organic compounds
2,2′-[(1,3,4-Thiadiazole-2,5-diyl)bis(sulfanediyl)]diacetonitrile
aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, eDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com
In the title compound, C6H4N4S3, the 1,3,4-thiadiazole ring is essentially planar, with an r.m.s. deviation of 0.001 Å. The two N—C—S—C torsion angles in the molecule are −23.41 (15) and 0.62 (14)°. One acetonitrile group is above the plane of the 1,3,4-thiadiazole ring and the other is below it, indicating syn and anti orientations. In the crystal, C—H⋯N hydrogen bonds link the molecules into ribbons along [010].
CCDC reference: 973732
Related literature
For the broad spectrum of biological activities of thiadiazole-containing compounds, see: Padmavathi et al. (2009); Karegoudar et al. (2008); Wei et al. (2009); Gupta et al. (2009); Pattanayak et al. (2009); Cressier et al. (2009).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2013); cell SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Supporting information
CCDC reference: 973732
10.1107/S1600536813032194/hg5363sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813032194/hg5363Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813032194/hg5363Isup3.cml
A mixture of 1,3,4-thiadiazolidine-2,5-dithione (150 mg, 1 mmol), chloroacetonitrile (149 mg, 2 mmol), sodium acetate (36 mg, 0.5 mmol) in 30 ml e thanol was refluxed for 4 h. The reaction mixture was allowed to cool to room temperature to afford the solid product which was filtered off under vacuum, dried and recrystallized from ethanol. Pure single crystals were prepared by slow evaporation of an ethanolic solution of the title compound in air over 24 h. M·P. 396 K.
The methylene H atoms were positioned geometrically and refined by using a riding model with C—H = 0.99 Å and, with Uiso(H) = 1.2Uiso(C).
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C6H4N4S3 | F(000) = 464 |
Mr = 228.34 | Dx = 1.639 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9961 reflections |
a = 8.5305 (7) Å | θ = 2.9–29.1° |
b = 14.2102 (11) Å | µ = 0.76 mm−1 |
c = 7.8803 (6) Å | T = 150 K |
β = 104.3810 (11)° | Column, pale gold |
V = 925.32 (13) Å3 | 0.24 × 0.08 × 0.06 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 2450 independent reflections |
Radiation source: fine-focus sealed tube | 2155 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 8.3660 pixels mm-1 | θmax = 29.1°, θmin = 2.5° |
ϕ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −19→19 |
Tmin = 0.82, Tmax = 0.96 | l = −10→10 |
16625 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.074 | W = 1/[Σ2(FO2) + (0.0348P)2 + 0.4414P] Where P = (FO2 + 2FC2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2450 reflections | Δρmax = 0.56 e Å−3 |
118 parameters | Δρmin = −0.24 e Å−3 |
C6H4N4S3 | V = 925.32 (13) Å3 |
Mr = 228.34 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.5305 (7) Å | µ = 0.76 mm−1 |
b = 14.2102 (11) Å | T = 150 K |
c = 7.8803 (6) Å | 0.24 × 0.08 × 0.06 mm |
β = 104.3810 (11)° |
Bruker SMART APEX CCD diffractometer | 2450 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | 2155 reflections with I > 2σ(I) |
Tmin = 0.82, Tmax = 0.96 | Rint = 0.040 |
16625 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.56 e Å−3 |
2450 reflections | Δρmin = −0.24 e Å−3 |
118 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.24557 (4) | 0.24679 (2) | 0.77612 (5) | 0.0199 (1) | |
S2 | 0.35261 (4) | 0.45127 (3) | 0.80614 (5) | 0.0225 (1) | |
S3 | −0.02136 (4) | 0.11179 (3) | 0.59651 (5) | 0.0217 (1) | |
N1 | 0.07063 (16) | 0.38153 (9) | 0.61222 (18) | 0.0246 (4) | |
N2 | −0.01784 (15) | 0.29982 (9) | 0.56140 (18) | 0.0232 (4) | |
N3 | 0.31454 (18) | 0.46664 (10) | 0.33409 (18) | 0.0286 (4) | |
N4 | −0.40861 (18) | 0.23221 (12) | 0.5806 (2) | 0.0370 (5) | |
C1 | 0.20800 (17) | 0.36440 (10) | 0.72254 (19) | 0.0188 (4) | |
C2 | 0.05731 (17) | 0.22555 (10) | 0.63639 (18) | 0.0178 (4) | |
C3 | 0.29143 (18) | 0.53720 (10) | 0.6312 (2) | 0.0223 (4) | |
C4 | 0.30417 (18) | 0.49844 (10) | 0.4636 (2) | 0.0222 (4) | |
C5 | −0.20837 (18) | 0.14204 (11) | 0.4383 (2) | 0.0240 (4) | |
C6 | −0.32061 (18) | 0.19370 (11) | 0.5168 (2) | 0.0247 (4) | |
H3A | 0.17830 | 0.55670 | 0.62240 | 0.0270* | |
H3B | 0.36100 | 0.59370 | 0.65920 | 0.0270* | |
H5A | −0.18280 | 0.18080 | 0.34420 | 0.0290* | |
H5B | −0.26140 | 0.08360 | 0.38420 | 0.0290* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0170 (2) | 0.0195 (2) | 0.0210 (2) | −0.0004 (1) | 0.0001 (1) | 0.0025 (1) |
S2 | 0.0207 (2) | 0.0212 (2) | 0.0224 (2) | −0.0041 (1) | −0.0007 (1) | 0.0015 (1) |
S3 | 0.0205 (2) | 0.0189 (2) | 0.0243 (2) | −0.0020 (1) | 0.0029 (1) | −0.0006 (1) |
N1 | 0.0195 (6) | 0.0210 (6) | 0.0302 (7) | −0.0028 (5) | 0.0006 (5) | 0.0037 (5) |
N2 | 0.0185 (6) | 0.0212 (6) | 0.0274 (7) | −0.0031 (5) | 0.0012 (5) | 0.0025 (5) |
N3 | 0.0310 (7) | 0.0273 (7) | 0.0261 (7) | −0.0034 (6) | 0.0042 (6) | 0.0016 (6) |
N4 | 0.0244 (7) | 0.0490 (9) | 0.0352 (8) | 0.0019 (7) | 0.0031 (6) | −0.0032 (7) |
C1 | 0.0195 (7) | 0.0175 (6) | 0.0194 (7) | −0.0010 (5) | 0.0050 (5) | 0.0017 (5) |
C2 | 0.0156 (6) | 0.0217 (7) | 0.0164 (6) | −0.0014 (5) | 0.0043 (5) | 0.0004 (5) |
C3 | 0.0232 (7) | 0.0173 (7) | 0.0260 (8) | 0.0014 (5) | 0.0051 (6) | 0.0023 (6) |
C4 | 0.0202 (7) | 0.0180 (7) | 0.0265 (8) | −0.0026 (5) | 0.0025 (6) | 0.0041 (6) |
C5 | 0.0233 (7) | 0.0272 (8) | 0.0187 (7) | −0.0049 (6) | 0.0000 (5) | −0.0028 (6) |
C6 | 0.0187 (7) | 0.0299 (8) | 0.0215 (7) | −0.0047 (6) | −0.0026 (6) | 0.0009 (6) |
S1—C1 | 1.7340 (15) | N3—C4 | 1.140 (2) |
S1—C2 | 1.7333 (15) | N4—C6 | 1.142 (2) |
S2—C1 | 1.7538 (15) | C3—C4 | 1.460 (2) |
S2—C3 | 1.8184 (15) | C5—C6 | 1.460 (2) |
S3—C2 | 1.7486 (15) | C3—H3A | 0.9900 |
S3—C5 | 1.8155 (16) | C3—H3B | 0.9900 |
N1—N2 | 1.3885 (19) | C5—H5A | 0.9900 |
N1—C1 | 1.297 (2) | C5—H5B | 0.9900 |
N2—C2 | 1.2984 (19) | ||
C1—S1—C2 | 85.82 (7) | S3—C5—C6 | 112.64 (11) |
C1—S2—C3 | 98.35 (7) | N4—C6—C5 | 178.33 (17) |
C2—S3—C5 | 97.88 (7) | S2—C3—H3A | 109.00 |
N2—N1—C1 | 111.85 (12) | S2—C3—H3B | 109.00 |
N1—N2—C2 | 112.14 (13) | C4—C3—H3A | 109.00 |
S1—C1—S2 | 121.11 (9) | C4—C3—H3B | 109.00 |
S1—C1—N1 | 115.19 (11) | H3A—C3—H3B | 108.00 |
S2—C1—N1 | 123.63 (11) | S3—C5—H5A | 109.00 |
S1—C2—S3 | 121.93 (8) | S3—C5—H5B | 109.00 |
S1—C2—N2 | 114.99 (11) | C6—C5—H5A | 109.00 |
S3—C2—N2 | 123.07 (11) | C6—C5—H5B | 109.00 |
S2—C3—C4 | 111.14 (10) | H5A—C5—H5B | 108.00 |
N3—C4—C3 | 178.79 (16) | ||
C2—S1—C1—S2 | −177.61 (10) | C5—S3—C2—N2 | 0.62 (14) |
C2—S1—C1—N1 | −0.51 (12) | C2—S3—C5—C6 | −68.78 (12) |
C1—S1—C2—S3 | 179.01 (10) | C1—N1—N2—C2 | 0.16 (19) |
C1—S1—C2—N2 | 0.61 (12) | N2—N1—C1—S1 | 0.32 (17) |
C3—S2—C1—S1 | 153.44 (9) | N2—N1—C1—S2 | 177.33 (11) |
C3—S2—C1—N1 | −23.41 (15) | N1—N2—C2—S1 | −0.57 (17) |
C1—S2—C3—C4 | −60.50 (12) | N1—N2—C2—S3 | −178.96 (11) |
C5—S3—C2—S1 | −177.66 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···N1i | 0.99 | 2.60 | 3.407 (2) | 139 |
C5—H5B···N3ii | 0.99 | 2.35 | 3.267 (2) | 153 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···N1i | 0.99 | 2.60 | 3.407 (2) | 139 |
C5—H5B···N3ii | 0.99 | 2.35 | 3.267 (2) | 153 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y−1/2, −z+1/2. |
Acknowledgements
The authors thank Tulane University, Manchester Metropolitan University, Erciyes University and Sohag University for supporting this study.
References
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cressier, D., Prouillac, C., Hernandez, P., Amourette, C., Diserbo, M., Lion, C. & Rima, G. (2009). Bioorg. Med. Chem. 17, 5275–5284. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gupta, A., Mishra, P., Pandeya, S. N., Kashaw, S. K., Kashaw, V. & Stables, J. P. (2009). Eur. J. Med. Chem. 44, 1100–1105. Web of Science CrossRef PubMed CAS Google Scholar
Karegoudar, P., Prasad, D. J., Ashok, A., Mahalinga, M., Poojary, B. & Holla, B. S. (2008). Eur. J. Med. Chem. 43, 808–815. Web of Science CrossRef PubMed CAS Google Scholar
Padmavathi, V., Reddy, G. S., Padmaja, A., Kondaiah, P. & Shazia, A. (2009). Eur. J. Med. Chem. 44, 2106–2112. Web of Science CrossRef PubMed CAS Google Scholar
Pattanayak, P., Sharma, R. & Sahoo, P. K. (2009). Med. Chem. Res. 18, 351–361. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wei, M. X., Feng, L., Li, X. Q., Zhou, X. Z. & Shao, Z. H. (2009). Eur. J. Med. Chem. 44, 3340–3344. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiadiazole acts as a constrained pharmacophore. It is the core structure of several medicinal drugs such as acetazolamide, atibeprone, tebuthiuron and methazolamide. In addition, thiadiazole containing compounds have a wide spectrum of biological activities such as antimicrobial (Padmavathi et al., 2009), antiinflammatory (Karegoudar et al., 2008), anticancer (Wei et al., 2009), anticonvulsant (Gupta et al., 2009), antidepressant (Pattanayak et al., 2009), and antioxidant (Cressier et al., 2009). Based on such facts, the title compound has been synthesized in our lab as a precurser for further study.
The 1,3,4-thiadiazole ring (S1/N1/N2/C1/C2) of the title compound, (I, Fig. 1), is essentially planar [r.m.s deviation = 0.001 Å]. The N1–C1–S2–C3 and N2–C2–S3–C5 torsion angles in (I) are 23.41 (15) and -0.62 (14)°, respectively. The two acetonitrile groups [–C3(H2)–C4≡N3 and –C5(H2)–C6≡N4] of (I) are above and below the plane of the 1,3,4-thiadiazole ring, indicating syn- and anti- orientations, respectively.
In the crystal, molecules are linked by intermolecular C—H···N hydrogen bonds to form ribbons along the b-axis (Table 1, Fig. 2).