organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Adamantan-1-yl)-1,2,3,4-tetra­hydro­iso­quinoline-2-carbo­thio­amide

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hfun.c@ksu.edu.sa

(Received 18 November 2013; accepted 19 November 2013; online 23 November 2013)

In the title compound, C20H26N2S, the N-containing six-membered ring adopts a boat conformation and the dihedral angle between the thio­carbamide group and the benzene ring is 49.67 (9)°. An intra­molecular C—H⋯S hydrogen bond generates an S(6) ring motif. The N—H group is sterically hindered and there are no significant inter­molecular inter­actions beyond van der Waals contacts.

Related literature

For related structures and biological background, see: Al-Abdullah et al. (2012[Al-Abdullah, E. S., Asiri, H. H., El-Emam, A. A. & Ng, S. W. (2012). Acta Cryst. E68, o531.]); El-Emam et al. (2012[El-Emam, A. A., El-Brollosy, N. R., Ghabbour, H. A., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, o1347.]); Al-Tamimi et al. (2013[Al-Tamimi, A.-M. S., Alafeefy, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o683.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26N2S

  • Mr = 326.49

  • Monoclinic, P 21 /c

  • a = 19.1707 (5) Å

  • b = 6.4106 (2) Å

  • c = 14.2838 (3) Å

  • β = 103.366 (2)°

  • V = 1707.87 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.67 mm−1

  • T = 296 K

  • 0.81 × 0.13 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.345, Tmax = 0.921

  • 10894 measured reflections

  • 2831 independent reflections

  • 2351 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.07

  • 2831 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16B⋯S1 0.97 2.72 3.365 (2) 125

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation to our interest in the chemical and pharmacological properties of adamantane derivatives, (Al-Abdullah et al., 2012; El-Emam et al., 2012; Al-Tamimi et al., 2013) we synthesized the title compound (I) as a potential bioactive agent and its crystal structure is described here.

In the crystal structure of the title compound (I), the N-containing six-membered (N1/C1—C3/C8/C9) ring, Fig. 1, adopts a boat conformation, puckering parameters: Q = 0.639 (2) Å, θ = 88.01 (18)°, and ϕ = 119.18 (18)° with a maximum deviation of 0.380 (2) Å at atom C2. An intramolecular C–H···S hydrogen bond form a six-membered ring, Fig. 1, generating an S(6) ring motif, In the crystal structure, no significant intermolecular hydrogen bonds are observed.

Related literature top

For related structures and biological background, see: Al-Abdullah et al. (2012); El-Emam et al. (2012); Al-Tamimi et al. (2013).

Experimental top

A mixture of 387 mg 1-adamantylisothiocyanate (387 mg, 2 mmol) and 1,2,3,4-tetrahydroisoquinoline (266 mg, 2 mmol), in ethanol (15 ml), was heated under reflux for 2 h. On cooling, the precipitated crude product were filtered, washed with cold ethanol, dried, and crystallized from ethanol to yield 575 mg (88%) of the title compound (C20H26N2S), m.p.: 420–422 K. Colorless needles were obtained from the slow evaporation of a CHCl3:EtOH solution (1:1; 5 ml) at room temperature.

1H NMR (CDCl3, 500.13 MHz): δ 1.60–1.67 (m, 6H, Adamantane-H), 2.05 (s, 3H, Adamantane-H), 2.25–2.26 (m, 6H, Adamantane-H), 2.85 (t, 2H, J = 6.0 Hz, Isoquinoline-CH2), 3.81 (t, 2H, J = 6.0 Hz, Isoquinoline-CH2), 4.80 (s, 2H, Isoquinoline-CH2), 5.15 (s, 1H, NH), 7.08–7.15 (m, 4H, Ar—H). 13C NMR (CDCl3, 125.76 MHz): δ 29.68, 32.88, 35.56, 42.01 (Adamantane-C), 29.24, 48.12, 54.82, 126.49, 127.08, 128.33, 129.14, 133.43, 135.50 (Isoquinoline-C), 179.46 (C=S).

Refinement top

All H atoms were positioned geometrically [C—H = 0.93, 0.97 or 0.98 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids.
N-(Adamantan-1-yl)-1,2,3,4-tetrahydroisoquinoline-2-carbothioamide top
Crystal data top
C20H26N2SF(000) = 704
Mr = 326.49Dx = 1.270 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2009 reflections
a = 19.1707 (5) Åθ = 4.7–68.5°
b = 6.4106 (2) ŵ = 1.67 mm1
c = 14.2838 (3) ÅT = 296 K
β = 103.366 (2)°Needle, colorless
V = 1707.87 (8) Å30.81 × 0.13 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2831 independent reflections
Radiation source: fine-focus sealed tube2351 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 65.0°, θmin = 4.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2222
Tmin = 0.345, Tmax = 0.921k = 57
10894 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.4078P]
where P = (Fo2 + 2Fc2)/3
2831 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H26N2SV = 1707.87 (8) Å3
Mr = 326.49Z = 4
Monoclinic, P21/cCu Kα radiation
a = 19.1707 (5) ŵ = 1.67 mm1
b = 6.4106 (2) ÅT = 296 K
c = 14.2838 (3) Å0.81 × 0.13 × 0.05 mm
β = 103.366 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2831 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2351 reflections with I > 2σ(I)
Tmin = 0.345, Tmax = 0.921Rint = 0.040
10894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.16 e Å3
2831 reflectionsΔρmin = 0.20 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28539 (3)0.53707 (8)0.87853 (4)0.04780 (18)
N10.31695 (8)0.8392 (2)1.01049 (11)0.0410 (4)
N20.22585 (9)0.9145 (3)0.88193 (13)0.0487 (4)
C10.30653 (10)1.0463 (3)1.04991 (15)0.0454 (5)
H1A0.25821.05551.05960.054*
H1B0.31181.15251.00370.054*
C20.35954 (10)1.0889 (3)1.14462 (14)0.0468 (5)
H2A0.35741.23521.16110.056*
H2B0.34661.00711.19520.056*
C30.43444 (10)1.0346 (3)1.13817 (13)0.0394 (4)
C40.49318 (11)1.1642 (3)1.16802 (14)0.0477 (5)
H4A0.48741.29611.19220.057*
C50.56065 (11)1.0963 (4)1.16170 (15)0.0541 (6)
H5A0.60021.18271.18190.065*
C60.56903 (11)0.9017 (4)1.12565 (15)0.0549 (6)
H6A0.61460.85561.12310.066*
C70.51028 (10)0.7734 (3)1.09301 (13)0.0485 (5)
H7A0.51620.64301.06740.058*
C80.44261 (10)0.8406 (3)1.09868 (13)0.0388 (4)
C90.37639 (10)0.7106 (3)1.06543 (14)0.0464 (5)
H9A0.38630.59771.02520.056*
H9B0.36260.65001.12070.056*
C100.27588 (9)0.7748 (3)0.92530 (14)0.0386 (4)
C110.17921 (9)0.9182 (3)0.78351 (14)0.0388 (4)
C120.13539 (11)1.1194 (3)0.77934 (17)0.0559 (6)
H12A0.16751.23790.79380.067*
H12B0.10691.11400.82720.067*
C130.08603 (11)1.1464 (3)0.67914 (16)0.0545 (6)
H13A0.05891.27640.67730.065*
C140.03443 (11)0.9647 (4)0.65865 (17)0.0556 (6)
H14A0.00290.98020.59530.067*
H14B0.00530.96100.70580.067*
C150.07696 (12)0.7641 (3)0.66319 (17)0.0580 (6)
H15A0.04370.64590.64970.070*
C160.12637 (10)0.7366 (3)0.76323 (15)0.0491 (5)
H16A0.09810.73280.81150.059*
H16B0.15230.60600.76610.059*
C170.12141 (15)0.7699 (4)0.58855 (17)0.0754 (8)
H17A0.09020.78300.52490.090*
H17B0.14830.64110.59080.090*
C180.17292 (14)0.9540 (5)0.60795 (19)0.0727 (8)
H18A0.20130.95860.55910.087*
C190.22293 (11)0.9277 (4)0.70823 (17)0.0599 (6)
H19A0.25060.80060.71010.072*
H19B0.25601.04420.72150.072*
C200.13032 (13)1.1555 (4)0.6051 (2)0.0729 (7)
H20A0.16291.27340.61810.087*
H20B0.09931.17400.54160.087*
H1N20.2278 (11)1.034 (4)0.9084 (15)0.051 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0513 (3)0.0321 (3)0.0554 (4)0.0024 (2)0.0028 (2)0.0036 (2)
N10.0388 (8)0.0340 (9)0.0481 (10)0.0010 (6)0.0057 (7)0.0023 (7)
N20.0455 (9)0.0361 (11)0.0575 (11)0.0066 (7)0.0024 (8)0.0109 (8)
C10.0437 (11)0.0419 (12)0.0509 (12)0.0046 (8)0.0117 (9)0.0049 (8)
C20.0508 (12)0.0453 (12)0.0451 (12)0.0021 (9)0.0126 (9)0.0060 (9)
C30.0456 (11)0.0434 (12)0.0290 (10)0.0016 (8)0.0082 (8)0.0022 (7)
C40.0589 (12)0.0463 (12)0.0359 (11)0.0082 (9)0.0067 (9)0.0005 (8)
C50.0464 (12)0.0705 (16)0.0440 (12)0.0172 (11)0.0076 (10)0.0007 (10)
C60.0420 (11)0.0819 (17)0.0419 (12)0.0021 (11)0.0121 (9)0.0031 (11)
C70.0528 (12)0.0557 (13)0.0363 (11)0.0108 (10)0.0088 (9)0.0016 (9)
C80.0430 (10)0.0406 (11)0.0309 (10)0.0017 (8)0.0049 (8)0.0020 (7)
C90.0493 (11)0.0363 (11)0.0490 (12)0.0027 (9)0.0020 (9)0.0021 (8)
C100.0336 (9)0.0353 (10)0.0472 (12)0.0029 (7)0.0101 (8)0.0012 (8)
C110.0333 (9)0.0306 (10)0.0501 (12)0.0003 (7)0.0046 (8)0.0002 (8)
C120.0495 (12)0.0392 (13)0.0717 (15)0.0064 (9)0.0010 (11)0.0092 (10)
C130.0521 (12)0.0348 (12)0.0698 (15)0.0127 (9)0.0002 (11)0.0022 (9)
C140.0413 (11)0.0607 (15)0.0593 (14)0.0029 (9)0.0004 (10)0.0047 (10)
C150.0582 (13)0.0365 (13)0.0661 (15)0.0082 (10)0.0124 (11)0.0015 (10)
C160.0454 (11)0.0386 (12)0.0587 (13)0.0052 (9)0.0024 (9)0.0102 (9)
C170.1000 (19)0.0659 (18)0.0500 (15)0.0366 (15)0.0034 (14)0.0084 (11)
C180.0681 (16)0.098 (2)0.0596 (16)0.0250 (14)0.0300 (13)0.0246 (14)
C190.0428 (11)0.0660 (16)0.0751 (16)0.0084 (10)0.0219 (11)0.0182 (12)
C200.0663 (15)0.0633 (17)0.0850 (18)0.0017 (12)0.0093 (14)0.0356 (13)
Geometric parameters (Å, º) top
S1—C101.6906 (19)C11—C161.526 (2)
N1—C101.352 (2)C11—C121.533 (3)
N1—C11.473 (2)C12—C131.532 (3)
N1—C91.477 (2)C12—H12A0.9700
N2—C101.353 (2)C12—H12B0.9700
N2—C111.482 (2)C13—C201.503 (3)
N2—H1N20.85 (2)C13—C141.512 (3)
C1—C21.517 (3)C13—H13A0.9800
C1—H1A0.9700C14—C151.516 (3)
C1—H1B0.9700C14—H14A0.9700
C2—C31.501 (3)C14—H14B0.9700
C2—H2A0.9700C15—C171.511 (4)
C2—H2B0.9700C15—C161.531 (3)
C3—C41.385 (3)C15—H15A0.9800
C3—C81.389 (3)C16—H16A0.9700
C4—C51.387 (3)C16—H16B0.9700
C4—H4A0.9300C17—C181.522 (4)
C5—C61.373 (3)C17—H17A0.9700
C5—H5A0.9300C17—H17B0.9700
C6—C71.385 (3)C18—C201.524 (4)
C6—H6A0.9300C18—C191.538 (3)
C7—C81.387 (3)C18—H18A0.9800
C7—H7A0.9300C19—H19A0.9700
C8—C91.501 (3)C19—H19B0.9700
C9—H9A0.9700C20—H20A0.9700
C9—H9B0.9700C20—H20B0.9700
C11—C191.510 (3)
C10—N1—C1121.12 (15)C13—C12—H12A109.6
C10—N1—C9121.67 (16)C11—C12—H12B109.6
C1—N1—C9117.13 (15)C13—C12—H12B109.6
C10—N2—C11130.81 (17)H12A—C12—H12B108.1
C10—N2—H1N2116.1 (15)C20—C13—C14110.2 (2)
C11—N2—H1N2111.1 (15)C20—C13—C12109.55 (18)
N1—C1—C2112.39 (16)C14—C13—C12109.20 (18)
N1—C1—H1A109.1C20—C13—H13A109.3
C2—C1—H1A109.1C14—C13—H13A109.3
N1—C1—H1B109.1C12—C13—H13A109.3
C2—C1—H1B109.1C13—C14—C15108.90 (17)
H1A—C1—H1B107.9C13—C14—H14A109.9
C3—C2—C1110.89 (16)C15—C14—H14A109.9
C3—C2—H2A109.5C13—C14—H14B109.9
C1—C2—H2A109.5C15—C14—H14B109.9
C3—C2—H2B109.5H14A—C14—H14B108.3
C1—C2—H2B109.5C17—C15—C14109.51 (19)
H2A—C2—H2B108.0C17—C15—C16109.45 (18)
C4—C3—C8120.13 (18)C14—C15—C16110.37 (19)
C4—C3—C2124.29 (18)C17—C15—H15A109.2
C8—C3—C2115.58 (17)C14—C15—H15A109.2
C3—C4—C5119.7 (2)C16—C15—H15A109.2
C3—C4—H4A120.1C11—C16—C15109.25 (16)
C5—C4—H4A120.1C11—C16—H16A109.8
C6—C5—C4120.06 (19)C15—C16—H16A109.8
C6—C5—H5A120.0C11—C16—H16B109.8
C4—C5—H5A120.0C15—C16—H16B109.8
C5—C6—C7120.60 (19)H16A—C16—H16B108.3
C5—C6—H6A119.7C15—C17—C18109.80 (19)
C7—C6—H6A119.7C15—C17—H17A109.7
C6—C7—C8119.6 (2)C18—C17—H17A109.7
C6—C7—H7A120.2C15—C17—H17B109.7
C8—C7—H7A120.2C18—C17—H17B109.7
C7—C8—C3119.76 (18)H17A—C17—H17B108.2
C7—C8—C9122.91 (18)C17—C18—C20109.3 (2)
C3—C8—C9117.32 (16)C17—C18—C19108.9 (2)
N1—C9—C8110.52 (16)C20—C18—C19109.4 (2)
N1—C9—H9A109.5C17—C18—H18A109.7
C8—C9—H9A109.5C20—C18—H18A109.7
N1—C9—H9B109.5C19—C18—H18A109.7
C8—C9—H9B109.5C11—C19—C18109.80 (17)
H9A—C9—H9B108.1C11—C19—H19A109.7
N1—C10—N2114.44 (17)C18—C19—H19A109.7
N1—C10—S1122.50 (14)C11—C19—H19B109.7
N2—C10—S1123.05 (15)C18—C19—H19B109.7
N2—C11—C19111.34 (16)H19A—C19—H19B108.2
N2—C11—C16113.34 (16)C13—C20—C18109.52 (18)
C19—C11—C16110.43 (18)C13—C20—H20A109.8
N2—C11—C12104.80 (16)C18—C20—H20A109.8
C19—C11—C12109.13 (17)C13—C20—H20B109.8
C16—C11—C12107.50 (16)C18—C20—H20B109.8
C11—C12—C13110.23 (17)H20A—C20—H20B108.2
C11—C12—H12A109.6
C10—N1—C1—C2178.44 (16)C10—N2—C11—C12179.4 (2)
C9—N1—C1—C21.5 (2)N2—C11—C12—C13178.19 (16)
N1—C1—C2—C347.4 (2)C19—C11—C12—C1358.8 (2)
C1—C2—C3—C4131.5 (2)C16—C11—C12—C1360.9 (2)
C1—C2—C3—C848.2 (2)C11—C12—C13—C2059.5 (2)
C8—C3—C4—C52.4 (3)C11—C12—C13—C1461.2 (2)
C2—C3—C4—C5177.96 (19)C20—C13—C14—C1560.7 (2)
C3—C4—C5—C60.2 (3)C12—C13—C14—C1559.6 (2)
C4—C5—C6—C71.7 (3)C13—C14—C15—C1760.3 (2)
C5—C6—C7—C81.4 (3)C13—C14—C15—C1660.2 (2)
C6—C7—C8—C30.8 (3)N2—C11—C16—C15175.54 (16)
C6—C7—C8—C9179.65 (18)C19—C11—C16—C1558.8 (2)
C4—C3—C8—C72.7 (3)C12—C11—C16—C1560.2 (2)
C2—C3—C8—C7177.63 (17)C17—C15—C16—C1159.4 (2)
C4—C3—C8—C9178.40 (17)C14—C15—C16—C1161.2 (2)
C2—C3—C8—C91.2 (3)C14—C15—C17—C1860.0 (2)
C10—N1—C9—C8133.07 (17)C16—C15—C17—C1861.1 (2)
C1—N1—C9—C843.8 (2)C15—C17—C18—C2058.9 (3)
C7—C8—C9—N1136.37 (18)C15—C17—C18—C1960.6 (2)
C3—C8—C9—N144.8 (2)N2—C11—C19—C18174.24 (19)
C1—N1—C10—N20.3 (3)C16—C11—C19—C1858.9 (2)
C9—N1—C10—N2177.09 (16)C12—C11—C19—C1859.0 (2)
C1—N1—C10—S1179.06 (14)C17—C18—C19—C1159.3 (3)
C9—N1—C10—S14.2 (2)C20—C18—C19—C1160.2 (3)
C11—N2—C10—N1169.16 (18)C14—C13—C20—C1860.1 (3)
C11—N2—C10—S112.1 (3)C12—C13—C20—C1860.0 (3)
C10—N2—C11—C1961.5 (3)C17—C18—C20—C1358.8 (3)
C10—N2—C11—C1663.7 (3)C19—C18—C20—C1360.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···S10.972.723.365 (2)125
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···S10.972.723.365 (2)125
 

Footnotes

Additonal correspondence author, e-mail: elemam5@hotmail.com.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University, is greatly appreciated. CSCK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAl-Abdullah, E. S., Asiri, H. H., El-Emam, A. A. & Ng, S. W. (2012). Acta Cryst. E68, o531.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Tamimi, A.-M. S., Alafeefy, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o683.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Emam, A. A., El-Brollosy, N. R., Ghabbour, H. A., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, o1347.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds