organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[(1,3,4-Thia­diazole-2,5-di­yl)bis­­(sulfanedi­yl)]diaceto­nitrile

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, eDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 22 November 2013; accepted 26 November 2013; online 30 November 2013)

In the title compound, C6H4N4S3, the 1,3,4-thia­diazole ring is essentially planar, with an r.m.s. deviation of 0.001 Å. The two N—C—S—C torsion angles in the mol­ecule are −23.41 (15) and 0.62 (14)°. One aceto­nitrile group is above the plane of the 1,3,4-thia­diazole ring and the other is below it, indicating syn and anti orientations. In the crystal, C—H⋯N hydrogen bonds link the molecules into ribbons along [010].

Related literature

For the broad spectrum of biological activities of thia­diazole-containing compounds, see: Padmavathi et al. (2009[Padmavathi, V., Reddy, G. S., Padmaja, A., Kondaiah, P. & Shazia, A. (2009). Eur. J. Med. Chem. 44, 2106-2112.]); Karegoudar et al. (2008[Karegoudar, P., Prasad, D. J., Ashok, A., Mahalinga, M., Poojary, B. & Holla, B. S. (2008). Eur. J. Med. Chem. 43, 808-815.]); Wei et al. (2009[Wei, M. X., Feng, L., Li, X. Q., Zhou, X. Z. & Shao, Z. H. (2009). Eur. J. Med. Chem. 44, 3340-3344.]); Gupta et al. (2009[Gupta, A., Mishra, P., Pandeya, S. N., Kashaw, S. K., Kashaw, V. & Stables, J. P. (2009). Eur. J. Med. Chem. 44, 1100-1105.]); Pattanayak et al. (2009[Pattanayak, P., Sharma, R. & Sahoo, P. K. (2009). Med. Chem. Res. 18, 351-361.]); Cressier et al. (2009[Cressier, D., Prouillac, C., Hernandez, P., Amourette, C., Diserbo, M., Lion, C. & Rima, G. (2009). Bioorg. Med. Chem. 17, 5275-5284.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4N4S3

  • Mr = 228.34

  • Monoclinic, P 21 /c

  • a = 8.5305 (7) Å

  • b = 14.2102 (11) Å

  • c = 7.8803 (6) Å

  • β = 104.3810 (11)°

  • V = 925.32 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 150 K

  • 0.24 × 0.08 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.82, Tmax = 0.96

  • 16625 measured reflections

  • 2450 independent reflections

  • 2155 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.074

  • S = 1.05

  • 2450 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯N1i 0.99 2.60 3.407 (2) 139
C5—H5B⋯N3ii 0.99 2.35 3.267 (2) 153
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiadiazole acts as a constrained pharmacophore. It is the core structure of several medicinal drugs such as acetazolamide, atibeprone, tebuthiuron and methazolamide. In addition, thiadiazole containing compounds have a wide spectrum of biological activities such as antimicrobial (Padmavathi et al., 2009), antiinflammatory (Karegoudar et al., 2008), anticancer (Wei et al., 2009), anticonvulsant (Gupta et al., 2009), antidepressant (Pattanayak et al., 2009), and antioxidant (Cressier et al., 2009). Based on such facts, the title compound has been synthesized in our lab as a precurser for further study.

The 1,3,4-thiadiazole ring (S1/N1/N2/C1/C2) of the title compound, (I, Fig. 1), is essentially planar [r.m.s deviation = 0.001 Å]. The N1–C1–S2–C3 and N2–C2–S3–C5 torsion angles in (I) are 23.41 (15) and -0.62 (14)°, respectively. The two acetonitrile groups [–C3(H2)–C4N3 and –C5(H2)–C6N4] of (I) are above and below the plane of the 1,3,4-thiadiazole ring, indicating syn- and anti- orientations, respectively.

In the crystal, molecules are linked by intermolecular C—H···N hydrogen bonds to form ribbons along the b-axis (Table 1, Fig. 2).

Related literature top

For the broad spectrum of biological activities of thiadiazole-containing compounds, see: Padmavathi et al. (2009); Karegoudar et al. (2008); Wei et al. (2009); Gupta et al. (2009); Pattanayak et al. (2009); Cressier et al. (2009).

Experimental top

A mixture of 1,3,4-thiadiazolidine-2,5-dithione (150 mg, 1 mmol), chloroacetonitrile (149 mg, 2 mmol), sodium acetate (36 mg, 0.5 mmol) in 30 ml e thanol was refluxed for 4 h. The reaction mixture was allowed to cool to room temperature to afford the solid product which was filtered off under vacuum, dried and recrystallized from ethanol. Pure single crystals were prepared by slow evaporation of an ethanolic solution of the title compound in air over 24 h. M·P. 396 K.

Refinement top

The methylene H atoms were positioned geometrically and refined by using a riding model with C—H = 0.99 Å and, with Uiso(H) = 1.2Uiso(C).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title molecule with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The hydrogen bonding (dashed lines) viewed along the b-axis of the title compound. [Symmetry code: (b) 1 + x, ½ - y, ½ + z].
2,2'-[(1,3,4-Thiadiazole-2,5-diyl)bis(sulfanediyl)]diacetonitrile top
Crystal data top
C6H4N4S3F(000) = 464
Mr = 228.34Dx = 1.639 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9961 reflections
a = 8.5305 (7) Åθ = 2.9–29.1°
b = 14.2102 (11) ŵ = 0.76 mm1
c = 7.8803 (6) ÅT = 150 K
β = 104.3810 (11)°Column, pale gold
V = 925.32 (13) Å30.24 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2450 independent reflections
Radiation source: fine-focus sealed tube2155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.3660 pixels mm-1θmax = 29.1°, θmin = 2.5°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1919
Tmin = 0.82, Tmax = 0.96l = 1010
16625 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.074 W = 1/[Σ2(FO2) + (0.0348P)2 + 0.4414P] Where P = (FO2 + 2FC2)/3
S = 1.05(Δ/σ)max < 0.001
2450 reflectionsΔρmax = 0.56 e Å3
118 parametersΔρmin = 0.24 e Å3
Crystal data top
C6H4N4S3V = 925.32 (13) Å3
Mr = 228.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5305 (7) ŵ = 0.76 mm1
b = 14.2102 (11) ÅT = 150 K
c = 7.8803 (6) Å0.24 × 0.08 × 0.06 mm
β = 104.3810 (11)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2450 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2155 reflections with I > 2σ(I)
Tmin = 0.82, Tmax = 0.96Rint = 0.040
16625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.05Δρmax = 0.56 e Å3
2450 reflectionsΔρmin = 0.24 e Å3
118 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24557 (4)0.24679 (2)0.77612 (5)0.0199 (1)
S20.35261 (4)0.45127 (3)0.80614 (5)0.0225 (1)
S30.02136 (4)0.11179 (3)0.59651 (5)0.0217 (1)
N10.07063 (16)0.38153 (9)0.61222 (18)0.0246 (4)
N20.01784 (15)0.29982 (9)0.56140 (18)0.0232 (4)
N30.31454 (18)0.46664 (10)0.33409 (18)0.0286 (4)
N40.40861 (18)0.23221 (12)0.5806 (2)0.0370 (5)
C10.20800 (17)0.36440 (10)0.72254 (19)0.0188 (4)
C20.05731 (17)0.22555 (10)0.63639 (18)0.0178 (4)
C30.29143 (18)0.53720 (10)0.6312 (2)0.0223 (4)
C40.30417 (18)0.49844 (10)0.4636 (2)0.0222 (4)
C50.20837 (18)0.14204 (11)0.4383 (2)0.0240 (4)
C60.32061 (18)0.19370 (11)0.5168 (2)0.0247 (4)
H3A0.178300.556700.622400.0270*
H3B0.361000.593700.659200.0270*
H5A0.182800.180800.344200.0290*
H5B0.261400.083600.384200.0290*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0170 (2)0.0195 (2)0.0210 (2)0.0004 (1)0.0001 (1)0.0025 (1)
S20.0207 (2)0.0212 (2)0.0224 (2)0.0041 (1)0.0007 (1)0.0015 (1)
S30.0205 (2)0.0189 (2)0.0243 (2)0.0020 (1)0.0029 (1)0.0006 (1)
N10.0195 (6)0.0210 (6)0.0302 (7)0.0028 (5)0.0006 (5)0.0037 (5)
N20.0185 (6)0.0212 (6)0.0274 (7)0.0031 (5)0.0012 (5)0.0025 (5)
N30.0310 (7)0.0273 (7)0.0261 (7)0.0034 (6)0.0042 (6)0.0016 (6)
N40.0244 (7)0.0490 (9)0.0352 (8)0.0019 (7)0.0031 (6)0.0032 (7)
C10.0195 (7)0.0175 (6)0.0194 (7)0.0010 (5)0.0050 (5)0.0017 (5)
C20.0156 (6)0.0217 (7)0.0164 (6)0.0014 (5)0.0043 (5)0.0004 (5)
C30.0232 (7)0.0173 (7)0.0260 (8)0.0014 (5)0.0051 (6)0.0023 (6)
C40.0202 (7)0.0180 (7)0.0265 (8)0.0026 (5)0.0025 (6)0.0041 (6)
C50.0233 (7)0.0272 (8)0.0187 (7)0.0049 (6)0.0000 (5)0.0028 (6)
C60.0187 (7)0.0299 (8)0.0215 (7)0.0047 (6)0.0026 (6)0.0009 (6)
Geometric parameters (Å, º) top
S1—C11.7340 (15)N3—C41.140 (2)
S1—C21.7333 (15)N4—C61.142 (2)
S2—C11.7538 (15)C3—C41.460 (2)
S2—C31.8184 (15)C5—C61.460 (2)
S3—C21.7486 (15)C3—H3A0.9900
S3—C51.8155 (16)C3—H3B0.9900
N1—N21.3885 (19)C5—H5A0.9900
N1—C11.297 (2)C5—H5B0.9900
N2—C21.2984 (19)
C1—S1—C285.82 (7)S3—C5—C6112.64 (11)
C1—S2—C398.35 (7)N4—C6—C5178.33 (17)
C2—S3—C597.88 (7)S2—C3—H3A109.00
N2—N1—C1111.85 (12)S2—C3—H3B109.00
N1—N2—C2112.14 (13)C4—C3—H3A109.00
S1—C1—S2121.11 (9)C4—C3—H3B109.00
S1—C1—N1115.19 (11)H3A—C3—H3B108.00
S2—C1—N1123.63 (11)S3—C5—H5A109.00
S1—C2—S3121.93 (8)S3—C5—H5B109.00
S1—C2—N2114.99 (11)C6—C5—H5A109.00
S3—C2—N2123.07 (11)C6—C5—H5B109.00
S2—C3—C4111.14 (10)H5A—C5—H5B108.00
N3—C4—C3178.79 (16)
C2—S1—C1—S2177.61 (10)C5—S3—C2—N20.62 (14)
C2—S1—C1—N10.51 (12)C2—S3—C5—C668.78 (12)
C1—S1—C2—S3179.01 (10)C1—N1—N2—C20.16 (19)
C1—S1—C2—N20.61 (12)N2—N1—C1—S10.32 (17)
C3—S2—C1—S1153.44 (9)N2—N1—C1—S2177.33 (11)
C3—S2—C1—N123.41 (15)N1—N2—C2—S10.57 (17)
C1—S2—C3—C460.50 (12)N1—N2—C2—S3178.96 (11)
C5—S3—C2—S1177.66 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N1i0.992.603.407 (2)139
C5—H5B···N3ii0.992.353.267 (2)153
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N1i0.992.603.407 (2)139
C5—H5B···N3ii0.992.353.267 (2)153
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank Tulane University, Manchester Metropolitan University, Erciyes University and Sohag University for supporting this study.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCressier, D., Prouillac, C., Hernandez, P., Amourette, C., Diserbo, M., Lion, C. & Rima, G. (2009). Bioorg. Med. Chem. 17, 5275–5284.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGupta, A., Mishra, P., Pandeya, S. N., Kashaw, S. K., Kashaw, V. & Stables, J. P. (2009). Eur. J. Med. Chem. 44, 1100–1105.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaregoudar, P., Prasad, D. J., Ashok, A., Mahalinga, M., Poojary, B. & Holla, B. S. (2008). Eur. J. Med. Chem. 43, 808–815.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPadmavathi, V., Reddy, G. S., Padmaja, A., Kondaiah, P. & Shazia, A. (2009). Eur. J. Med. Chem. 44, 2106–2112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPattanayak, P., Sharma, R. & Sahoo, P. K. (2009). Med. Chem. Res. 18, 351–361.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, M. X., Feng, L., Li, X. Q., Zhou, X. Z. & Shao, Z. H. (2009). Eur. J. Med. Chem. 44, 3340–3344.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds