organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl [4-(2,2′:6′,2′′-terpyridine-4′-yl)phen­yl]phospho­nate

aDepartment of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic, and bCentral European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
*Correspondence e-mail: jpinkas@chemi.muni.cz

(Received 4 November 2013; accepted 19 November 2013; online 27 November 2013)

The title compound, C25H24N3O3P, was obtained by catalytic phospho­nation of 4′-(4-bromphen­yl)-2,2′:6′,2′′-terpyridine. The terpyridine moiety is nearly planar, the dihedral angles between the central and the outer rings being 4.06 (9) and 5.39 (9)°. The N atoms in the two pyridine rings are oriented nearly anti­periplanar to that of the central ring. The benzene ring is rotated out of the plane of the central ring of the terpyridine unit by 34.65 (6)°.

Related literature

Terpyridines (Heller & Schubert, 2003[Heller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. pp. 947-961.]) are frequently employed as tridentate chelating ligands for transition and rare earth metals forming very stable square planar mono- (Eryazici et al., 2008[Eryazici, I., Moorefield, C. N. & Newkome, G. R. (2008). Chem. Rev. 108, 1834-1895.]) or octa­hedral bis-complexes (Constable, 2007[Constable, E. C. (2007). Chem. Soc. Rev. 36, 246-253.], 2008[Constable, E. C. (2008). Coord. Chem. Rev. 252, 842-855.]). For related symmetrical 4′-substituted terpyridine derivatives, see: Hofmeier & Schubert (2004[Hofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 373-399.]); Andres & Schubert (2004[Andres, R. P. & Schubert, U. S. (2004). Adv. Mater. 16, 1043-1068.]).

[Scheme 1]

Experimental

Crystal data
  • C25H24N3O3P

  • Mr = 445.44

  • Monoclinic, P 21 /c

  • a = 12.5290 (4) Å

  • b = 13.0264 (4) Å

  • c = 14.5681 (5) Å

  • β = 111.674 (3)°

  • V = 2209.53 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 120 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur (Sapphire2) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.957, Tmax = 1.000

  • 23115 measured reflections

  • 3886 independent reflections

  • 2809 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 1.02

  • 3886 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was prepared as a precursor for our study of molecular aluminophosphate building blocks possessing metal-coordinating groups. The molecule presents the usual conformation of nitrogen atoms in the two pyridine rings as nearly antiperiplanar oriented to that of the central ring of the terpyridine moiety (Fig. 1). The P=O bond adopts an essentially syn conformation with the plane of the attached ring. The torsion angle O3–P1–C44–C43 is 6.93 (14)°. Thus, the ethyl groups are conveniently located below and above the plane of the ring. All four aromatic rings are planar, with r.m.s. deviations not exceeding 0.0066 Å.

Related literature top

Terpyridines (Heller & Schubert, 2003) are frequently employed as tridentate chelating ligands for transition and rare earth metals forming very stable square planar mono- (Eryazici et al., 2008) or octahedral bis-complexes (Constable, 2007, 2008). For related symmetrical 4'-substituted terpyridine derivatives, see: Hofmeier & Schubert (2004); Andres & Schubert (2004).

Experimental top

To a mixture of diethylphosphite (C2H5O)2P(O)H (1.1 cm3, 8.5 mmol, Fluka), triethylamine (1.3 cm3, 9.4 mmol) and tetrakis(triphenylphosphine)palladium (0.337 g, 0.292 mmol), a solution of 4'-(4-bromophenyl)-2,2':6',2''-terpyridine (2.268 g, 5.841 mmol) in toluene (10 cm3) was added at 50 °C. The reaction mixture was stirred for 3.5 h at 90 °C and a white solid triethylammonium bromide precipitated. After cooling, the solid was filtered off and all volatile components were removed from the filtrate under vacuum. The final product was isolated by liquid chromatography (stationary phase: silicagel, mobile phase: petrolether, ethylacetate, triethylamine – 1:1:0.04). Yield 46.7% (1.215 g). M>.p. 122 °C. Single crystals suitable for X-ray diffraction analysis were obtained by a slow evaporation of a CHCl3 solution.

NMR spectra were obtained on a Bruker AVANCE DRX 300 MHz spectrometer.

1H NMR (300.13 MHz, CDCl3): δ (p.p.m.) = 1.34 (t, 6H); 4.15 (m, 4H); 7.34 (m, 2H); 7.86 (m, 2H); 7.94 (AA'XX', m, 2H); 8.12 (AA'XX', m, 2H); 8.65 (m, 2H); 8.71 (m, 2H); 8.73 (s, 2H). 13C{1H} NMR (75.48 MHz, CD2Cl2): δ (p.p.m.) = 16.8 (d, 3JPC = 6.0 Hz); 62.7 (d, 2JPC = 5.5 Hz); 119.1; 121.6; 124.4; 127.7 (d, 2JPC = 15.4 Hz); 129.9 (d, 1JPC = 188.2 Hz); 132.8 (d, 3JPC = 9.8 Hz); 137.2; 142.8 (d, 4JPC = 3.2 Hz); 149.2; 149.6; 156.2; 156.6. 31P{1H} NMR (121.50 MHz, CD2Cl2): δ (p.p.m.) = 18.8 (s).

Mass spectra were recorded on a quadrupole mass spectrometer TRIO 1000 series II, Finnigan MAT, Fisons Instruments, with resolution of 1 m/z in the range 0–1000 m/z. Mass spectrum (EI) m/z 445 (M+).

IR spectra were measured on a IFS 28 Bruker spectrometer on samples prepared as KBr pellets (1.5 mg in 100 mg of KBr). IR (KBr pellet, cm-1): ν 3051 w, 2988 m, 2941 w, 2895 w, 1583 s, 1567 m, 1535 m, 1468 m, 1382 m, 1245 vs, 1163 m, 1132 m, 1058 s, 1024 vs, 972 vs, 958 s, 839 w, 794 s, 774 m, 747 m, 669 m, 622 w, 575 s, 533 m.

Refinement top

All H atoms were placed at calculated positions and were refined as riding with their Uiso set to either 1.2Ueq or 1.5Ueq (methyl) of the respective carrier atoms. The methyl H atoms were allowed to rotate about the C—C bond.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : ORTEP of the asymmetric unit with atoms represented as 50% probability ellipsoids.
Diethyl [4-(2,2':6',2''-terpyridine-4'-yl)phenyl]phosphonate top
Crystal data top
C25H24N3O3PF(000) = 936
Mr = 445.44Dx = 1.339 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25622 reflections
a = 12.5290 (4) Åθ = 2.9–27.1°
b = 13.0264 (4) ŵ = 0.16 mm1
c = 14.5681 (5) ÅT = 120 K
β = 111.674 (3)°Prism, colourless
V = 2209.53 (12) Å30.40 × 0.40 × 0.30 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur (Sapphire2)
diffractometer
3886 independent reflections
Radiation source: Enhance (Mo) X-ray Source2809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω scanh = 1414
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1515
Tmin = 0.957, Tmax = 1.000l = 1717
23115 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0428P)2]
where P = (Fo2 + 2Fc2)/3
3886 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C25H24N3O3PV = 2209.53 (12) Å3
Mr = 445.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5290 (4) ŵ = 0.16 mm1
b = 13.0264 (4) ÅT = 120 K
c = 14.5681 (5) Å0.40 × 0.40 × 0.30 mm
β = 111.674 (3)°
Data collection top
Oxford Diffraction Xcalibur (Sapphire2)
diffractometer
3886 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2809 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 1.000Rint = 0.027
23115 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
3886 reflectionsΔρmin = 0.36 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.50120 (4)0.72076 (3)0.00200 (3)0.02069 (12)
O10.46530 (9)0.83650 (7)0.02492 (7)0.0275 (3)
O20.39364 (8)0.67611 (7)0.01687 (7)0.0228 (3)
O30.53164 (9)0.66516 (8)0.07662 (7)0.0272 (3)
C110.89136 (13)0.75905 (11)0.39920 (11)0.0200 (3)
C120.98093 (13)0.68836 (11)0.43599 (11)0.0209 (4)
H120.98390.63000.39790.025*
C131.06611 (13)0.70391 (11)0.52914 (11)0.0207 (4)
N141.06504 (10)0.78575 (9)0.58592 (9)0.0217 (3)
C150.97864 (13)0.85442 (11)0.54983 (11)0.0190 (3)
C160.89195 (13)0.84309 (11)0.45779 (10)0.0185 (3)
H160.83280.89310.43480.022*
C211.16156 (13)0.62884 (11)0.57298 (11)0.0213 (4)
N221.15825 (11)0.54273 (10)0.52078 (9)0.0263 (3)
C231.24131 (14)0.47314 (12)0.56195 (12)0.0291 (4)
H231.23980.41170.52630.035*
C241.32901 (14)0.48532 (12)0.65303 (12)0.0291 (4)
H241.38550.43350.67910.035*
C251.33247 (14)0.57469 (13)0.70507 (12)0.0303 (4)
H251.39190.58590.76750.036*
C261.24803 (13)0.64732 (12)0.66465 (11)0.0252 (4)
H261.24870.70950.69900.030*
C310.97814 (13)0.94306 (11)0.61461 (11)0.0194 (4)
N320.89127 (10)1.01071 (10)0.57719 (9)0.0257 (3)
C330.88630 (14)1.08950 (12)0.63477 (12)0.0286 (4)
H330.82611.13810.60870.034*
C340.96454 (14)1.10380 (12)0.73049 (12)0.0281 (4)
H340.95771.16020.76930.034*
C351.05227 (15)1.03371 (12)0.76736 (12)0.0310 (4)
H351.10731.04100.83260.037*
C361.05986 (14)0.95269 (11)0.70898 (11)0.0251 (4)
H361.12040.90420.73330.030*
C410.79611 (13)0.74623 (10)0.30129 (10)0.0195 (3)
C420.81495 (13)0.70342 (11)0.22064 (11)0.0237 (4)
H420.88950.67980.22850.028*
C430.72622 (13)0.69490 (11)0.12923 (11)0.0236 (4)
H430.74080.66570.07530.028*
C440.61595 (13)0.72881 (10)0.11592 (11)0.0189 (3)
C450.59641 (13)0.76988 (11)0.19754 (11)0.0199 (3)
H450.52150.79210.19020.024*
C460.68515 (13)0.77839 (10)0.28863 (11)0.0192 (3)
H460.67040.80640.34300.023*
C510.36229 (14)0.86636 (12)0.10752 (12)0.0311 (4)
H51A0.29300.85060.09270.037*
H51B0.35740.82840.16780.037*
C520.36991 (14)0.97985 (11)0.12287 (12)0.0276 (4)
H52A0.30271.00200.17960.041*
H52B0.43990.99480.13550.041*
H52C0.37201.01670.06360.041*
C610.39903 (14)0.56972 (11)0.05077 (12)0.0241 (4)
H61A0.47940.54490.07480.029*
H61B0.35220.52510.00440.029*
C620.35357 (15)0.56613 (12)0.13283 (11)0.0318 (4)
H62A0.35620.49530.15630.048*
H62B0.27400.59070.10830.048*
H62C0.40080.61000.18740.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0205 (2)0.0200 (2)0.0200 (2)0.00170 (18)0.00562 (18)0.00025 (18)
O10.0267 (7)0.0211 (6)0.0264 (6)0.0013 (5)0.0002 (5)0.0043 (5)
O20.0203 (6)0.0203 (5)0.0264 (6)0.0003 (5)0.0069 (5)0.0015 (5)
O30.0278 (7)0.0316 (6)0.0216 (6)0.0048 (5)0.0086 (5)0.0032 (5)
C110.0192 (9)0.0223 (8)0.0202 (9)0.0005 (7)0.0093 (7)0.0025 (7)
C120.0212 (9)0.0224 (8)0.0189 (9)0.0014 (7)0.0072 (8)0.0026 (7)
C130.0201 (9)0.0222 (8)0.0202 (9)0.0031 (7)0.0079 (8)0.0019 (7)
N140.0218 (8)0.0241 (7)0.0189 (7)0.0020 (6)0.0072 (6)0.0017 (6)
C150.0164 (9)0.0224 (8)0.0184 (8)0.0025 (7)0.0069 (7)0.0034 (7)
C160.0163 (9)0.0208 (8)0.0182 (8)0.0013 (6)0.0062 (7)0.0032 (6)
C210.0192 (9)0.0248 (8)0.0197 (9)0.0030 (7)0.0071 (8)0.0022 (7)
N220.0253 (8)0.0261 (7)0.0269 (8)0.0017 (6)0.0087 (7)0.0025 (6)
C230.0293 (11)0.0248 (9)0.0349 (10)0.0012 (8)0.0139 (9)0.0029 (7)
C240.0203 (10)0.0293 (9)0.0350 (10)0.0028 (7)0.0070 (8)0.0124 (8)
C250.0211 (10)0.0368 (10)0.0271 (10)0.0033 (8)0.0021 (8)0.0060 (8)
C260.0226 (10)0.0262 (9)0.0236 (9)0.0025 (7)0.0048 (8)0.0001 (7)
C310.0166 (9)0.0228 (9)0.0194 (9)0.0028 (7)0.0073 (8)0.0028 (7)
N320.0215 (8)0.0285 (7)0.0246 (8)0.0009 (6)0.0057 (6)0.0042 (6)
C330.0219 (10)0.0310 (9)0.0323 (10)0.0005 (8)0.0093 (8)0.0069 (8)
C340.0291 (10)0.0322 (9)0.0263 (10)0.0074 (8)0.0141 (9)0.0106 (7)
C350.0308 (11)0.0379 (10)0.0195 (9)0.0040 (8)0.0038 (8)0.0041 (8)
C360.0243 (10)0.0276 (9)0.0191 (9)0.0010 (7)0.0028 (8)0.0013 (7)
C410.0199 (9)0.0171 (8)0.0198 (9)0.0010 (6)0.0054 (8)0.0011 (6)
C420.0167 (9)0.0273 (9)0.0261 (10)0.0034 (7)0.0066 (8)0.0026 (7)
C430.0246 (10)0.0257 (9)0.0215 (9)0.0001 (7)0.0098 (8)0.0044 (7)
C440.0197 (9)0.0152 (7)0.0216 (9)0.0007 (7)0.0072 (7)0.0020 (6)
C450.0165 (9)0.0192 (8)0.0231 (9)0.0022 (7)0.0063 (8)0.0022 (7)
C460.0227 (9)0.0156 (7)0.0205 (9)0.0016 (7)0.0093 (8)0.0009 (6)
C510.0262 (10)0.0300 (9)0.0292 (10)0.0014 (8)0.0011 (8)0.0062 (8)
C520.0260 (10)0.0269 (9)0.0275 (9)0.0029 (7)0.0070 (8)0.0034 (7)
C610.0239 (10)0.0180 (8)0.0294 (9)0.0006 (7)0.0087 (8)0.0017 (7)
C620.0351 (11)0.0312 (9)0.0287 (10)0.0044 (8)0.0115 (9)0.0024 (8)
Geometric parameters (Å, º) top
P1—O31.4691 (10)C33—C341.389 (2)
P1—O11.5734 (10)C33—H330.9500
P1—O21.5822 (10)C34—C351.376 (2)
P1—C441.7902 (16)C34—H340.9500
O1—C511.4553 (17)C35—C361.381 (2)
O2—C611.4644 (16)C35—H350.9500
C11—C161.3865 (19)C36—H360.9500
C11—C121.397 (2)C41—C421.3972 (19)
C11—C411.493 (2)C41—C461.397 (2)
C12—C131.397 (2)C42—C431.389 (2)
C12—H120.9500C42—H420.9500
C13—N141.3524 (18)C43—C441.394 (2)
C13—C211.493 (2)C43—H430.9500
N14—C151.3520 (18)C44—C451.4053 (19)
C15—C161.387 (2)C45—C461.386 (2)
C15—C311.4928 (19)C45—H450.9500
C16—H160.9500C46—H460.9500
C21—N221.3472 (18)C51—C521.503 (2)
C21—C261.395 (2)C51—H51A0.9900
N22—C231.3429 (19)C51—H51B0.9900
C23—C241.384 (2)C52—H52A0.9800
C23—H230.9500C52—H52B0.9800
C24—C251.381 (2)C52—H52C0.9800
C24—H240.9500C61—C621.503 (2)
C25—C261.379 (2)C61—H61A0.9900
C25—H250.9500C61—H61B0.9900
C26—H260.9500C62—H62A0.9800
C31—N321.3491 (18)C62—H62B0.9800
C31—C361.384 (2)C62—H62C0.9800
N32—C331.3414 (19)
O3—P1—O1116.57 (6)C33—C34—H34121.0
O3—P1—O2114.70 (6)C34—C35—C36119.57 (15)
O1—P1—O2101.19 (6)C34—C35—H35120.2
O3—P1—C44113.77 (7)C36—C35—H35120.2
O1—P1—C44102.29 (6)C35—C36—C31119.17 (15)
O2—P1—C44106.77 (6)C35—C36—H36120.4
C51—O1—P1121.89 (9)C31—C36—H36120.4
C61—O2—P1118.05 (9)C42—C41—C46118.52 (14)
C16—C11—C12117.61 (14)C42—C41—C11121.62 (14)
C16—C11—C41119.81 (13)C46—C41—C11119.86 (13)
C12—C11—C41122.57 (13)C43—C42—C41120.96 (14)
C11—C12—C13119.64 (14)C43—C42—H42119.5
C11—C12—H12120.2C41—C42—H42119.5
C13—C12—H12120.2C42—C43—C44120.62 (14)
N14—C13—C12122.12 (14)C42—C43—H43119.7
N14—C13—C21116.23 (13)C44—C43—H43119.7
C12—C13—C21121.62 (13)C43—C44—C45118.44 (14)
C15—N14—C13118.11 (13)C43—C44—P1121.22 (11)
N14—C15—C16122.29 (13)C45—C44—P1120.34 (12)
N14—C15—C31117.10 (13)C46—C45—C44120.79 (14)
C16—C15—C31120.59 (13)C46—C45—H45119.6
C11—C16—C15120.22 (13)C44—C45—H45119.6
C11—C16—H16119.9C45—C46—C41120.65 (13)
C15—C16—H16119.9C45—C46—H46119.7
N22—C21—C26122.35 (14)C41—C46—H46119.7
N22—C21—C13116.81 (13)O1—C51—C52107.47 (12)
C26—C21—C13120.83 (14)O1—C51—H51A110.2
C23—N22—C21116.92 (13)C52—C51—H51A110.2
N22—C23—C24124.10 (15)O1—C51—H51B110.2
N22—C23—H23117.9C52—C51—H51B110.2
C24—C23—H23117.9H51A—C51—H51B108.5
C25—C24—C23118.39 (15)C51—C52—H52A109.5
C25—C24—H24120.8C51—C52—H52B109.5
C23—C24—H24120.8H52A—C52—H52B109.5
C26—C25—C24118.71 (15)C51—C52—H52C109.5
C26—C25—H25120.6H52A—C52—H52C109.5
C24—C25—H25120.6H52B—C52—H52C109.5
C25—C26—C21119.51 (15)O2—C61—C62108.30 (12)
C25—C26—H26120.2O2—C61—H61A110.0
C21—C26—H26120.2C62—C61—H61A110.0
N32—C31—C36122.19 (14)O2—C61—H61B110.0
N32—C31—C15116.16 (13)C62—C61—H61B110.0
C36—C31—C15121.60 (13)H61A—C61—H61B108.4
C33—N32—C31117.64 (13)C61—C62—H62A109.5
N32—C33—C34123.48 (15)C61—C62—H62B109.5
N32—C33—H33118.3H62A—C62—H62B109.5
C34—C33—H33118.3C61—C62—H62C109.5
C35—C34—C33117.94 (15)H62A—C62—H62C109.5
C35—C34—H34121.0H62B—C62—H62C109.5
O3—P1—O1—C5164.82 (12)N14—C15—C31—C362.4 (2)
O2—P1—O1—C5160.30 (12)C16—C15—C31—C36176.11 (13)
C44—P1—O1—C51170.42 (11)C36—C31—N32—C330.3 (2)
O3—P1—O2—C6159.59 (11)C15—C31—N32—C33177.95 (12)
O1—P1—O2—C61174.05 (10)C31—N32—C33—C340.9 (2)
C44—P1—O2—C6167.41 (11)N32—C33—C34—C350.7 (2)
C16—C11—C12—C130.5 (2)C33—C34—C35—C360.1 (2)
C41—C11—C12—C13178.66 (13)C34—C35—C36—C310.6 (2)
C11—C12—C13—N140.1 (2)N32—C31—C36—C350.4 (2)
C11—C12—C13—C21178.06 (13)C15—C31—C36—C35177.07 (14)
C12—C13—N14—C150.6 (2)C16—C11—C41—C42145.39 (14)
C21—C13—N14—C15178.60 (12)C12—C11—C41—C4235.5 (2)
C13—N14—C15—C160.4 (2)C16—C11—C41—C4633.99 (19)
C13—N14—C15—C31178.91 (12)C12—C11—C41—C46145.12 (14)
C12—C11—C16—C150.6 (2)C46—C41—C42—C431.4 (2)
C41—C11—C16—C15178.51 (13)C11—C41—C42—C43177.99 (13)
N14—C15—C16—C110.2 (2)C41—C42—C43—C440.1 (2)
C31—C15—C16—C11178.24 (12)C42—C43—C44—C451.2 (2)
N14—C13—C21—N22174.58 (12)C42—C43—C44—P1178.75 (11)
C12—C13—C21—N223.5 (2)O3—P1—C44—C436.93 (14)
N14—C13—C21—C264.2 (2)O1—P1—C44—C43119.67 (12)
C12—C13—C21—C26177.82 (13)O2—P1—C44—C43134.48 (11)
C26—C21—N22—C231.4 (2)O3—P1—C44—C45173.13 (11)
C13—C21—N22—C23177.27 (12)O1—P1—C44—C4560.27 (12)
C21—N22—C23—C240.6 (2)O2—P1—C44—C4545.58 (13)
N22—C23—C24—C250.5 (2)C43—C44—C45—C461.3 (2)
C23—C24—C25—C260.6 (2)P1—C44—C45—C46178.67 (11)
C24—C25—C26—C210.2 (2)C44—C45—C46—C410.0 (2)
N22—C21—C26—C251.3 (2)C42—C41—C46—C451.3 (2)
C13—C21—C26—C25177.38 (14)C11—C41—C46—C45178.09 (13)
N14—C15—C31—N32179.95 (12)P1—O1—C51—C52166.13 (10)
C16—C15—C31—N321.51 (19)P1—O2—C61—C62135.67 (11)

Experimental details

Crystal data
Chemical formulaC25H24N3O3P
Mr445.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)12.5290 (4), 13.0264 (4), 14.5681 (5)
β (°) 111.674 (3)
V3)2209.53 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur (Sapphire2)
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.957, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
23115, 3886, 2809
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.02
No. of reflections3886
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by CEITEC–Central European Institute of Technology (CZ.1.05/1.1.00/02.0068) and GACR P207/11/0555.

References

First citationAndres, R. P. & Schubert, U. S. (2004). Adv. Mater. 16, 1043–1068.  Web of Science CrossRef CAS Google Scholar
First citationConstable, E. C. (2007). Chem. Soc. Rev. 36, 246–253.  Web of Science CrossRef PubMed CAS Google Scholar
First citationConstable, E. C. (2008). Coord. Chem. Rev. 252, 842–855.  Web of Science CrossRef CAS Google Scholar
First citationEryazici, I., Moorefield, C. N. & Newkome, G. R. (2008). Chem. Rev. 108, 1834–1895.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHeller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. pp. 947–961.  CrossRef Google Scholar
First citationHofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 373–399.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds