26A0.9300
S1—O21.427 (7)C27—C281.468 (7)
S1—C11.773 (4)C28—C291.318 (6)
C1—C61.352 (8)C28—H28A0.9300
C1—C21.365 (7)C29—C301.404 (7)
C2—C31.415 (10)C29—H29A0.9300
C2—H2A0.9300C30—C311.391 (9)
C3—C41.343 (9)C30—C371.445 (8)
C3—H3A0.9300C31—H31A0.9300
C4—C51.395 (8)C32—C331.377 (6)
C5—C61.397 (8)C32—C371.412 (7)
C5—H5A0.9300C33—C341.362 (8)
C6—H6A0.9300C33—H33A0.9300
Cl1A—C4A1.842 (5)C34—C351.363 (10)
S1A—O3A1.342 (4)C34—H34A0.9300
S1A—O1A1.425 (5)C35—C361.443 (9)
S1A—O2A1.427 (7)C35—H35A0.9300
S1A—C1A1.773 (4)C36—C371.421 (8)
C1A—C6A1.351 (8)C36—H36A0.9300
C1A—C2A1.365 (7)C38—H38A0.9600
C2A—C3A1.415 (10)C38—H38B0.9600
C2A—H2AA0.9300C38—H38C0.9600
C3A—C4A1.343 (10)N3A—C25A1.324 (9)
C3A—H3AA0.9300N3A—C24A1.352 (7)
C4A—C5A1.395 (8)N3A—C38A1.468 (6)
C5A—C6A1.397 (8)N4A—C31A1.326 (8)
C5A—H5AA0.9300N4A—C32A1.372 (6)
C6A—H6AA0.9300N4A—H1N41.1137
C10—C91.356 (5)N4A—H2N40.8600
C10—C111.386 (5)C23A—C24A1.367 (8)
C10—H10A0.9300C23A—C27A1.429 (9)
C9—H9A0.9300C23A—H23B0.9300
C8—C71.360 (5)C24A—H24B0.9300
C8—H8A0.9300C25A—C26A1.376 (11)
C7—C111.378 (5)C25A—H25B0.9300
C7—H7A0.9300C26A—C27A1.410 (10)
C11—C121.455 (5)C26A—H26B0.9300
C12—C131.324 (5)C27A—C28A1.468 (7)
C12—H12A0.9300C28A—C29A1.318 (6)
C13—C141.432 (5)C28A—H28B0.9300
C13—H13A0.9300C29A—C30A1.403 (7)
C14—C151.362 (5)C29A—H29B0.9300
C14—C211.440 (5)C30A—C31A1.390 (9)
C15—H15A0.9300C30A—C37A1.445 (8)
C16—C171.370 (5)C31A—H31B0.9300
C16—C211.407 (4)C32A—C33A1.377 (6)
C17—C181.360 (6)C32A—C37A1.412 (7)
C17—H17A0.9300C33A—C34A1.362 (8)
C18—C191.404 (6)C33A—H33B0.9300
C18—H18A0.9300C34A—C35A1.363 (10)
C19—C201.382 (5)C34A—H34B0.9300
C19—H19A0.9300C35A—C36A1.443 (10)
C20—C211.397 (5)C35A—H35B0.9300
C20—H20A0.9300C36A—C37A1.421 (8)
C22—H22A0.9600C36A—H36B0.9300
C22—H22B0.9600C38A—H38D0.9600
C22—H22C0.9600C38A—H38E0.9600
N3—C251.324 (9)C38A—H38F0.9600
N3—C241.352 (7)N5—O61.197 (5)
N3—C381.468 (6)N5—O51.216 (5)
N4—C311.326 (8)
C8—N1—C9119.2 (3)C31—N4—H1N4118.3
C8—N1—C22120.5 (3)C32—N4—H1N4132.2
C9—N1—C22120.3 (3)C24—C23—C27119.9 (5)
C15—N2—C16108.9 (3)C24—C23—H23A120.0
C15—N2—H1N2133.0C27—C23—H23A120.0
C16—N2—H1N2117.4N3—C24—C23121.6 (6)
O3—S1—O1128.6 (4)N3—C24—H24A119.2
O3—S1—O290.3 (5)C23—C24—H24A119.2
O1—S1—O2113.3 (4)N3—C25—C26121.2 (5)
O3—S1—C1110.2 (2)N3—C25—H25A119.4
O1—S1—C1105.7 (2)C26—C25—H25A119.4
O2—S1—C1106.5 (3)C25—C26—C27121.2 (5)
C6—C1—C2120.3 (5)C25—C26—H26A119.4
C6—C1—S1119.1 (4)C27—C26—H26A119.4
C2—C1—S1120.2 (4)C26—C27—C23115.5 (4)
C1—C2—C3119.5 (6)C26—C27—C28125.3 (5)
C1—C2—H2A120.2C23—C27—C28119.1 (5)
C3—C2—H2A120.2C29—C28—C27127.1 (4)
C4—C3—C2119.4 (6)C29—C28—H28A116.5
C4—C3—H3A120.3C27—C28—H28A116.5
C2—C3—H3A120.3C28—C29—C30129.7 (4)
C3—C4—C5119.5 (5)C28—C29—H29A115.2
C3—C4—Cl1121.2 (5)C30—C29—H29A115.2
C5—C4—Cl1119.1 (5)C31—C30—C29123.5 (5)
C4—C5—C6119.8 (5)C31—C30—C37104.0 (4)
C4—C5—H5A120.1C29—C30—C37132.4 (5)
C6—C5—H5A120.1N4—C31—C30111.9 (5)
C1—C6—C5119.9 (5)N4—C31—H31A124.1
C1—C6—H6A120.1C30—C31—H31A124.1
C5—C6—H6A120.1N4—C32—C33129.7 (6)
O3A—S1A—O1A128.5 (4)N4—C32—C37107.2 (5)
O3A—S1A—O2A90.3 (5)C33—C32—C37123.1 (6)
O1A—S1A—O2A113.3 (4)C34—C33—C32119.0 (6)
O3A—S1A—C1A110.2 (2)C34—C33—H33A120.5
O1A—S1A—C1A105.7 (2)C32—C33—H33A120.5
O2A—S1A—C1A106.6 (3)C33—C34—C35121.9 (5)
C6A—C1A—C2A120.4 (5)C33—C34—H34A119.1
C6A—C1A—S1A119.2 (4)C35—C34—H34A119.1
C2A—C1A—S1A120.4 (4)C34—C35—C36120.6 (4)
C1A—C2A—C3A119.5 (6)C34—C35—H35A119.7
C1A—C2A—H2AA120.2C36—C35—H35A119.7
C3A—C2A—H2AA120.2C37—C36—C35118.2 (4)
C4A—C3A—C2A119.4 (6)C37—C36—H36A120.9
C4A—C3A—H3AA120.3C35—C36—H36A120.9
C2A—C3A—H3AA120.3C32—C37—C36117.3 (6)
C3A—C4A—C5A119.5 (5)C32—C37—C30107.4 (6)
C3A—C4A—Cl1A121.3 (5)C36—C37—C30135.3 (5)
C5A—C4A—Cl1A119.2 (5)C25A—N3A—C24A120.3 (6)
C4A—C5A—C6A119.7 (5)C25A—N3A—C38A123.0 (7)
C4A—C5A—H5AA120.1C24A—N3A—C38A116.5 (8)
C6A—C5A—H5AA120.1C31A—N4A—C32A109.5 (6)
C1A—C6A—C5A119.9 (5)C31A—N4A—H1N4137.4
C1A—C6A—H6AA120.1C32A—N4A—H1N4112.4
C5A—C6A—H6AA120.1C31A—N4A—H2N4125.3
C9—C10—C11121.1 (3)C32A—N4A—H2N4125.3
C9—C10—H10A119.4C24A—C23A—C27A119.8 (5)
C11—C10—H10A119.4C24A—C23A—H23B120.1
N1—C9—C10121.0 (3)C27A—C23A—H23B120.1
N1—C9—H9A119.5N3A—C24A—C23A121.5 (6)
C10—C9—H9A119.5N3A—C24A—H24B119.2
N1—C8—C7121.4 (3)C23A—C24A—H24B119.2
N1—C8—H8A119.3N3A—C25A—C26A121.1 (6)
C7—C8—H8A119.3N3A—C25A—H25B119.5
C8—C7—C11121.2 (3)C26A—C25A—H25B119.5
C8—C7—H7A119.4C25A—C26A—C27A121.1 (5)
C11—C7—H7A119.4C25A—C26A—H26B119.4
C7—C11—C10116.0 (3)C27A—C26A—H26B119.4
C7—C11—C12120.1 (3)C26A—C27A—C23A115.5 (4)
C10—C11—C12123.8 (3)C26A—C27A—C28A125.2 (5)
C13—C12—C11125.0 (3)C23A—C27A—C28A119.3 (5)
C13—C12—H12A117.5C29A—C28A—C27A127.2 (4)
C11—C12—H12A117.5C29A—C28A—H28B116.4
C12—C13—C14128.7 (3)C27A—C28A—H28B116.4
C12—C13—H13A115.7C28A—C29A—C30A129.8 (4)
C14—C13—H13A115.7C28A—C29A—H29B115.1
C15—C14—C13122.3 (3)C30A—C29A—H29B115.1
C15—C14—C21105.7 (3)C31A—C30A—C29A123.7 (5)
C13—C14—C21132.0 (3)C31A—C30A—C37A104.0 (4)
N2—C15—C14111.4 (3)C29A—C30A—C37A132.2 (5)
N2—C15—H15A124.3N4A—C31A—C30A111.8 (5)
C14—C15—H15A124.3N4A—C31A—H31B124.1
C17—C16—N2129.1 (3)C30A—C31A—H31B124.1
C17—C16—C21123.4 (4)N4A—C32A—C33A129.8 (6)
N2—C16—C21107.5 (3)N4A—C32A—C37A107.2 (5)
C18—C17—C16117.5 (4)C33A—C32A—C37A123.0 (6)
C18—C17—H17A121.2C34A—C33A—C32A119.0 (6)
C16—C17—H17A121.2C34A—C33A—H33B120.5
C17—C18—C19121.0 (4)C32A—C33A—H33B120.5
C17—C18—H18A119.5C33A—C34A—C35A121.8 (5)
C19—C18—H18A119.5C33A—C34A—H34B119.1
C20—C19—C18121.7 (4)C35A—C34A—H34B119.1
C20—C19—H19A119.2C34A—C35A—C36A120.4 (4)
C18—C19—H19A119.2C34A—C35A—H35B119.8
C19—C20—C21117.9 (3)C36A—C35A—H35B119.8
C19—C20—H20A121.1C37A—C36A—C35A118.0 (5)
C21—C20—H20A121.1C37A—C36A—H36B121.0
C20—C21—C16118.6 (3)C35A—C36A—H36B121.0
C20—C21—C14135.0 (3)C32A—C37A—C36A117.3 (6)
C16—C21—C14106.4 (3)C32A—C37A—C30A107.4 (6)
N1—C22—H22A109.5C36A—C37A—C30A135.4 (5)
N1—C22—H22B109.5N3A—C38A—H38D109.5
H22A—C22—H22B109.5N3A—C38A—H38E109.5
N1—C22—H22C109.5H38D—C38A—H38E109.5
H22A—C22—H22C109.5N3A—C38A—H38F109.5
H22B—C22—H22C109.5H38D—C38A—H38F109.5
C25—N3—C24120.4 (6)H38E—C38A—H38F109.5
C25—N3—C38123.1 (7)O4—N5—O6123.5 (6)
C24—N3—C38116.5 (7)O4—N5—O5118.0 (6)
C31—N4—C32109.5 (6)O6—N5—O5118.3 (4)
O3—S1—C1—C672.0 (16)C27—C23—C24—N35.6 (17)
O1—S1—C1—C670.6 (16)C24—N3—C25—C262.1 (17)
O2—S1—C1—C6168.6 (16)C38—N3—C25—C26179.9 (10)
O3—S1—C1—C2115.4 (12)N3—C25—C26—C270.7 (12)
O1—S1—C1—C2102.1 (12)C25—C26—C27—C230.4 (9)
O2—S1—C1—C218.8 (12)C25—C26—C27—C28179.7 (6)
C6—C1—C2—C38 (3)C24—C23—C27—C262.7 (11)
S1—C1—C2—C3164.9 (17)C24—C23—C27—C28176.7 (9)
C1—C2—C3—C415 (3)C26—C27—C28—C290.0 (9)
C2—C3—C4—C513 (3)C23—C27—C28—C29179.3 (6)
C2—C3—C4—Cl1172.4 (17)C27—C28—C29—C30176.8 (6)
C3—C4—C5—C63 (3)C28—C29—C30—C31175.9 (7)
Cl1—C4—C5—C6178 (2)C28—C29—C30—C372.2 (12)
C2—C1—C6—C52 (3)C32—N4—C31—C300.5 (13)
S1—C1—C6—C5174.8 (19)C29—C30—C31—N4178.4 (7)
C4—C5—C6—C15 (4)C37—C30—C31—N40.2 (9)
O3A—S1A—C1A—C6A60.6 (14)C31—N4—C32—C33178 (2)
O1A—S1A—C1A—C6A156.9 (13)C31—N4—C32—C370.9 (18)
O2A—S1A—C1A—C6A36.1 (13)N4—C32—C33—C34178.9 (18)
O3A—S1A—C1A—C2A117.0 (14)C37—C32—C33—C340 (3)
O1A—S1A—C1A—C2A25.5 (14)C32—C33—C34—C351 (2)
O2A—S1A—C1A—C2A146.3 (14)C33—C34—C35—C361.1 (13)
C6A—C1A—C2A—C3A7 (3)C34—C35—C36—C371.3 (9)
S1A—C1A—C2A—C3A170.6 (17)N4—C32—C37—C36178.8 (12)
C1A—C2A—C3A—C4A15 (3)C33—C32—C37—C361 (3)
C2A—C3A—C4A—C5A13 (3)N4—C32—C37—C301.0 (18)
C2A—C3A—C4A—Cl1A166.5 (19)C33—C32—C37—C30178.4 (19)
C3A—C4A—C5A—C6A5 (3)C35—C36—C37—C321.0 (15)
Cl1A—C4A—C5A—C6A174.7 (19)C35—C36—C37—C30178.0 (10)
C2A—C1A—C6A—C5A1 (3)C31—C30—C37—C320.7 (13)
S1A—C1A—C6A—C5A178.9 (17)C29—C30—C37—C32177.6 (12)
C4A—C5A—C6A—C1A2 (3)C31—C30—C37—C36177.9 (11)
C8—N1—C9—C100.1 (5)C29—C30—C37—C360.4 (17)
C22—N1—C9—C10179.7 (4)C25A—N3A—C24A—C23A8 (4)
C11—C10—C9—N11.3 (5)C38A—N3A—C24A—C23A177 (3)
C9—N1—C8—C70.5 (5)C27A—C23A—C24A—N3A8 (3)
C22—N1—C8—C7179.1 (4)C24A—N3A—C25A—C26A1 (5)
N1—C8—C7—C110.1 (6)C38A—N3A—C25A—C26A176 (3)
C8—C7—C11—C101.1 (5)N3A—C25A—C26A—C27A5 (4)
C8—C7—C11—C12179.4 (3)C25A—C26A—C27A—C23A4 (3)
C9—C10—C11—C71.7 (5)C25A—C26A—C27A—C28A176 (2)
C9—C10—C11—C12178.8 (3)C24A—C23A—C27A—C26A2 (3)
C7—C11—C12—C13178.8 (3)C24A—C23A—C27A—C28A177.7 (18)
C10—C11—C12—C130.7 (5)C26A—C27A—C28A—C29A179.3 (17)
C11—C12—C13—C14178.8 (3)C23A—C27A—C28A—C29A1 (2)
C12—C13—C14—C15178.9 (3)C27A—C28A—C29A—C30A179.8 (15)
C12—C13—C14—C210.0 (6)C28A—C29A—C30A—C31A4 (3)
C16—N2—C15—C140.3 (4)C28A—C29A—C30A—C37A178 (2)
C13—C14—C15—N2179.5 (3)C32A—N4A—C31A—C30A4 (3)
C21—C14—C15—N20.4 (4)C29A—C30A—C31A—N4A178.5 (17)
C15—N2—C16—C17179.1 (4)C37A—C30A—C31A—N4A4 (2)
C15—N2—C16—C210.1 (4)C31A—N4A—C32A—C33A177 (6)
N2—C16—C17—C18179.8 (3)C31A—N4A—C32A—C37A3 (4)
C21—C16—C17—C180.7 (5)N4A—C32A—C33A—C34A179 (5)
C16—C17—C18—C190.2 (6)C37A—C32A—C33A—C34A0 (8)
C17—C18—C19—C200.9 (6)C32A—C33A—C34A—C35A2 (7)
C18—C19—C20—C210.7 (5)C33A—C34A—C35A—C36A7 (4)
C19—C20—C21—C160.2 (5)C34A—C35A—C36A—C37A8 (3)
C19—C20—C21—C14179.7 (4)N4A—C32A—C37A—C36A179 (3)
C17—C16—C21—C200.9 (5)C33A—C32A—C37A—C36A1 (7)
N2—C16—C21—C20179.8 (3)N4A—C32A—C37A—C30A1 (4)
C17—C16—C21—C14179.4 (3)C33A—C32A—C37A—C30A179 (5)
N2—C16—C21—C140.1 (3)C35A—C36A—C37A—C32A5 (4)
C15—C14—C21—C20179.9 (4)C35A—C36A—C37A—C30A175 (3)
C13—C14—C21—C201.1 (6)C31A—C30A—C37A—C32A2 (3)
C15—C14—C21—C160.3 (4)C29A—C30A—C37A—C32A179 (3)
C13—C14—C21—C16179.3 (3)C31A—C30A—C37A—C36A179 (3)
C25—N3—C24—C235 (2)C29A—C30A—C37A—C36A1 (5)
C38—N3—C24—C23176.6 (12)
Hydrogen-bond geometry (Å, º) top
Cg3, Cg6, Cg7 and Cg9 are the centroids of the C16–C21, C32–C37, N4A/C30A–C32A/C37A and C32A–C37A rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3A0.782.192.937 (9)161
N4—H1N4···O4i0.812.433.220 (11)165
N4—H1N4···O5i0.812.322.987 (8)141
C3A—H3AA···O5ii0.932.433.246 (13)146
C8—H8A···O2Aiii0.932.403.213 (8)146
C10—H10A···O5iv0.932.513.234 (6)134
C18—H18A···O1Av0.932.523.345 (8)148
C22—H22A···O1Aiii0.962.453.368 (9)160
C22—H22C···O2Avi0.962.323.082 (9)136
C26—H26A···O6vii0.932.533.440 (7)168
C15—H15A···Cg6vii0.932.713.550 (6)151
C15—H15A···Cg7vii0.932.943.844 (10)165
C15—H15A···Cg9vii0.932.833.656 (13)149
C34—H34A···Cg3ii0.932.783.602 (7)149
C38—H38C···Cg6ii0.962.953.714 (8)137
C38—H38C···Cg9vii0.962.833.627 (14)141
C34A—H34B···Cg3ii0.932.893.56 (2)130
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x+2, y+1, z; (vi) x, y1, z; (vii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg3, Cg6, Cg7 and Cg9 are the centroids of the C16–C21, C32–C37, N4A/C30A–C32A/C37A and C32A–C37A rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3A0.782.192.937 (9)161
N4—H1N4···O4i0.812.433.220 (11)165
N4—H1N4···O5i0.812.322.987 (8)141
C3A—H3AA···O5ii0.932.433.246 (13)146
C8—H8A···O2Aiii0.932.403.213 (8)146
C10—H10A···O5iv0.932.513.234 (6)134
C18—H18A···O1Av0.932.523.345 (8)148
C22—H22A···O1Aiii0.962.453.368 (9)160
C22—H22C···O2Avi0.962.323.082 (9)136
C26—H26A···O6vii0.932.533.440 (7)168
C15—H15A···Cg6vii0.932.713.550 (6)151
C15—H15A···Cg7vii0.932.943.844 (10)165
C15—H15A···Cg9vii0.932.833.656 (13)149
C34—H34A···Cg3ii0.932.783.602 (7)149
C38—H38C···Cg6ii0.962.953.714 (8)137
C38—H38C···Cg9vii0.962.833.627 (14)141
C34A—H34B···Cg3ii0.932.893.56 (2)130
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x+2, y+1, z; (vi) x, y1, z; (vii) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank Prince of Songkla University for generous support and the Universiti Sains Malaysia for the APEX DE2012 grant No. 1002/PFIZIK/910323.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o258–o259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChantrapromma, S., Kobkeatthawin, T., Chanawanno, K., Karalai, C. & Fun, H.-K. (2008). Acta Cryst. E64, o876–o877.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDittrich, Ph., Bartlome, R., Montemezzani, G. & Günter, P. (2003). Appl. Surf. Sci. 220, 88–95.  Web of Science CrossRef CAS Google Scholar
First citationNogi, K., Anwar, U., Tsuji, K., Duan, X.-M., Okada, S., Oikawa, H., Matsuda, H. & Nakanishi, H. (2000). Nonlinear Optics, 24, 35–40.  CAS Google Scholar
First citationRaimundo, J.-M., Blanchard, P., Planas, N. G., Mercier, N., Rak, I. L., Hierle, R. & Roncali, J. (2002). J. Org. Chem. 67, 205–218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRuanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). Synth. Met. 160, 819–824.  Web of Science CSD CrossRef CAS Google Scholar
First citationSato, N., Rikukawa, M., Sanui, K. & Ogata, N. (1999). Synth. Met. 101, 132–133.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1753-o1754
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds