organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(1-Benzyl-1H-1,2,3-triazol-4-yl)meth­yl]-5H-dibenzo[b,f]azepine

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

(Received 5 November 2013; accepted 7 November 2013; online 13 November 2013)

In the title compound, C24H20N4, the azepine ring adopts a boat conformation. The dihedral angle between the benzene rings fused to the azepine ring is 49.40 (9)°. The triazole ring makes a dihedral angle of 77.88 (9)° with the terminal phenyl ring. In the crystal, mol­ecules are linked via C—H⋯π inter­actions and a parallel slipped ππ inter­action [centroid–centroid distance = 3.7324 (9), normal distance = 3.4060 (6) and slippage = 1.526 Å], forming a three-dimensional network.

Related literature

For the use of dibenzo azepine derivatives in the preparation of carbamazepine, see: Rockliff & Davis (1966[Rockliff, B. W. & Davis, E. H. (1966). Arch. Neurol. 15, 129-136.]). For their anti­tumor properties, see: Al-Qawasmeh et al. (2009[Al-Qawasmeh, R. A., Lee, Y., Cao, M.-Y., Gu, X., Viau, S., Lightfoot, J., Wright, J. A. & Young, A. H. (2009). Bioorg. Med. Chem., 19 104-107.]). For related structures, see: Abdoh et al. (2013[Abdoh, M. M. M., Madan Kumar, S., Vinay Kumar, K. S., Manjunath, B. C., Sadashiva, M. P. & Lokanath, N. K. (2013). Acta Cryst. E69, o17.]); Manjunath et al. (2013[Manjunath, B. C., Vinay Kumar, K. S., Madan Kumar, S., Sadashiva, M. P. & Lokanath, N. K. (2013). Acta Cryst. E69, o1233.]). For ring-puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N4

  • Mr = 364.44

  • Monoclinic, P 21 /c

  • a = 11.4339 (10) Å

  • b = 11.7140 (12) Å

  • c = 14.4527 (13) Å

  • β = 98.610 (4)°

  • V = 1913.9 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.60 mm−1

  • T = 296 K

  • 0.23 × 0.22 × 0.21 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.871, Tmax = 0.882

  • 11434 measured reflections

  • 3160 independent reflections

  • 2742 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.135

  • S = 1.06

  • 3160 reflections

  • 242 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18ACg2i 0.97 2.83 3.600 (2) 137
C20—H20⋯Cg1i 0.93 2.79 3.642 (2) 153
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Comment top

Dibenzo azepine derivatives have been shown to act as antitumor drugs (Al-Qawasmeh et al., 2009). They are used in the prepration of carbamazepine, an anticonvulsant (Rockliff & Davis, 1966). As a part of our on-going research on the synthesis and crystal structural studies of dibenzo azepine derivatives (Abdoh et al., 2013; Manjunath et al., 2013), we present herein the crystal structure of the title compound.

The molecular structure of the title molecule is shown in Fig. 1. The seven-membered azepine ring adopts a boat conformation with puckering parameters (Cremer & Pople, 1975): Q2 = 0.6845 (18) Å, Q3 = 0.2069 (17) Å, ϕ2 = 178.28 (16)°, ϕ3 = 178.9 (5)°, and a total puckering amplitude QT = 0.7149 (17) Å .

The dihedral angle between the two benzene rings, (C1—C6) and (C9—C14), fused to the azepine ring is 49.40 (9)°. The triazole ring (C16/N2—N4/C17) makes a dihedral angle of 77.88 (9)° with the terminal phenyl ring (C19—C24). The overall geometry of the title molecule is similar that of earlier reported structures (Abdoh et al., 2013; Manjunath et al., 2013).

In the crystal, molecules are connected by C—H···π interactions (Table 1), and a slipped parallel π-π interaction involving inversion related terminal phenyl rings [Cg3···Cg3i = 3.7324 (9) Å; normal distance = 3.4060 (6) Å; slippage = 1.526 Å; Cg3 is the centroid of ring (C20—C24); symmetry code: (i) = -x + 2, -y + 1, -z + 2]. These interactions result in the formation of a three-dimensional structure (Fig. 2).

Related literature top

For the use of dibenzo azepine derivatives in the preparation of carbamazepine, see: Rockliff & Davis (1966). For their antitumor properties, see: Al-Qawasmeh et al. (2009). For related structures, see: Abdoh et al. (2013); Manjunath et al. (2013). For ring-puckering analysis, see: Cremer & Pople (1975).

Experimental top

5-(prop-2-yn-1-yl)-5H-dibenzo[b,f]azepine (2.1 mmol) was taken in a mixture of dichloromethane and water in the ratio 1:1, Cuprous iodide (0.21 mmol) was added followed by Sodium ascorbate (0.21 mmol) at room temperature. After 10 minutes, benzyl azide was added (2.3 mmol) at room temperature. The resulting reaction mixture was stirred for 6 h. After completion of the reaction (monitored by TLC), the reaction mixture was diluted with water (50 ml). The aqueous layer was extracted with ethyl acetate (3 × 20 ml), the combined ethyl acetate layer was washed with brine solution (2 × 25 ml). The organic layer was then dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude product obtained was purified by column chromatography over silica gel (60–120 mesh) using hexane:ethyl acetate (8:2) as eluent. The pure compound was recrystallized in ethyl acetate/hexane (1:1) to obtain light-yellow block-like crystals.

Refinement top

All the H atoms were fixed geometrically and allowed to ride on their parent atoms: C—H= 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C). The benzene ring (C19-C24) was refined as a regular hexagon.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A viewed along the b axis of the crystal packing of the title compound.
5-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]-5H-dibenzo[b,f]azepine top
Crystal data top
C24H20N4F(000) = 768
Mr = 364.44Dx = 1.265 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 3160 reflections
a = 11.4339 (10) Åθ = 3.9–64.7°
b = 11.7140 (12) ŵ = 0.60 mm1
c = 14.4527 (13) ÅT = 296 K
β = 98.610 (4)°Block, yellow
V = 1913.9 (3) Å30.23 × 0.22 × 0.21 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
3160 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2742 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.029
Detector resolution: 10.7 pixels mm-1θmax = 64.7°, θmin = 3.9°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 613
Tmin = 0.871, Tmax = 0.882l = 1616
11434 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.668P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3160 reflectionsΔρmax = 0.37 e Å3
242 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (4)
Crystal data top
C24H20N4V = 1913.9 (3) Å3
Mr = 364.44Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.4339 (10) ŵ = 0.60 mm1
b = 11.7140 (12) ÅT = 296 K
c = 14.4527 (13) Å0.23 × 0.22 × 0.21 mm
β = 98.610 (4)°
Data collection top
Bruker X8 Proteum
diffractometer
3160 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2742 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.882Rint = 0.029
11434 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.06Δρmax = 0.37 e Å3
3160 reflectionsΔρmin = 0.35 e Å3
242 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.43569 (11)0.09444 (13)0.81026 (9)0.0380 (4)
N20.75967 (14)0.07129 (16)0.84538 (13)0.0587 (6)
N30.83816 (14)0.15341 (17)0.84788 (13)0.0615 (6)
N40.78072 (13)0.25199 (14)0.84990 (10)0.0466 (5)
C10.42570 (14)0.13226 (14)0.71500 (11)0.0362 (5)
C20.50035 (15)0.09093 (17)0.65474 (12)0.0444 (6)
C30.49640 (18)0.13523 (19)0.56554 (13)0.0529 (7)
C40.41693 (18)0.22002 (19)0.53381 (13)0.0552 (7)
C50.34204 (17)0.26084 (17)0.59263 (13)0.0493 (6)
C60.34446 (15)0.21923 (15)0.68381 (12)0.0397 (5)
C70.26469 (16)0.26982 (16)0.74219 (13)0.0472 (6)
C80.21604 (16)0.21843 (17)0.80959 (14)0.0502 (6)
C90.22998 (15)0.10011 (17)0.83926 (12)0.0434 (6)
C100.33367 (14)0.03702 (16)0.83579 (11)0.0390 (5)
C110.33787 (16)0.07699 (17)0.86185 (13)0.0486 (6)
C120.24221 (19)0.1295 (2)0.89303 (15)0.0606 (8)
C130.14115 (19)0.0676 (2)0.89868 (16)0.0654 (8)
C140.13561 (18)0.0451 (2)0.87236 (14)0.0577 (7)
C150.54828 (15)0.04203 (17)0.85030 (13)0.0450 (6)
C160.65211 (14)0.11824 (16)0.84764 (11)0.0404 (6)
C170.66473 (15)0.23304 (17)0.85105 (13)0.0473 (6)
C180.84716 (19)0.3590 (2)0.86075 (13)0.0559 (7)
C190.86839 (10)0.39520 (10)0.96072 (6)0.0391 (5)
C200.78941 (10)0.47031 (11)0.99293 (9)0.0577 (7)
C210.80418 (14)0.50082 (13)1.08690 (11)0.0767 (10)
C220.89793 (16)0.45624 (15)1.14866 (7)0.0805 (10)
C230.97691 (13)0.38113 (14)1.11645 (8)0.0791 (9)
C240.96214 (10)0.35062 (11)1.02248 (9)0.0527 (7)
H20.553500.032800.674800.0530*
H30.547800.107500.526700.0630*
H40.413800.249300.473700.0660*
H50.288200.317800.571100.0590*
H70.245600.346300.731300.0570*
H80.167800.263500.841100.0600*
H110.406100.119100.858400.0580*
H120.246300.206100.910000.0730*
H130.077000.102000.920200.0790*
H140.067000.086200.876600.0690*
H15A0.559300.027400.816100.0540*
H15B0.544700.021100.914800.0540*
H170.605900.287300.853600.0570*
H18A0.803300.418000.823300.0670*
H18B0.922400.349000.838400.0670*
H200.726700.500100.951600.0690*
H210.751300.551101.108500.0920*
H220.907800.476701.211500.0970*
H231.039600.351301.157800.0950*
H241.015000.300401.000900.0630*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0325 (7)0.0412 (8)0.0377 (7)0.0023 (6)0.0028 (5)0.0018 (6)
N20.0383 (8)0.0599 (11)0.0768 (12)0.0014 (8)0.0054 (8)0.0219 (9)
N30.0411 (9)0.0662 (12)0.0775 (12)0.0055 (8)0.0101 (8)0.0265 (9)
N40.0411 (8)0.0578 (10)0.0396 (8)0.0123 (7)0.0016 (6)0.0084 (7)
C10.0342 (8)0.0356 (9)0.0361 (8)0.0059 (7)0.0032 (6)0.0037 (7)
C20.0399 (9)0.0466 (11)0.0447 (10)0.0010 (8)0.0001 (7)0.0063 (8)
C30.0518 (11)0.0648 (14)0.0422 (10)0.0080 (10)0.0078 (8)0.0096 (9)
C40.0608 (12)0.0639 (14)0.0385 (10)0.0142 (10)0.0008 (9)0.0034 (9)
C50.0500 (10)0.0450 (11)0.0478 (10)0.0040 (8)0.0091 (8)0.0054 (8)
C60.0386 (9)0.0344 (9)0.0431 (9)0.0048 (7)0.0035 (7)0.0015 (7)
C70.0455 (10)0.0356 (10)0.0584 (11)0.0037 (8)0.0011 (8)0.0026 (8)
C80.0419 (10)0.0499 (12)0.0589 (11)0.0036 (8)0.0079 (8)0.0119 (9)
C90.0395 (9)0.0497 (11)0.0399 (9)0.0034 (8)0.0028 (7)0.0061 (8)
C100.0374 (9)0.0445 (11)0.0329 (8)0.0062 (7)0.0018 (6)0.0020 (7)
C110.0439 (10)0.0497 (12)0.0490 (10)0.0051 (8)0.0038 (8)0.0070 (8)
C120.0601 (13)0.0582 (14)0.0602 (12)0.0146 (10)0.0019 (10)0.0169 (10)
C130.0521 (12)0.0800 (17)0.0652 (13)0.0177 (11)0.0120 (10)0.0137 (12)
C140.0428 (11)0.0732 (15)0.0582 (12)0.0036 (10)0.0108 (9)0.0013 (10)
C150.0368 (9)0.0465 (11)0.0478 (10)0.0007 (8)0.0066 (7)0.0048 (8)
C160.0347 (9)0.0487 (11)0.0351 (9)0.0011 (7)0.0040 (7)0.0034 (7)
C170.0356 (9)0.0521 (12)0.0521 (10)0.0000 (8)0.0006 (8)0.0013 (9)
C180.0566 (12)0.0647 (14)0.0451 (10)0.0223 (10)0.0032 (9)0.0003 (9)
C190.0352 (8)0.0382 (10)0.0422 (9)0.0097 (7)0.0005 (7)0.0027 (7)
C200.0457 (11)0.0518 (13)0.0753 (14)0.0038 (9)0.0080 (9)0.0076 (10)
C210.0734 (16)0.0795 (18)0.0832 (17)0.0254 (14)0.0317 (14)0.0304 (14)
C220.107 (2)0.088 (2)0.0506 (13)0.0487 (17)0.0250 (13)0.0149 (13)
C230.0800 (16)0.0812 (18)0.0630 (14)0.0326 (14)0.0319 (12)0.0246 (13)
C240.0437 (10)0.0481 (12)0.0618 (12)0.0041 (8)0.0064 (9)0.0076 (9)
Geometric parameters (Å, º) top
N1—C11.435 (2)C19—C201.3900 (17)
N1—C101.442 (2)C19—C241.3900 (16)
N1—C151.465 (2)C20—C211.390 (2)
N2—N31.312 (3)C21—C221.390 (2)
N2—C161.352 (2)C22—C231.390 (2)
N3—N41.331 (2)C23—C241.3900 (18)
N4—C171.347 (2)C2—H20.9300
N4—C181.462 (3)C3—H30.9300
C1—C21.394 (2)C4—H40.9300
C1—C61.407 (2)C5—H50.9300
C2—C31.384 (3)C7—H70.9300
C3—C41.378 (3)C8—H80.9300
C4—C51.379 (3)C11—H110.9300
C5—C61.401 (3)C12—H120.9300
C6—C71.458 (3)C13—H130.9300
C7—C81.335 (3)C14—H140.9300
C8—C91.453 (3)C15—H15A0.9700
C9—C101.404 (2)C15—H15B0.9700
C9—C141.401 (3)C17—H170.9300
C10—C111.387 (3)C18—H18A0.9700
C11—C121.388 (3)C18—H18B0.9700
C12—C131.377 (3)C20—H200.9300
C13—C141.373 (3)C21—H210.9300
C15—C161.491 (3)C22—H220.9300
C16—C171.353 (3)C23—H230.9300
C18—C191.490 (2)C24—H240.9300
C1—N1—C10116.01 (13)C19—C24—C23120.00 (12)
C1—N1—C15116.59 (13)C1—C2—H2119.00
C10—N1—C15113.59 (14)C3—C2—H2120.00
N3—N2—C16108.78 (17)C2—C3—H3120.00
N2—N3—N4107.39 (15)C4—C3—H3120.00
N3—N4—C17110.32 (16)C3—C4—H4121.00
N3—N4—C18119.74 (16)C5—C4—H4120.00
C17—N4—C18129.54 (17)C4—C5—H5119.00
N1—C1—C2121.60 (15)C6—C5—H5119.00
N1—C1—C6119.02 (14)C6—C7—H7116.00
C2—C1—C6119.21 (15)C8—C7—H7116.00
C1—C2—C3120.93 (17)C7—C8—H8116.00
C2—C3—C4120.55 (18)C9—C8—H8116.00
C3—C4—C5118.96 (18)C10—C11—H11119.00
C4—C5—C6122.16 (18)C12—C11—H11119.00
C1—C6—C5118.19 (16)C11—C12—H12120.00
C1—C6—C7123.32 (16)C13—C12—H12120.00
C5—C6—C7118.48 (16)C12—C13—H13120.00
C6—C7—C8127.16 (18)C14—C13—H13120.00
C7—C8—C9127.32 (18)C9—C14—H14119.00
C8—C9—C10123.20 (16)C13—C14—H14119.00
C8—C9—C14118.92 (17)N1—C15—H15A109.00
C10—C9—C14117.88 (18)N1—C15—H15B109.00
N1—C10—C9118.91 (16)C16—C15—H15A109.00
N1—C10—C11121.50 (15)C16—C15—H15B109.00
C9—C10—C11119.49 (16)H15A—C15—H15B108.00
C10—C11—C12121.22 (18)N4—C17—H17127.00
C11—C12—C13119.7 (2)C16—C17—H17127.00
C12—C13—C14119.6 (2)N4—C18—H18A110.00
C9—C14—C13122.1 (2)N4—C18—H18B109.00
N1—C15—C16113.27 (16)C19—C18—H18A109.00
N2—C16—C15119.20 (17)C19—C18—H18B109.00
N2—C16—C17108.23 (16)H18A—C18—H18B108.00
C15—C16—C17132.50 (16)C19—C20—H20120.00
N4—C17—C16105.26 (16)C21—C20—H20120.00
N4—C18—C19110.77 (15)C20—C21—H21120.00
C18—C19—C20119.02 (12)C22—C21—H21120.00
C18—C19—C24120.91 (13)C21—C22—H22120.00
C20—C19—C24120.00 (10)C23—C22—H22120.00
C19—C20—C21120.00 (12)C22—C23—H23120.00
C20—C21—C22120.00 (14)C24—C23—H23120.00
C21—C22—C23120.00 (11)C19—C24—H24120.00
C22—C23—C24120.00 (12)C23—C24—H24120.00
C10—N1—C1—C2118.27 (18)C1—C6—C7—C832.0 (3)
C10—N1—C1—C666.5 (2)C5—C6—C7—C8149.4 (2)
C15—N1—C1—C219.7 (2)C6—C7—C8—C91.0 (3)
C15—N1—C1—C6155.60 (16)C7—C8—C9—C1031.6 (3)
C1—N1—C10—C968.6 (2)C7—C8—C9—C14147.9 (2)
C1—N1—C10—C11114.98 (18)C8—C9—C10—N16.2 (3)
C15—N1—C10—C9152.20 (15)C8—C9—C10—C11177.34 (17)
C15—N1—C10—C1124.2 (2)C14—C9—C10—N1174.34 (16)
C1—N1—C15—C1657.8 (2)C14—C9—C10—C112.1 (3)
C10—N1—C15—C16163.24 (14)C8—C9—C14—C13177.84 (19)
C16—N2—N3—N41.2 (2)C10—C9—C14—C131.7 (3)
N3—N2—C16—C15176.98 (16)N1—C10—C11—C12175.13 (17)
N3—N2—C16—C170.4 (2)C9—C10—C11—C121.2 (3)
N2—N3—N4—C171.5 (2)C10—C11—C12—C130.2 (3)
N2—N3—N4—C18174.94 (16)C11—C12—C13—C140.8 (3)
N3—N4—C17—C161.3 (2)C12—C13—C14—C90.2 (3)
C18—N4—C17—C16173.84 (16)N1—C15—C16—N2153.38 (16)
N3—N4—C18—C1995.86 (19)N1—C15—C16—C1730.0 (3)
C17—N4—C18—C1976.1 (2)N2—C16—C17—N40.5 (2)
N1—C1—C2—C3174.45 (17)C15—C16—C17—N4177.41 (17)
C6—C1—C2—C30.8 (3)N4—C18—C19—C2093.75 (18)
N1—C1—C6—C5175.42 (16)N4—C18—C19—C2483.06 (19)
N1—C1—C6—C73.2 (3)C18—C19—C20—C21176.83 (15)
C2—C1—C6—C50.1 (2)C24—C19—C20—C210.02 (19)
C2—C1—C6—C7178.55 (17)C18—C19—C24—C23176.77 (15)
C1—C2—C3—C41.1 (3)C20—C19—C24—C230.0 (2)
C2—C3—C4—C50.6 (3)C19—C20—C21—C220.0 (2)
C3—C4—C5—C60.3 (3)C20—C21—C22—C230.0 (2)
C4—C5—C6—C10.6 (3)C21—C22—C23—C240.0 (2)
C4—C5—C6—C7178.08 (18)C22—C23—C24—C190.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively
D—H···AD—HH···AD···AD—H···A
C18—H18A···Cg2i0.972.833.600 (2)137
C20—H20···Cg1i0.932.793.642 (2)153
Symmetry code: (i) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively
D—H···AD—HH···AD···AD—H···A
C18—H18A···Cg2i0.972.833.600 (2)137
C20—H20···Cg1i0.932.793.642 (2)153
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

We are grateful to the IOE, University of Mysore, for providing the single-crystal X-ray diffraction facility.

References

First citationAbdoh, M. M. M., Madan Kumar, S., Vinay Kumar, K. S., Manjunath, B. C., Sadashiva, M. P. & Lokanath, N. K. (2013). Acta Cryst. E69, o17.  CSD CrossRef IUCr Journals Google Scholar
First citationAl-Qawasmeh, R. A., Lee, Y., Cao, M.-Y., Gu, X., Viau, S., Lightfoot, J., Wright, J. A. & Young, A. H. (2009). Bioorg. Med. Chem., 19 104–107.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationManjunath, B. C., Vinay Kumar, K. S., Madan Kumar, S., Sadashiva, M. P. & Lokanath, N. K. (2013). Acta Cryst. E69, o1233.  CSD CrossRef IUCr Journals Google Scholar
First citationRockliff, B. W. & Davis, E. H. (1966). Arch. Neurol. 15, 129–136.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds