metal-organic compounds
Poly[[octaaqua-μ4-(benzene-1,2,4,5-tetracarboxylato)-dicobalt(II)] octahydrate]
aUniversité Assane Seck de Ziguinchor, LCPM, Groupe Matériaux Inorganiques, Chimie Douce et Cristallographie, BP 523 Ziguinchor, Senegal, bINSA, UMR 6226, Institut des Sciences Chimiques de Rennes, 35708 Rennes, France, and cInstitut des Sciences Chimiques de Rennes, UMR CNRS 6226, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes Cedex, France
*Correspondence e-mail: mcamara@univ-zig.sn
The title polymeric coordination compound, {[Co2(C10H2O8)(H2O)8]·8H2O}n, was obtained by slow diffusion of a dilute aqueous solution of CoCl2 and the sodium salt of benzene-1,2,4,5-tetracarboxylic acid (H4btec) through an agar–agar gel bridge in a U-shaped tube. The two independent Co2+ ions are each situated on an inversion centre and are coordinated in a slightly distorted octahedral geometry by four water O atoms and two carboxylate O atoms from two btec4− ligands (-1> symmetry), forming a layer parallel to (11-1). This layer can be described as a molecular two-dimensional square grid with the benzene rings at the nodes and the CoII atoms connecting the nodes. O—H⋯O hydrogen-bonding interactions involving the coordinating water molecules, the carboxylate O atoms and lattice water molecules lead to the formation of a three-dimensional network.
CCDC reference: 965872
Related literature
For related metal-organic materials with large channels and cavities, see: Yaghi et al. (1998); Evans et al. (1999); Eddaoudi et al. (2002); Guillou et al. (2006). For examples of coordination polymers containing the btec4− ligand, see: Cheng et al. (2000); Rochon & Massarweh (2000); Chu et al. (2001); Wu et al. (2002); Luo et al. (2013). For related crystal-growth methods in gels, see: Henisch & Rustum (1970); Henisch (1988); Daiguebonne et al. (2003).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 965872
10.1107/S1600536813031577/vn2077sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813031577/vn2077Isup2.hkl
All reagents were used as obtained without further purification. Cobalt chloride was purchased from STREM Chemicals. benzene-1,2,4,5-tetracarboxylic acid was purchased from Acros Organics. Its sodium salt was prepared by addition of four equivalents of sodium hydroxide to a suspension of benzene-1,2,4,5-tetracaboxylic acid in de-ionized water until complete dissolution. Then, the solution was evaporated to dryness. The solid phase was then put in suspension in ethanol, stirred and refluxed during 1 h. After filtration and drying in a desiccator, a white powder of tetra-sodium benzene-1,2,4,5-tetracarboxylate was obtained. The yield of this synthesis is 90%.
Single crystals of the coordination polymer were obtained by slow diffusion of dilute aqueous solutions of Co(II) chloride (0.25 mmol in 20 ml) and of sodium salt of benzene-1,2,4,5-tetracarboxylic acid (0.25 mmol in 20 mL) through an agar-agar gel bridge in a U-shaped tube. The gel was purchased from Acros Organics and jellified according to established procedure. For a related procedure, see: Henisch & Rustum, 1970; Henisch, 1988; Daiguebonne et al., 2003. After several weeks, very light pink single crystals were obtained.
H-atoms from crystallization water molecules could not be assigned reliably and were thus not included in the
but they were taken into account for the chemical formula sum, moiety, weight, as well as for the and the number of electrons in the unit cell.Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. Extended asymetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x, -y, -z + 1; (ii) -x, -y - 1, -z; (iii) -x + 1, -y - 1, -z + 1.] | |
Fig. 2. View along the a axis of the molecular square grid layer of the title compound. |
[Co2(C10H2O8)(H2O)8]·8H2O | V = 545.48 (3) Å3 |
Mr = 656.22 | Z = 1 |
Triclinic, P1 | F(000) = 340 |
a = 5.4371 (1) Å | Dx = 1.998 Mg m−3 |
b = 9.8496 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
c = 10.2564 (3) Å | µ = 1.64 mm−1 |
α = 96.445 (1)° | T = 298 K |
β = 91.232 (1)° | Prism, very light pink |
γ = 91.328 (1)° | 0.10 × 0.09 × 0.06 mm |
Bruker APEXII diffractometer | 2092 reflections with I > 2σ(I) |
Radiation source: Fine-focus sealed tube | Rint = 0.025 |
Graphite monochromator | θmax = 27.5°, θmin = 2.0° |
CCD rotation images, thin slices scans | h = −6→7 |
8487 measured reflections | k = −12→12 |
2456 independent reflections | l = −13→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.153 | w = 1/[σ2(Fo2) + (0.0911P)2 + 2.3818P] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max < 0.001 |
2456 reflections | Δρmax = 0.60 e Å−3 |
166 parameters | Δρmin = −0.81 e Å−3 |
[Co2(C10H2O8)(H2O)8]·8H2O | γ = 91.328 (1)° |
Mr = 656.22 | V = 545.48 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.4371 (1) Å | Mo Kα radiation |
b = 9.8496 (3) Å | µ = 1.64 mm−1 |
c = 10.2564 (3) Å | T = 298 K |
α = 96.445 (1)° | 0.10 × 0.09 × 0.06 mm |
β = 91.232 (1)° |
Bruker APEXII diffractometer | 2092 reflections with I > 2σ(I) |
8487 measured reflections | Rint = 0.025 |
2456 independent reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.60 e Å−3 |
2456 reflections | Δρmin = −0.81 e Å−3 |
166 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
H1 | 0.0869 | 0.1434 | 0.3071 | 0.050* | |
H13 | 0.0780 | −0.2852 | −0.0807 | 0.050* | |
H4 | 0.2169 | −0.2460 | 0.0208 | 0.050* | |
H5 | 0.4549 | 0.1226 | 0.5668 | 0.050* | |
H6 | −0.4194 | −0.4465 | 0.1454 | 0.050* | |
H7 | 0.2609 | 0.1784 | 0.6194 | 0.050* | |
H9 | −0.1925 | −0.3972 | 0.2127 | 0.050* | |
H10 | 0.1381 | 0.0269 | 0.2641 | 0.050* | |
Co1 | 0.0000 | 0.0000 | 0.5000 | 0.0165 (2) | |
Co2 | 0.0000 | −0.5000 | 0.0000 | 0.0180 (2) | |
O22 | −0.0419 (5) | −0.3362 (3) | 0.3694 (3) | 0.0246 (6) | |
O12 | 0.2439 (5) | −0.5016 (3) | 0.1641 (3) | 0.0212 (6) | |
O23 | 0.2189 (5) | −0.1729 (3) | 0.4617 (3) | 0.0224 (6) | |
O11 | 0.0733 (6) | −0.6758 (3) | 0.2541 (3) | 0.0352 (8) | |
O1 | 0.3013 (5) | 0.1098 (3) | 0.5906 (3) | 0.0308 (7) | |
O2 | −0.2644 (6) | −0.4222 (4) | 0.1330 (3) | 0.0399 (8) | |
C1 | 0.3561 (6) | −0.5310 (4) | 0.3841 (3) | 0.0159 (7) | |
O3 | 0.0735 (7) | 0.0657 (3) | 0.3177 (3) | 0.0381 (8) | |
C3 | 0.5172 (7) | −0.6259 (4) | 0.4275 (3) | 0.0170 (7) | |
H3 | 0.5283 | −0.7109 | 0.3786 | 0.020* | |
C2 | 0.3387 (6) | −0.4025 (3) | 0.4587 (3) | 0.0150 (7) | |
C22 | 0.1578 (6) | −0.2968 (4) | 0.4251 (3) | 0.0158 (7) | |
C11 | 0.2111 (7) | −0.5719 (4) | 0.2586 (3) | 0.0180 (7) | |
O4 | 0.1143 (9) | −0.3016 (4) | −0.0152 (4) | 0.0596 (13) | |
O14 | 0.2936 (16) | −0.0732 (8) | 0.1144 (8) | 0.121 (3) | |
O16 | 0.5551 (16) | −0.1850 (8) | 0.0171 (9) | 0.121 (3) | |
O15 | −0.4581 (14) | 0.0456 (9) | 0.1989 (8) | 0.116 (2) | |
O17 | 0.8066 (16) | −0.0714 (9) | 0.1011 (8) | 0.124 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0162 (4) | 0.0120 (3) | 0.0218 (4) | 0.0031 (2) | −0.0002 (3) | 0.0034 (3) |
Co2 | 0.0196 (4) | 0.0198 (4) | 0.0146 (3) | −0.0009 (3) | −0.0048 (2) | 0.0036 (3) |
O22 | 0.0202 (13) | 0.0222 (13) | 0.0296 (14) | 0.0064 (10) | −0.0078 (11) | −0.0047 (11) |
O12 | 0.0217 (13) | 0.0263 (14) | 0.0160 (12) | −0.0007 (11) | −0.0063 (10) | 0.0054 (10) |
O23 | 0.0186 (13) | 0.0124 (12) | 0.0362 (15) | 0.0043 (10) | −0.0029 (11) | 0.0023 (11) |
O11 | 0.051 (2) | 0.0243 (15) | 0.0307 (16) | −0.0129 (14) | −0.0227 (14) | 0.0108 (12) |
O1 | 0.0192 (14) | 0.0204 (14) | 0.0511 (19) | 0.0020 (11) | −0.0027 (12) | −0.0030 (13) |
O2 | 0.0224 (15) | 0.073 (3) | 0.0221 (15) | 0.0016 (15) | −0.0025 (11) | −0.0034 (15) |
C1 | 0.0176 (16) | 0.0160 (16) | 0.0140 (15) | 0.0013 (13) | −0.0038 (12) | 0.0022 (13) |
O3 | 0.064 (2) | 0.0211 (15) | 0.0307 (16) | 0.0035 (14) | 0.0150 (15) | 0.0072 (12) |
C3 | 0.0207 (17) | 0.0121 (15) | 0.0175 (16) | 0.0027 (13) | −0.0029 (13) | −0.0011 (12) |
C2 | 0.0161 (16) | 0.0131 (15) | 0.0161 (16) | 0.0032 (12) | −0.0009 (12) | 0.0027 (12) |
C22 | 0.0155 (16) | 0.0162 (16) | 0.0157 (16) | 0.0032 (13) | 0.0000 (12) | 0.0014 (13) |
C11 | 0.0217 (17) | 0.0147 (16) | 0.0173 (17) | 0.0063 (13) | −0.0062 (13) | 0.0003 (13) |
O4 | 0.099 (3) | 0.045 (2) | 0.0354 (19) | −0.040 (2) | −0.038 (2) | 0.0205 (16) |
O14 | 0.141 (7) | 0.106 (6) | 0.112 (6) | −0.001 (5) | 0.012 (5) | −0.009 (4) |
O16 | 0.127 (6) | 0.106 (5) | 0.131 (6) | −0.003 (5) | −0.023 (5) | 0.025 (5) |
O15 | 0.105 (5) | 0.146 (7) | 0.101 (5) | 0.022 (5) | −0.002 (4) | 0.022 (5) |
O17 | 0.142 (7) | 0.127 (6) | 0.101 (5) | 0.020 (5) | −0.017 (5) | 0.004 (5) |
Co1—O1 | 2.084 (3) | Co2—O12 | 2.122 (2) |
Co1—O1i | 2.084 (3) | O22—C22 | 1.249 (4) |
Co1—O3 | 2.089 (3) | O12—C11 | 1.266 (5) |
Co1—O3i | 2.089 (3) | O23—C22 | 1.270 (4) |
Co1—O23 | 2.106 (2) | O11—C11 | 1.250 (5) |
Co1—O23i | 2.106 (2) | C1—C3 | 1.398 (5) |
Co2—O2 | 2.101 (3) | C1—C2 | 1.410 (5) |
Co2—O4 | 2.060 (3) | C1—C11 | 1.505 (5) |
Co2—O4ii | 2.061 (3) | C3—C2iii | 1.390 (5) |
Co2—O2ii | 2.101 (3) | C2—C3iii | 1.390 (5) |
Co2—O12ii | 2.122 (2) | C2—C22 | 1.511 (5) |
O1—Co1—O1i | 180.0 | O2ii—Co2—O12ii | 87.12 (11) |
O1—Co1—O3 | 92.62 (14) | O2—Co2—O12ii | 92.88 (11) |
O1i—Co1—O3 | 87.38 (14) | O4—Co2—O12 | 88.91 (12) |
O1—Co1—O3i | 87.38 (14) | O4ii—Co2—O12 | 91.09 (12) |
O1i—Co1—O3i | 92.62 (14) | O2ii—Co2—O12 | 92.88 (11) |
O3—Co1—O3i | 180.0 | O2—Co2—O12 | 87.12 (11) |
O1—Co1—O23 | 90.10 (11) | O12ii—Co2—O12 | 180.0 |
O1i—Co1—O23 | 89.90 (11) | C11—O12—Co2 | 124.9 (2) |
O3—Co1—O23 | 92.24 (12) | C22—O23—Co1 | 130.4 (2) |
O3i—Co1—O23 | 87.76 (12) | C3—C1—C2 | 118.8 (3) |
O1—Co1—O23i | 89.90 (11) | C3—C1—C11 | 117.7 (3) |
O1i—Co1—O23i | 90.10 (11) | C2—C1—C11 | 123.5 (3) |
O3—Co1—O23i | 87.76 (12) | C2iii—C3—C1 | 122.2 (3) |
O3i—Co1—O23i | 92.24 (12) | C3iii—C2—C1 | 119.0 (3) |
O23—Co1—O23i | 180.0 | C3iii—C2—C22 | 118.1 (3) |
O4—Co2—O4ii | 180.0 | C1—C2—C22 | 122.8 (3) |
O4—Co2—O2ii | 91.81 (19) | O22—C22—O23 | 124.9 (3) |
O4ii—Co2—O2ii | 88.19 (19) | O22—C22—C2 | 118.8 (3) |
O4—Co2—O2 | 88.19 (19) | O23—C22—C2 | 116.2 (3) |
O4ii—Co2—O2 | 91.81 (19) | O11—C11—O12 | 124.9 (3) |
O2ii—Co2—O2 | 180.0 | O11—C11—C1 | 117.4 (3) |
O4—Co2—O12ii | 91.09 (12) | O12—C11—C1 | 117.7 (3) |
O4ii—Co2—O12ii | 88.91 (12) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y−1, −z; (iii) −x+1, −y−1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1···O11iv | 0.79 | 1.92 | 2.698 (4) | 169 |
O4—H4···O14 | 0.82 | 1.89 | 2.636 (9) | 150 |
O4—H4···O16 | 0.82 | 1.92 | 2.632 (10) | 143 |
O1—H5···O23v | 0.89 | 1.87 | 2.746 (4) | 171 |
O2—H6···O12vi | 0.89 | 1.92 | 2.803 (4) | 177 |
O1—H7···O22i | 0.75 | 1.97 | 2.664 (4) | 154 |
O2—H9···O22 | 0.90 | 1.82 | 2.725 (4) | 176 |
O3—H10···O14 | 0.73 | 1.95 | 2.682 (9) | 176 |
O3—H10···O15vii | 0.73 | 2.32 | 2.848 (9) | 130 |
O4—H13···O11ii | 0.73 | 1.94 | 2.618 (5) | 154 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y−1, −z; (iv) x, y+1, z; (v) −x+1, −y, −z+1; (vi) x−1, y, z; (vii) x+1, y, z. |
Co1—O1 | 2.084 (3) | Co2—O2 | 2.101 (3) |
Co1—O3 | 2.089 (3) | Co2—O4 | 2.060 (3) |
Co1—O23 | 2.106 (2) | Co2—O12 | 2.122 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1···O11i | 0.79 | 1.92 | 2.698 (4) | 169 |
O4—H4···O14 | 0.82 | 1.89 | 2.636 (9) | 150 |
O4—H4···O16 | 0.82 | 1.92 | 2.632 (10) | 143 |
O1—H5···O23ii | 0.89 | 1.87 | 2.746 (4) | 171 |
O2—H6···O12iii | 0.89 | 1.92 | 2.803 (4) | 177 |
O1—H7···O22iv | 0.75 | 1.97 | 2.664 (4) | 154 |
O2—H9···O22 | 0.90 | 1.82 | 2.725 (4) | 176 |
O3—H10···O14 | 0.73 | 1.95 | 2.682 (9) | 176 |
O3—H10···O15v | 0.73 | 2.32 | 2.848 (9) | 130 |
O4—H13···O11vi | 0.73 | 1.94 | 2.618 (5) | 154 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+1; (iii) x−1, y, z; (iv) −x, −y, −z+1; (v) x+1, y, z; (vi) −x, −y−1, −z. |
Acknowledgements
The French Cooperation Agency in Senegal is acknowledged for financial support.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheng, D., Zheng, Y., Lin, J., Xu, D. & Xu, Y. (2000). Acta Cryst. C56, 523–524. CrossRef CAS IUCr Journals Google Scholar
Chu, D.-Q., Xu, J.-Q., Duan, L.-M., Wang, T.-G., Tang, A.-Q. & Ye, L. (2001). Eur. J. Inorg. Chem. 5, 1135–1137. CrossRef Google Scholar
Daiguebonne, C., Deluzet, A., Camara, M., Boubekeur, K., Audebrand, N., Gérault, Y., Baux, C. & Guillou, O. (2003). Cryst. Growth Des. 3, 1015–1020. Web of Science CSD CrossRef CAS Google Scholar
Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J. O., Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472. Web of Science CSD CrossRef PubMed CAS Google Scholar
Evans, O. R., Xiong, R., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. Int. Ed. 38, 536–538. CrossRef CAS Google Scholar
Guillou, O., Daiguebonne, C., Camara, M. & Kerbellec, N. (2006). Inorg. Chem. 45, 8468–8470. Web of Science CSD CrossRef PubMed CAS Google Scholar
Henisch, H. K. (1988). In Crystals Growth in Gels and Liesegang Rings. Cambridge University Press. Google Scholar
Henisch, H. K. & Rustum, R. (1970). In Crystals Growth in Gels. The Pennsylvania State University Press. Google Scholar
Luo, Y., Bernot, K., Calvez, G., Freslon, S., Daiguebonne, C., Guillou, O., Kerbellec, N. & Roisnel, T. (2013). CrystEngComm, 15, 1882–1896. Web of Science CSD CrossRef CAS Google Scholar
Rochon, F. D. & Massarweh, G. (2000). Inorg. Chim. Acta, 304, 190–198. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, C.-D., Lu, C.-Z., Lu, S.-F., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. Commun. 5, 171–174. Web of Science CSD CrossRef CAS Google Scholar
Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design of metal-organic materials with large channels and cavities has been deeply investigated, due to their intriguing structural diversity and potential functions as microporous solids for molecular adsorption, ion exchange, and heterogeneous catalysis. For related structures in this context, see: Yaghi et al., 1998; Evans et al., 1999; Eddaoudi et al., 2002; Guillou et al., 2006. The benzene-1,2,4,5-tetracarboxylate ligand (btec4-) as a multi-connecting ligand is an excellent candidate for the design of coordination polymers. Surprisingly, examples of coordination polymers involving this ligand are relatively scarce. For examples of coordination polymers with this ligand, see: Cheng et al., 2000; Chu et al., 2001; Rochon & Massarweh, 2000; Wu et al., 2002; Luo et al., 2013). We report here the synthesis and the crystal structure of the title coordination polymer.
All carboxylic groups of the organic ligand in the title compound are deprotonated and each of them adopts a monodentate coordination mode. There are two crystallographically independent CoII atoms in the structure. In both cases the CoII atoms are coordinated by two carboxylate oxygen atoms from two btec ligands and four water oxygen atoms (Fig. 1). There is no significant difference in the coordination distance between carboxyl and water oxygen atoms. The coordination Co···O distances in the title polymeric compound range from 2.067 (3) to 2.129 (3) Å. Each btec4- ligand links four CoII atoms and each CoII atom is bond to two btec4- ligands to form a two-dimensional layer. These layers can be described as a molecular two-dimensional square grid in which the phenyl rings are at the nodes and the CoII atoms connecting the nodes (Fig. 2). The area of the square cells of the grids is larger than 120 Å2 (11.3 Å x 11.5 Å). The crystal packing is enforced by a complex hydrogen bonds network that involves the crystallization water molecules located in the inter-layer space.