organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Chloro-5-nitro­phen­yl)-N′-(3-chloro­propion­yl)thio­urea

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: ctfairus@ukm.my

(Received 4 November 2013; accepted 2 December 2013; online 11 December 2013)

The title compound, C10H9Cl2N3O3S, adopts a trans–cis conformation with respect to the position of chloropropionyl and chloronitrobenzene groups respectively, against the thiono about their C—N bonds. The conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal, there is a short Cl⋯Cl contact with a distance of 3.386 (13) Å.

Related literature

For related structures, see: Othman et al. (2010[Othman, E. A., Soh, S. K. C. & Yamin, B. M. (2010). Acta Cryst. E66, o628.]); Yamin et al. (2011[Yamin, B. M., Othman, N. E. A., Yusof, M. S. M. & Embong, F. (2011). Acta Cryst. E67, o419.]); Yamin & Othman (2011[Yamin, B. M. & Othman, N. E. A. (2011). Acta Cryst. E67, o1629.]); Yusof et al., (2011[Yusof, M. S. M., Embong, N. F., Othman, E. A. & Yamin, B. M. (2011). Acta Cryst. E67, o1849.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9Cl2N3O3S

  • Mr = 322.16

  • Monoclinic, C 2/c

  • a = 21.764 (6) Å

  • b = 5.2284 (13) Å

  • c = 24.134 (6) Å

  • β = 106.388 (8)°

  • V = 2634.6 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 298 K

  • 0.38 × 0.36 × 0.27 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.902, Tmax = 0.919

  • 12266 measured reflections

  • 2460 independent reflections

  • 2116 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.05

  • 2460 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 1.87 2.596 (2) 142

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The synthesis of halogenoalkoylthiourea will enable to further synthesized thiourea derivatives making use of the C-Cl functionality. N-(4-chlorobutanoyl)-N'-phenylthiourea (Yamin et al., 2011), N-(4-chlorobutanoyl)-N'-(2-fluorophenyl)thiourea (Yusof et al., 2011) and N-(4-bromobutanoyl)-N'-phenylthiourea (Yamin et al., 2011) are some examples that have been reported so far. The title compound is similar to N-(3-chloropropionyl)-N'-phenylthiourea (Othman et al. 2010) except the presence of chlorine atom and nitro group at the ortho and meta-position of the phenyl ring, respectively.

The whole molecule is not planar (Fig. 1) because of the dihedral angle of 9.35 (8)° between benzene ring, C5-C10, and S1/O1/N1/N2/C2/C3/C4/C5/C9/C10 fragments. Both fragments are each planar with maximum deviation of 0.066 (2)Å for C10 atom from the least square plane of the benzene fragment. The molecule maintains trans-cis configuration with respect to the position of chloropropionyl and chloronitrophenyl against the thiono group about N1-C4 and N2-C4 bonds, respectively.

There is intrahydrogen bond N2-H2···O1 forming pseudo six-membered ring [N2-C4-N1-C3-O1···H2]. In the crystal packing, the molecules are linked by N1-H1···S1 intermolecular hydrogen bond (symmetry codes as in Table 1) to form centrosymmetric dimers and arranged along ac face (Fig. 2). There is also Cl2-Cl2 interaction with the contact distance of 3.386 (13) Å.

Related literature top

For related structures, see: Othman et al. (2010); Yamin et al. (2011); Yamin & Othman (2011); Yusof et al., (2011).

Experimental top

1-chloro-4-nitrobenzene (1.57g, 0.01mol) was added into 30 ml acetone containing 3-chloropropionyl isothiocyanate (1.49g, 0.01mol). The mixture was refluxed for 2 hours. The solution was filtered and left to evaporate at room temperature. The white precipitate obtained after a few days, was washed with water and cold ethanol. The colourless crystals were obtained by recrystallization from ethanol.

Refinement top

After location in the difference map, the H-atoms attached to the C and N atoms were fixed geometrically at ideal positions and allowed to ride on the parent atoms with C—H = 0.93-0.97 Å, N—H = 0.86 Å and with Uiso(H)=1.2Ueq(C or N).

Structure description top

The synthesis of halogenoalkoylthiourea will enable to further synthesized thiourea derivatives making use of the C-Cl functionality. N-(4-chlorobutanoyl)-N'-phenylthiourea (Yamin et al., 2011), N-(4-chlorobutanoyl)-N'-(2-fluorophenyl)thiourea (Yusof et al., 2011) and N-(4-bromobutanoyl)-N'-phenylthiourea (Yamin et al., 2011) are some examples that have been reported so far. The title compound is similar to N-(3-chloropropionyl)-N'-phenylthiourea (Othman et al. 2010) except the presence of chlorine atom and nitro group at the ortho and meta-position of the phenyl ring, respectively.

The whole molecule is not planar (Fig. 1) because of the dihedral angle of 9.35 (8)° between benzene ring, C5-C10, and S1/O1/N1/N2/C2/C3/C4/C5/C9/C10 fragments. Both fragments are each planar with maximum deviation of 0.066 (2)Å for C10 atom from the least square plane of the benzene fragment. The molecule maintains trans-cis configuration with respect to the position of chloropropionyl and chloronitrophenyl against the thiono group about N1-C4 and N2-C4 bonds, respectively.

There is intrahydrogen bond N2-H2···O1 forming pseudo six-membered ring [N2-C4-N1-C3-O1···H2]. In the crystal packing, the molecules are linked by N1-H1···S1 intermolecular hydrogen bond (symmetry codes as in Table 1) to form centrosymmetric dimers and arranged along ac face (Fig. 2). There is also Cl2-Cl2 interaction with the contact distance of 3.386 (13) Å.

For related structures, see: Othman et al. (2010); Yamin et al. (2011); Yamin & Othman (2011); Yusof et al., (2011).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : Molecular structure of (I) with 50% probability displacement ellipsoids
[Figure 2] Fig. 2. : Molecular packing of (I) in the unit cell viewed down b axis. The dashed lines indicate intermolecular hydrogen bonds.
N-(2-Chloro-5-nitrophenyl)-N'-(3-chloropropionyl)thiourea top
Crystal data top
C10H9Cl2N3O3SZ = 8
Mr = 322.16F(000) = 1312
Monoclinic, C2/cDx = 1.624 Mg m3
a = 21.764 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.2284 (13) ŵ = 0.66 mm1
c = 24.134 (6) ÅT = 298 K
β = 106.388 (8)°Block, colorless
V = 2634.6 (12) Å30.38 × 0.36 × 0.27 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2460 independent reflections
Radiation source: fine-focus sealed tube2116 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 1.8°
ω scansh = 2626
Absorption correction: multi-scan
(SADABS; Bruker 2000)
k = 66
Tmin = 0.902, Tmax = 0.919l = 2929
12266 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0496P)2 + 1.9444P]
where P = (Fo2 + 2Fc2)/3
2460 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H9Cl2N3O3SV = 2634.6 (12) Å3
Mr = 322.16Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.764 (6) ŵ = 0.66 mm1
b = 5.2284 (13) ÅT = 298 K
c = 24.134 (6) Å0.38 × 0.36 × 0.27 mm
β = 106.388 (8)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2460 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2000)
2116 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.919Rint = 0.019
12266 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
2460 reflectionsΔρmin = 0.23 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01680 (3)0.29301 (14)0.16862 (3)0.0761 (2)
Cl20.05486 (3)1.21922 (11)0.00637 (3)0.05899 (18)
S10.23748 (3)0.45825 (11)0.07394 (2)0.05376 (18)
O10.09544 (9)0.7795 (4)0.08527 (7)0.0804 (6)
O20.20313 (12)0.6949 (5)0.24336 (8)0.0984 (7)
O30.15801 (11)1.0096 (4)0.27253 (8)0.0953 (7)
N10.17678 (8)0.5279 (3)0.03529 (7)0.0463 (4)
H10.20310.41190.03960.056*
N20.14400 (8)0.7943 (3)0.02607 (7)0.0493 (4)
H20.12130.85420.00640.059*
N30.17078 (11)0.8880 (5)0.23452 (9)0.0698 (6)
C10.07531 (12)0.4940 (5)0.18585 (9)0.0621 (6)
H1A0.08170.43990.22230.075*
H1B0.05990.66900.19020.075*
C20.13788 (11)0.4820 (5)0.13939 (9)0.0643 (6)
H2A0.17090.56360.15310.077*
H2B0.14990.30450.13100.077*
C30.13382 (11)0.6119 (5)0.08498 (9)0.0549 (5)
C40.18352 (9)0.6053 (4)0.02127 (8)0.0423 (4)
C50.13280 (9)0.9128 (4)0.07449 (8)0.0446 (4)
C60.15981 (10)0.8404 (4)0.13142 (9)0.0522 (5)
H60.18850.70460.14040.063*
C70.14349 (11)0.9724 (4)0.17438 (9)0.0542 (5)
C80.10111 (12)1.1733 (5)0.16383 (11)0.0633 (6)
H80.09101.25810.19400.076*
C90.07415 (11)1.2451 (5)0.10774 (11)0.0623 (6)
H90.04521.38020.09940.075*
C100.08968 (9)1.1184 (4)0.06386 (9)0.0488 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0769 (4)0.0880 (5)0.0603 (4)0.0004 (3)0.0144 (3)0.0036 (3)
Cl20.0538 (3)0.0559 (3)0.0650 (4)0.0055 (2)0.0129 (3)0.0085 (3)
S10.0527 (3)0.0642 (4)0.0402 (3)0.0126 (2)0.0063 (2)0.0008 (2)
O10.0931 (13)0.0910 (13)0.0459 (9)0.0442 (11)0.0013 (8)0.0009 (9)
O20.1354 (19)0.1033 (17)0.0538 (11)0.0309 (15)0.0222 (11)0.0075 (11)
O30.1274 (18)0.1121 (16)0.0543 (11)0.0061 (13)0.0387 (11)0.0152 (11)
N10.0480 (9)0.0518 (10)0.0379 (8)0.0064 (7)0.0101 (7)0.0004 (7)
N20.0559 (10)0.0499 (10)0.0389 (9)0.0100 (8)0.0082 (7)0.0002 (7)
N30.0830 (14)0.0789 (14)0.0504 (11)0.0075 (12)0.0233 (10)0.0064 (11)
C10.0694 (14)0.0764 (16)0.0370 (10)0.0101 (12)0.0092 (10)0.0061 (10)
C20.0597 (13)0.0895 (18)0.0401 (11)0.0143 (12)0.0080 (10)0.0035 (11)
C30.0560 (12)0.0647 (13)0.0405 (11)0.0111 (11)0.0077 (9)0.0017 (10)
C40.0429 (10)0.0446 (10)0.0386 (10)0.0046 (8)0.0104 (8)0.0011 (8)
C50.0450 (10)0.0430 (11)0.0462 (11)0.0058 (8)0.0133 (8)0.0055 (9)
C60.0551 (12)0.0519 (12)0.0499 (12)0.0007 (10)0.0156 (9)0.0052 (9)
C70.0585 (12)0.0588 (13)0.0471 (11)0.0104 (10)0.0177 (10)0.0072 (10)
C80.0682 (15)0.0651 (15)0.0640 (15)0.0021 (12)0.0306 (12)0.0160 (12)
C90.0588 (13)0.0592 (14)0.0733 (16)0.0069 (11)0.0257 (12)0.0086 (12)
C100.0430 (10)0.0474 (11)0.0555 (12)0.0050 (9)0.0128 (9)0.0013 (9)
Geometric parameters (Å, º) top
Cl1—C11.788 (3)C1—H1A0.9700
Cl2—C101.732 (2)C1—H1B0.9700
S1—C41.656 (2)C2—C31.503 (3)
O1—C31.209 (3)C2—H2A0.9700
O2—N31.215 (3)C2—H2B0.9700
O3—N31.211 (3)C5—C61.386 (3)
N1—C31.368 (3)C5—C101.402 (3)
N1—C41.391 (2)C6—C71.373 (3)
N1—H10.8600C6—H60.9300
N2—C41.336 (3)C7—C81.373 (3)
N2—C51.403 (2)C8—C91.367 (3)
N2—H20.8600C8—H80.9300
N3—C71.472 (3)C9—C101.370 (3)
C1—C21.501 (3)C9—H90.9300
C3—N1—C4128.54 (18)N1—C3—C2115.24 (19)
C3—N1—H1115.7N2—C4—N1114.09 (17)
C4—N1—H1115.7N2—C4—S1127.65 (15)
C4—N2—C5131.77 (17)N1—C4—S1118.27 (15)
C4—N2—H2114.1C6—C5—C10117.74 (19)
C5—N2—H2114.1C6—C5—N2125.45 (19)
O3—N3—O2123.3 (2)C10—C5—N2116.79 (18)
O3—N3—C7118.3 (2)C7—C6—C5118.9 (2)
O2—N3—C7118.3 (2)C7—C6—H6120.5
C2—C1—Cl1110.94 (17)C5—C6—H6120.5
C2—C1—H1A109.5C6—C7—C8123.2 (2)
Cl1—C1—H1A109.5C6—C7—N3118.4 (2)
C2—C1—H1B109.5C8—C7—N3118.4 (2)
Cl1—C1—H1B109.5C9—C8—C7118.1 (2)
H1A—C1—H1B108.0C9—C8—H8120.9
C1—C2—C3111.67 (19)C7—C8—H8120.9
C1—C2—H2A109.3C8—C9—C10120.1 (2)
C3—C2—H2A109.3C8—C9—H9119.9
C1—C2—H2B109.3C10—C9—H9119.9
C3—C2—H2B109.3C9—C10—C5121.8 (2)
H2A—C2—H2B107.9C9—C10—Cl2118.31 (18)
O1—C3—N1122.5 (2)C5—C10—Cl2119.85 (16)
O1—C3—C2122.22 (19)
Cl1—C1—C2—C370.4 (3)C5—C6—C7—N3177.91 (19)
C4—N1—C3—O12.2 (4)O3—N3—C7—C6177.6 (2)
C4—N1—C3—C2178.1 (2)O2—N3—C7—C64.9 (3)
C1—C2—C3—O125.3 (4)O3—N3—C7—C84.8 (3)
C1—C2—C3—N1155.0 (2)O2—N3—C7—C8172.7 (2)
C5—N2—C4—N1175.19 (19)C6—C7—C8—C90.2 (4)
C5—N2—C4—S14.5 (3)N3—C7—C8—C9177.7 (2)
C3—N1—C4—N23.1 (3)C7—C8—C9—C100.2 (4)
C3—N1—C4—S1176.60 (18)C8—C9—C10—C50.4 (3)
C4—N2—C5—C64.7 (3)C8—C9—C10—Cl2179.30 (18)
C4—N2—C5—C10176.6 (2)C6—C5—C10—C90.2 (3)
C10—C5—C6—C70.2 (3)N2—C5—C10—C9178.68 (19)
N2—C5—C6—C7178.95 (19)C6—C5—C10—Cl2179.49 (15)
C5—C6—C7—C80.4 (3)N2—C5—C10—Cl21.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.872.596 (2)142
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.872.596 (2)142
 

Acknowledgements

The authors would like to thank the Universiti Kebangsaan Malaysia for research grants DLP-2013-009 and DIP-2012-11 and the Centre of Research and Instrumentation (CRIM) for research facilities.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOthman, E. A., Soh, S. K. C. & Yamin, B. M. (2010). Acta Cryst. E66, o628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Othman, N. E. A. (2011). Acta Cryst. E67, o1629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamin, B. M., Othman, N. E. A., Yusof, M. S. M. & Embong, F. (2011). Acta Cryst. E67, o419.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M., Embong, N. F., Othman, E. A. & Yamin, B. M. (2011). Acta Cryst. E67, o1849.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds