organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1782-o1783

2,9-Di­methyl-1,10-phenanthrolin-1-ium 2,4,5-tri­carb­­oxy­benzoate monohydrate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zklong76@163.com

(Received 11 October 2013; accepted 10 November 2013; online 16 November 2013)

In the preparation of the title hydrated salt, C14H13N2+·C10H5O8·H2O, a proton has been transfered to the 2,9-dimethyl-1,10-phenanthrolinium cation, forming a 2,4,5-tri­carb­oxy­benzoate anion. In the anion, the mean planes of the protonated carboxyl­ate groups form dihedral angles of 11.0 (5), 4.4 (5) and 80.3 (4)° with the benzene ring to which they are attached. The mean plane of the deprotonated carboxyl­ate group forms a dihedral angle of 10.6 (5)° with the benzene ring. In the crystal, the anions are involved in carb­oxy­lic acid O—H⋯Ocarbox­yl hydrogen bonds, generating a two-dimensional network parallel to (001) containing R44(28) and R44(32) motifs. The 2,9-dimethyl-1,10-phenanthrolinium cations and water mol­ecules reside between the anion layers and are connected to the anions via N—H⋯Owater and Owater—H⋯Ocarbox­yl hydrogen bonds. An intra­molecular O—H⋯O hydrogen bond is also observed in the anion.

Related literature

For related structures, see: Adams & Ramdas (1978[Adams, J. M. & Ramdas, V. (1978). Acta Cryst. B34, 2781-2785.]); Mrvos-Sermek et al. (1996)[Mrvos-Sermek, D., Popovic, Z. & Matkovic-Calogovic, D. (1996). Acta Cryst. C52, 2538-2541.]; Sun et al. (2002a[Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2002a). Acta Cryst. E58, o904-o906.],b[Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2002b). Acta Cryst. E58, o1100-o1102.]); Zhu et al. (2002[Zhu, L.-G., Ellern, A. M. & Kostić, N. M. (2002). Acta Cryst. C58, o129-o130.]); Li et al. (2003[Li, Y., Hao, N., Lu, Y. & Wang, E.-B. (2003). Inorg. Chem. 42, 3119-3124.]; 2006[Li, X.-F., Liu, D.-S., Luo, Q.-Y. & Huang, C.-C. (2006). Acta Cryst. E62, o460-o462.]); Oscar et al. (2008[Oscar, F., Jorge, P., Francesc, L., Miguel, J. & Catalina, R.-P. (2008). Inorg. Chem. 47, 3568-3576.]). For background to mol­ecular recognition and supra­molecular chemistry, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Juan et al. (2002[Juan, C. N., Myoung, S. L., Rico, E. D. S., Atta, M. A., Joel, S. M. & Peter, J. S. (2002). J. Am. Chem. Soc. 124, 6613-6625.]); Qiu et al. (2008[Qiu, Y., Liu, Z., Li, Y., Deng, H., Zeng, R. & Zeller, M. (2008). Inorg. Chem. 47, 5122-5128.]). For hydrogen-bond graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N2+·C10H5O8·H2O

  • Mr = 480.42

  • Orthorhombic, P b c a

  • a = 7.1135 (8) Å

  • b = 19.4512 (11) Å

  • c = 30.800 (2) Å

  • V = 4261.7 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 223 K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.468, Tmax = 1.000

  • 19580 measured reflections

  • 4346 independent reflections

  • 2278 reflections with I > 2σ(I)

  • Rint = 0.173

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.272

  • S = 1.00

  • 4346 reflections

  • 316 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 1.58 2.395 (4) 171
O5—H5⋯O1i 0.82 1.86 2.671 (3) 172
O8—H8⋯O3ii 0.82 1.82 2.645 (4) 178
N1—H1A⋯O1Wiii 0.86 1.92 2.738 (4) 160
O1W—H1WA⋯O4ii 0.82 1.92 2.735 (4) 171
O1W—H1WB⋯O7iv 0.82 2.11 2.873 (4) 155
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is well established that hydrogen bonds play vital roles in molecular recognition and supramolecular chemistry (Batten & Robson 1998; Juan et al., 2002; Qiu et al., 2008), owing to their moderately directional intermolecular interaction which can effectively control short-range packing. 1,2,4,5-Benzenetetracarboxylic acid (Li et al., 2003; Oscar et al., 2008) has been widely applied in constructing interesting supramolecular networks because it acts not only as hydrogen bond acceptor but also as a hydrogen bond donor, depending upon the number of deprotonated carboxylate groups. Some proton-transfer compounds of 1,2,4,5-benzenetetracarboxylic acid with nitrogen Lewis bases, such as guanidinium pyromellitate trihydrate monoperhydrate (Adams & Ramdas, 1978), 2,2'-bipyridinium hemi[1,2,4,5- benzenetetracarboxylate(2-)] hemi(1,2,4,5-benzenetetracarboxylic acid) (Mrvos-Sermek et al., 1996), guanidinuium 2,9-dimethyl-1,10-phenanthrolinium trihydrogen-1,2,3,4-teracarboxybenzoate monohydrate (Sun et al.,, 2002a), imidazolium trihydrogen-1,2,4,5-benzenetetracarboxylate (Sun et al., 2002b), 6,21-diaza-3,9,18,24-tetraazoniatricyclo[22.2.2.211,14] triaconta-11,13,24,26 (1),27,29-hexaene benzene-1,2,4,5-tetracarboxylate(4-) hexahydrate (Zhu et al., 2002) and ethylenediammonium bis(trihydrogen-1,2,4,5-benzenetetracarboxylate) dehydrate (Li et al., 2006) have been synthesized and reported. The title compound (I) was obtained unintentionally during an attempt to synthesize mixed-ligand transition metal complexes with 1,2,4,5-benzenetetracarboxylic acid and 2,9-dimethyl-1,10-phenanthroline ligands via a solvo thermal reaction. Its crystal structure is reported herein.

The asymmetric unit of (I) (Fig. 1) is comprised of a 2,9-dimethyl-1,10-phenanthrolinium cation, a trihydrogen-1,2,4,5-benzenetetracarboxylate anion and a solvent water molecule. The proton transfer from a carboxyl group to the ring N atom (N1) of the 2,9-dimethyl-1,10-phenanthroline is manifested in an increased internal angle [C1—N1—C12 = 123.7 (3)°] of the pyridine ring, compared with that for atom N2 of the pyridine ring [C10—N2—C11 = 117.8 (3)°]. The protonation diminishes the steric effect of the lone pair of electrons and is responsible for the slightly increased C1—N1—C12 angle. In the anion, the mean-planes of the protonated carboxylate groups form didedral angles of 11.0 (5) ° for C34/O1/O2, 4.4 (5)° for C36/O5/O6 and 80.3 (4) ° for C37/O7/O8, with the benzene ring to which they are attached. The mean-plane of the deprotonated carboxylate group C35/O4/O4 forms a dihedral angle of 10.6 (5) ° with the benzene ring. Symmetry-related trihydrogen-1,2,4,5-benzenetetracarboxylate anions interact via O5—H5···O1i and O8—H8···O3ii hydrogen bonds, forming a two-dimensional supramolecular layer parallel to (001), which involves R44(28) and R44(32) motifs (Bernstein et al., 1995) (Fig. 2 & Table 1). The 2,9-dimethyl-1,10-phenanthrolinium cations are linked to the water molecules (O1W) through N1—H1A···O1Wiii hydrogen bonds and reside between the two-dimensional supramolecular layers and are connected to the layers via O1W—H1WA···O4ii and O1W—H1WB···O7iv hydrogen bonds (Fig. 3 & Table 1).

Related literature top

For related structures, see: Adams & Ramdas (1978); Mrvos-Sermek et al. (1996); Sun et al. (2002a,b); Zhu et al. (2002); Li et al. (2003; 2006); Oscar et al. (2008). For background to molecular recognition and supramolecular chemistry, see: Batten & Robson (1998); Juan et al. (2002); Qiu et al. (2008). For hydrogen-bond graph-set notation, see: Bernstein et al. (1995)

Experimental top

2,9-Dimethyl-1,10-phenanthroline (0.1 mmol), 1,2,4,5-benzenetetracarboxylic acid (0.1 mmol), ZnSO4·7H2O (0.1 mmol) and 2.0 ml water were mixed and placed in a thick Pyrex tube, which was sealed and heated to 383 K for 72 h, whereupon colorless block-shaped crystals of (I) were obtained.

Refinement top

The H atoms bonded to C atoms were were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93, 0.96 Å; Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl)). The H atoms bound to N and O were placed in calculated positions with N—H = 0.86 Å, O—H = 0.82 Å and refined with Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O). The precision of the structure is slightly lower than normal as reflected in the R-factors. We attempted to use serveral crystals but the crystal used to collect the data herein was the best quality avaiable.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Figure 1. The asymmetric unit of (I), showing displacement ellipsoids drawn at the 30% probability level. An intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Figure 2. Part of the crystal structure of (I) showing layers parallel to (0 0 1). Hydrogen bonds are represented by dashed lines. The 2,9-dimethyl-1,10-phenanthrolinium cations and the water molecules have been omitted for clarity.
[Figure 3] Fig. 3. Figure 3. Part of the crystal structure showing hydrogen bonds involving the cations (red) and water molecules (blue). The hydrogen bond donor···acceptor distances are shown as dashed lines.
2,9-Dimethyl-1,10-phenanthrolin-1-ium 2,4,5-tricarboxybenzoate monohydrate top
Crystal data top
C14H13N2+·C10H5O8·H2OF(000) = 2000
Mr = 480.42Dx = 1.498 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2016 reflections
a = 7.1135 (8) Åθ = 3.4–26.0°
b = 19.4512 (11) ŵ = 0.12 mm1
c = 30.800 (2) ÅT = 223 K
V = 4261.7 (6) Å3Block, colourless
Z = 80.35 × 0.20 × 0.15 mm
Data collection top
Rigaku Mercury CCD
diffractometer
4346 independent reflections
Radiation source: fine-focus sealed tube2278 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.173
Detector resolution: 28.5714 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 87
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 2423
Tmin = 0.468, Tmax = 1.000l = 3830
19580 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.272H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1341P)2]
where P = (Fo2 + 2Fc2)/3
4346 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.37 e Å3
3 restraintsΔρmin = 0.40 e Å3
Crystal data top
C14H13N2+·C10H5O8·H2OV = 4261.7 (6) Å3
Mr = 480.42Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.1135 (8) ŵ = 0.12 mm1
b = 19.4512 (11) ÅT = 223 K
c = 30.800 (2) Å0.35 × 0.20 × 0.15 mm
Data collection top
Rigaku Mercury CCD
diffractometer
4346 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2278 reflections with I > 2σ(I)
Tmin = 0.468, Tmax = 1.000Rint = 0.173
19580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0883 restraints
wR(F2) = 0.272H-atom parameters constrained
S = 1.00Δρmax = 0.37 e Å3
4346 reflectionsΔρmin = 0.40 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2749 (5)0.08753 (12)0.04898 (9)0.0620 (10)
O1W0.9045 (6)0.17263 (15)0.15048 (10)0.0773 (11)
H1WA0.83210.18630.13160.116*
H1WB0.97320.20390.15860.116*
O20.1964 (5)0.09431 (13)0.01923 (9)0.0687 (11)
H20.16690.12390.03690.103*
O30.1453 (4)0.18081 (12)0.07332 (9)0.0514 (8)
O40.1828 (5)0.29265 (13)0.08131 (10)0.0607 (9)
O50.1946 (5)0.45577 (12)0.02561 (9)0.0710 (11)
H50.19410.49580.03400.106*
O60.1961 (6)0.43455 (14)0.09547 (10)0.0814 (12)
O70.1129 (5)0.29909 (14)0.15299 (9)0.0570 (9)
O80.4094 (5)0.32175 (13)0.13965 (9)0.0526 (8)
H80.48120.32030.11890.079*
N10.3348 (5)0.04067 (14)0.32309 (11)0.0418 (8)
H1A0.37560.08200.32610.050*
N20.4269 (5)0.12165 (13)0.25335 (10)0.0387 (8)
C10.2968 (6)0.0044 (2)0.35906 (14)0.0505 (11)
C20.2298 (6)0.0628 (2)0.35368 (16)0.0565 (12)
H2B0.20180.08920.37800.068*
C30.2051 (6)0.0901 (2)0.31345 (16)0.0540 (12)
H3A0.16080.13480.31070.065*
C40.2457 (6)0.05151 (18)0.27592 (15)0.0464 (10)
C50.2205 (6)0.07699 (19)0.23280 (16)0.0510 (11)
H5A0.17920.12180.22850.061*
C60.2559 (6)0.0366 (2)0.19861 (16)0.0498 (11)
H6A0.23540.05390.17090.060*
C70.3240 (6)0.03194 (17)0.20314 (13)0.0403 (9)
C80.3644 (6)0.0762 (2)0.16851 (14)0.0488 (10)
H8A0.34210.06210.14010.059*
C90.4360 (6)0.13951 (19)0.17649 (13)0.0473 (10)
H9A0.46480.16860.15350.057*
C100.4672 (6)0.16161 (16)0.21950 (12)0.0416 (10)
C110.3565 (5)0.05828 (17)0.24523 (12)0.0382 (9)
C120.3122 (5)0.01557 (17)0.28188 (13)0.0397 (10)
C130.3258 (8)0.0376 (2)0.40228 (16)0.0716 (15)
H13A0.37280.08340.39820.107*
H13B0.41490.01130.41880.107*
H13C0.20840.03940.41760.107*
C140.5500 (6)0.23092 (17)0.22864 (14)0.0505 (11)
H14A0.55980.23750.25950.076*
H14B0.47060.26590.21650.076*
H14C0.67280.23380.21580.076*
C280.2079 (5)0.20013 (15)0.02367 (12)0.0357 (9)
C290.1912 (5)0.25062 (16)0.00893 (13)0.0350 (9)
C300.1867 (5)0.31977 (17)0.00395 (12)0.0378 (9)
H30A0.17560.35350.01730.045*
C310.1979 (5)0.33993 (16)0.04710 (12)0.0376 (9)
C320.2144 (6)0.28974 (16)0.07952 (12)0.0389 (10)
C330.2186 (6)0.22157 (17)0.06673 (12)0.0394 (9)
H33A0.22910.18810.08810.047*
C340.2288 (7)0.12280 (18)0.01805 (14)0.0471 (11)
C350.1756 (6)0.24134 (18)0.05812 (13)0.0411 (10)
C360.1967 (6)0.41454 (17)0.05910 (13)0.0457 (11)
C370.2376 (7)0.30587 (16)0.12675 (13)0.0428 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.119 (3)0.0212 (13)0.0460 (18)0.0077 (14)0.0028 (17)0.0004 (12)
O1W0.107 (3)0.066 (2)0.058 (2)0.0367 (18)0.023 (2)0.0200 (15)
O20.131 (3)0.0301 (14)0.0452 (18)0.0046 (16)0.0161 (18)0.0095 (13)
O30.077 (2)0.0359 (14)0.0416 (17)0.0044 (13)0.0108 (15)0.0086 (12)
O40.095 (3)0.0408 (16)0.0464 (18)0.0027 (14)0.0044 (17)0.0012 (14)
O50.149 (4)0.0180 (13)0.0458 (19)0.0050 (15)0.0022 (19)0.0033 (12)
O60.171 (4)0.0306 (15)0.0427 (19)0.0046 (17)0.000 (2)0.0069 (14)
O70.075 (2)0.0492 (17)0.0465 (18)0.0069 (14)0.0186 (17)0.0076 (13)
O80.072 (2)0.0489 (15)0.0371 (16)0.0054 (14)0.0002 (15)0.0068 (12)
N10.054 (2)0.0278 (15)0.044 (2)0.0022 (14)0.0008 (16)0.0035 (14)
N20.048 (2)0.0261 (14)0.0421 (19)0.0036 (13)0.0007 (16)0.0003 (13)
C10.057 (3)0.042 (2)0.053 (3)0.0034 (19)0.001 (2)0.0130 (19)
C20.059 (3)0.040 (2)0.071 (3)0.005 (2)0.006 (3)0.022 (2)
C30.052 (3)0.033 (2)0.078 (3)0.0028 (18)0.009 (2)0.009 (2)
C40.043 (2)0.0283 (18)0.068 (3)0.0023 (16)0.001 (2)0.0029 (19)
C50.046 (3)0.030 (2)0.077 (3)0.0055 (17)0.003 (2)0.014 (2)
C60.051 (3)0.043 (2)0.056 (3)0.0024 (19)0.001 (2)0.016 (2)
C70.045 (2)0.0305 (19)0.045 (2)0.0050 (15)0.0001 (19)0.0067 (17)
C80.054 (3)0.053 (2)0.039 (2)0.008 (2)0.002 (2)0.0088 (19)
C90.056 (3)0.043 (2)0.044 (2)0.0074 (19)0.005 (2)0.0094 (18)
C100.049 (3)0.0318 (17)0.044 (2)0.0032 (16)0.0029 (19)0.0021 (16)
C110.042 (2)0.0335 (18)0.039 (2)0.0060 (16)0.0018 (18)0.0017 (16)
C120.040 (2)0.0285 (18)0.051 (3)0.0043 (15)0.0003 (19)0.0022 (17)
C130.109 (5)0.058 (3)0.048 (3)0.000 (3)0.002 (3)0.015 (2)
C140.066 (3)0.034 (2)0.052 (3)0.0008 (19)0.004 (2)0.0064 (18)
C280.047 (2)0.0222 (17)0.038 (2)0.0023 (14)0.0021 (17)0.0018 (15)
C290.041 (2)0.0259 (17)0.038 (2)0.0004 (15)0.0001 (17)0.0025 (15)
C300.051 (3)0.0236 (17)0.039 (2)0.0029 (16)0.0039 (18)0.0019 (15)
C310.051 (3)0.0217 (16)0.040 (2)0.0003 (15)0.0012 (18)0.0030 (15)
C320.057 (3)0.0230 (17)0.037 (2)0.0001 (15)0.0026 (18)0.0014 (15)
C330.056 (3)0.0260 (17)0.036 (2)0.0019 (16)0.0024 (19)0.0029 (15)
C340.071 (3)0.0235 (18)0.047 (2)0.0011 (17)0.007 (2)0.0012 (18)
C350.050 (3)0.033 (2)0.040 (2)0.0016 (16)0.0026 (19)0.0037 (17)
C360.074 (3)0.0215 (18)0.041 (2)0.0029 (17)0.005 (2)0.0009 (17)
C370.070 (3)0.0175 (16)0.041 (2)0.0042 (17)0.002 (2)0.0005 (16)
Geometric parameters (Å, º) top
O1—C341.219 (5)C6—C71.426 (5)
O1W—H1WA0.8199C6—H6A0.9300
O1W—H1WB0.8200C7—C81.400 (6)
O2—C341.296 (5)C7—C111.413 (5)
O2—H20.8200C8—C91.356 (5)
O3—C351.285 (4)C8—H8A0.9300
O4—C351.228 (5)C9—C101.410 (5)
O5—C361.307 (5)C9—H9A0.9300
O5—H50.8200C10—C141.498 (5)
O6—C361.186 (5)C11—C121.436 (5)
O7—C371.208 (5)C13—H13A0.9600
O8—C371.321 (5)C13—H13B0.9600
O8—H80.8200C13—H13C0.9600
N1—C11.341 (5)C14—H14A0.9600
N1—C121.369 (5)C14—H14B0.9600
N1—H1A0.8600C14—H14C0.9600
N2—C101.331 (4)C28—C331.392 (5)
N2—C111.354 (5)C28—C291.409 (5)
C1—C21.401 (6)C28—C341.521 (5)
C1—C131.494 (6)C29—C301.403 (5)
C2—C31.359 (6)C29—C351.530 (6)
C2—H2B0.9300C30—C311.388 (5)
C3—C41.408 (6)C30—H30A0.9300
C3—H3A0.9300C31—C321.402 (5)
C4—C121.400 (5)C31—C361.498 (5)
C4—C51.429 (6)C32—C331.384 (5)
C5—C61.337 (6)C32—C371.497 (5)
C5—H5A0.9300C33—H33A0.9300
H1WA—O1W—H1WB110.5C4—C12—C11120.7 (4)
C34—O2—H2109.5C1—C13—H13A109.5
C36—O5—H5109.5C1—C13—H13B109.5
C37—O8—H8109.5H13A—C13—H13B109.5
C1—N1—C12123.7 (3)C1—C13—H13C109.5
C1—N1—H1A118.2H13A—C13—H13C109.5
C12—N1—H1A118.2H13B—C13—H13C109.5
C10—N2—C11117.8 (3)C10—C14—H14A109.5
N1—C1—C2117.5 (4)C10—C14—H14B109.5
N1—C1—C13118.7 (4)H14A—C14—H14B109.5
C2—C1—C13123.8 (4)C10—C14—H14C109.5
C3—C2—C1121.0 (4)H14A—C14—H14C109.5
C3—C2—H2B119.5H14B—C14—H14C109.5
C1—C2—H2B119.5C33—C28—C29118.3 (3)
C2—C3—C4121.0 (4)C33—C28—C34113.5 (3)
C2—C3—H3A119.5C29—C28—C34128.0 (3)
C4—C3—H3A119.5C30—C29—C28118.0 (3)
C12—C4—C3117.3 (4)C30—C29—C35113.0 (3)
C12—C4—C5119.2 (4)C28—C29—C35129.0 (3)
C3—C4—C5123.6 (4)C31—C30—C29122.7 (3)
C6—C5—C4120.3 (3)C31—C30—H30A118.6
C6—C5—H5A119.8C29—C30—H30A118.6
C4—C5—H5A119.8C30—C31—C32119.4 (3)
C5—C6—C7122.4 (4)C30—C31—C36120.7 (3)
C5—C6—H6A118.8C32—C31—C36120.0 (3)
C7—C6—H6A118.8C33—C32—C31117.8 (3)
C8—C7—C11116.3 (3)C33—C32—C37118.4 (3)
C8—C7—C6124.7 (4)C31—C32—C37123.7 (3)
C11—C7—C6119.0 (4)C32—C33—C28123.9 (3)
C9—C8—C7119.8 (4)C32—C33—H33A118.1
C9—C8—H8A120.1C28—C33—H33A118.1
C7—C8—H8A120.1O1—C34—O2120.0 (3)
C8—C9—C10120.4 (4)O1—C34—C28119.6 (3)
C8—C9—H9A119.8O2—C34—C28120.4 (3)
C10—C9—H9A119.8O4—C35—O3122.7 (4)
N2—C10—C9121.6 (3)O4—C35—C29118.5 (3)
N2—C10—C14117.6 (3)O3—C35—C29118.7 (3)
C9—C10—C14120.8 (3)O6—C36—O5123.0 (3)
N2—C11—C7124.1 (3)O6—C36—C31123.4 (3)
N2—C11—C12117.6 (3)O5—C36—C31113.6 (3)
C7—C11—C12118.4 (3)O7—C37—O8120.2 (4)
N1—C12—C4119.6 (3)O7—C37—C32123.1 (4)
N1—C12—C11119.8 (3)O8—C37—C32116.3 (4)
C12—N1—C1—C20.2 (6)C7—C11—C12—C42.5 (6)
C12—N1—C1—C13179.6 (4)C33—C28—C29—C300.1 (6)
N1—C1—C2—C30.2 (7)C34—C28—C29—C30175.6 (4)
C13—C1—C2—C3179.6 (4)C33—C28—C29—C35179.5 (4)
C1—C2—C3—C40.2 (7)C34—C28—C29—C354.8 (7)
C2—C3—C4—C120.1 (6)C28—C29—C30—C310.0 (6)
C2—C3—C4—C5179.2 (4)C35—C29—C30—C31179.7 (4)
C12—C4—C5—C61.6 (6)C29—C30—C31—C320.0 (6)
C3—C4—C5—C6177.7 (4)C29—C30—C31—C36178.6 (4)
C4—C5—C6—C71.7 (7)C30—C31—C32—C330.1 (6)
C5—C6—C7—C8179.6 (4)C36—C31—C32—C33178.7 (4)
C5—C6—C7—C110.4 (6)C30—C31—C32—C37176.7 (4)
C11—C7—C8—C91.9 (6)C36—C31—C32—C372.0 (6)
C6—C7—C8—C9177.3 (4)C31—C32—C33—C280.2 (6)
C7—C8—C9—C101.1 (6)C37—C32—C33—C28176.7 (4)
C11—N2—C10—C90.7 (6)C29—C28—C33—C320.2 (6)
C11—N2—C10—C14178.3 (3)C34—C28—C33—C32176.1 (4)
C8—C9—C10—N20.3 (6)C33—C28—C34—O18.9 (6)
C8—C9—C10—C14178.7 (4)C29—C28—C34—O1167.0 (4)
C10—N2—C11—C70.3 (6)C33—C28—C34—O2170.5 (4)
C10—N2—C11—C12179.6 (3)C29—C28—C34—O213.6 (7)
C8—C7—C11—N21.6 (6)C30—C29—C35—O48.2 (5)
C6—C7—C11—N2177.7 (3)C28—C29—C35—O4172.2 (4)
C8—C7—C11—C12178.3 (3)C30—C29—C35—O3168.0 (3)
C6—C7—C11—C122.5 (6)C28—C29—C35—O311.6 (6)
C1—N1—C12—C40.1 (6)C30—C31—C36—O6175.9 (5)
C1—N1—C12—C11180.0 (3)C32—C31—C36—O65.4 (7)
C3—C4—C12—N10.1 (6)C30—C31—C36—O53.5 (6)
C5—C4—C12—N1179.3 (4)C32—C31—C36—O5175.2 (4)
C3—C4—C12—C11179.9 (4)C33—C32—C37—O777.6 (5)
C5—C4—C12—C110.6 (6)C31—C32—C37—O7105.7 (5)
N2—C11—C12—N12.6 (5)C33—C32—C37—O895.8 (4)
C7—C11—C12—N1177.3 (3)C31—C32—C37—O881.0 (5)
N2—C11—C12—C4177.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.582.395 (4)171
O5—H5···O1i0.821.862.671 (3)172
O8—H8···O3ii0.821.822.645 (4)178
N1—H1A···O1Wiii0.861.922.738 (4)160
O1W—H1WA···O4ii0.821.922.735 (4)171
O1W—H1WB···O7iv0.822.112.873 (4)155
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x1/2, y, z+1/2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.582.395 (4)170.6
O5—H5···O1i0.821.862.671 (3)171.9
O8—H8···O3ii0.821.822.645 (4)178.3
N1—H1A···O1Wiii0.861.922.738 (4)159.5
O1W—H1WA···O4ii0.821.922.735 (4)170.5
O1W—H1WB···O7iv0.822.112.873 (4)155.3
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x1/2, y, z+1/2; (iv) x+1, y, z.
 

Acknowledgements

This work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2013–10).

References

First citationAdams, J. M. & Ramdas, V. (1978). Acta Cryst. B34, 2781–2785.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationJuan, C. N., Myoung, S. L., Rico, E. D. S., Atta, M. A., Joel, S. M. & Peter, J. S. (2002). J. Am. Chem. Soc. 124, 6613–6625.  Web of Science CSD CrossRef PubMed Google Scholar
First citationLi, Y., Hao, N., Lu, Y. & Wang, E.-B. (2003). Inorg. Chem. 42, 3119–3124.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, X.-F., Liu, D.-S., Luo, Q.-Y. & Huang, C.-C. (2006). Acta Cryst. E62, o460–o462.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMrvos-Sermek, D., Popovic, Z. & Matkovic-Calogovic, D. (1996). Acta Cryst. C52, 2538–2541.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOscar, F., Jorge, P., Francesc, L., Miguel, J. & Catalina, R.-P. (2008). Inorg. Chem. 47, 3568–3576.  Web of Science PubMed Google Scholar
First citationQiu, Y., Liu, Z., Li, Y., Deng, H., Zeng, R. & Zeller, M. (2008). Inorg. Chem. 47, 5122–5128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-Q., Zhang, J. & Yang, G.-Y. (2002a). Acta Cryst. E58, o904–o906.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-Q., Zhang, J. & Yang, G.-Y. (2002b). Acta Cryst. E58, o1100–o1102.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhu, L.-G., Ellern, A. M. & Kostić, N. M. (2002). Acta Cryst. C58, o129–o130.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1782-o1783
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds