organic compounds
N-(2-Chloro-5-nitrophenyl)-N′-(3-chloropropionyl)thiourea
aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: ctfairus@ukm.my
The title compound, C10H9Cl2N3O3S, adopts a trans–cis conformation with respect to the position of chloropropionyl and chloronitrobenzene groups respectively, against the thiono about their C—N bonds. The conformation is stabilized by an intramolecular N—H⋯O hydrogen bond. In the crystal, there is a short Cl⋯Cl contact with a distance of 3.386 (13) Å.
CCDC reference: 974672
Related literature
For related structures, see: Othman et al. (2010); Yamin et al. (2011); Yamin & Othman (2011); Yusof et al., (2011).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
CCDC reference: 974672
https://doi.org/10.1107/S1600536813032662/fj2651sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813032662/fj2651Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813032662/fj2651Isup3.cml
1-chloro-4-nitrobenzene (1.57g, 0.01mol) was added into 30 ml acetone containing 3-chloropropionyl isothiocyanate (1.49g, 0.01mol). The mixture was refluxed for 2 hours. The solution was filtered and left to evaporate at room temperature. The white precipitate obtained after a few days, was washed with water and cold ethanol. The colourless crystals were obtained by recrystallization from ethanol.
After location in the difference map, the H-atoms attached to the C and N atoms were fixed geometrically at ideal positions and allowed to ride on the parent atoms with C—H = 0.93-0.97 Å, N—H = 0.86 Å and with Uiso(H)=1.2Ueq(C or N).
The synthesis of halogenoalkoylthiourea will enable to further synthesized thiourea derivatives making use of the C-Cl functionality. N-(4-chlorobutanoyl)-N'-phenylthiourea (Yamin et al., 2011), N-(4-chlorobutanoyl)-N'-(2-fluorophenyl)thiourea (Yusof et al., 2011) and N-(4-bromobutanoyl)-N'-phenylthiourea (Yamin et al., 2011) are some examples that have been reported so far. The title compound is similar to N-(3-chloropropionyl)-N'-phenylthiourea (Othman et al. 2010) except the presence of chlorine atom and nitro group at the ortho and meta-position of the phenyl ring, respectively.
The whole molecule is not planar (Fig. 1) because of the dihedral angle of 9.35 (8)° between benzene ring, C5-C10, and S1/O1/N1/N2/C2/C3/C4/C5/C9/C10 fragments. Both fragments are each planar with maximum deviation of 0.066 (2)Å for C10 atom from the least square plane of the benzene fragment. The molecule maintains trans-cis configuration with respect to the position of chloropropionyl and chloronitrophenyl against the thiono group about N1-C4 and N2-C4 bonds, respectively.
There is intrahydrogen bond N2-H2···O1 forming pseudo six-membered ring [N2-C4-N1-C3-O1···H2]. In the crystal packing, the molecules are linked by N1-H1···S1 intermolecular hydrogen bond (symmetry codes as in Table 1) to form centrosymmetric dimers and arranged along ac face (Fig. 2). There is also Cl2-Cl2 interaction with the contact distance of 3.386 (13) Å.
For related structures, see: Othman et al. (2010); Yamin et al. (2011); Yamin & Othman (2011); Yusof et al., (2011).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C10H9Cl2N3O3S | Z = 8 |
Mr = 322.16 | F(000) = 1312 |
Monoclinic, C2/c | Dx = 1.624 Mg m−3 |
a = 21.764 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 5.2284 (13) Å | µ = 0.66 mm−1 |
c = 24.134 (6) Å | T = 298 K |
β = 106.388 (8)° | Block, colorless |
V = 2634.6 (12) Å3 | 0.38 × 0.36 × 0.27 mm |
Bruker SMART APEX CCD area-detector diffractometer | 2460 independent reflections |
Radiation source: fine-focus sealed tube | 2116 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 83.66 pixels mm-1 | θmax = 25.5°, θmin = 1.8° |
ω scans | h = −26→26 |
Absorption correction: multi-scan (SADABS; Bruker 2000) | k = −6→6 |
Tmin = 0.902, Tmax = 0.919 | l = −29→29 |
12266 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0496P)2 + 1.9444P] where P = (Fo2 + 2Fc2)/3 |
2460 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C10H9Cl2N3O3S | V = 2634.6 (12) Å3 |
Mr = 322.16 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 21.764 (6) Å | µ = 0.66 mm−1 |
b = 5.2284 (13) Å | T = 298 K |
c = 24.134 (6) Å | 0.38 × 0.36 × 0.27 mm |
β = 106.388 (8)° |
Bruker SMART APEX CCD area-detector diffractometer | 2460 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker 2000) | 2116 reflections with I > 2σ(I) |
Tmin = 0.902, Tmax = 0.919 | Rint = 0.019 |
12266 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.31 e Å−3 |
2460 reflections | Δρmin = −0.23 e Å−3 |
172 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.01680 (3) | 0.29301 (14) | −0.16862 (3) | 0.0761 (2) | |
Cl2 | 0.05486 (3) | 1.21922 (11) | −0.00637 (3) | 0.05899 (18) | |
S1 | 0.23748 (3) | 0.45825 (11) | 0.07394 (2) | 0.05376 (18) | |
O1 | 0.09544 (9) | 0.7795 (4) | −0.08527 (7) | 0.0804 (6) | |
O2 | 0.20313 (12) | 0.6949 (5) | 0.24336 (8) | 0.0984 (7) | |
O3 | 0.15801 (11) | 1.0096 (4) | 0.27253 (8) | 0.0953 (7) | |
N1 | 0.17678 (8) | 0.5279 (3) | −0.03529 (7) | 0.0463 (4) | |
H1 | 0.2031 | 0.4119 | −0.0396 | 0.056* | |
N2 | 0.14400 (8) | 0.7943 (3) | 0.02607 (7) | 0.0493 (4) | |
H2 | 0.1213 | 0.8542 | −0.0064 | 0.059* | |
N3 | 0.17078 (11) | 0.8880 (5) | 0.23452 (9) | 0.0698 (6) | |
C1 | 0.07531 (12) | 0.4940 (5) | −0.18585 (9) | 0.0621 (6) | |
H1A | 0.0817 | 0.4399 | −0.2223 | 0.075* | |
H1B | 0.0599 | 0.6690 | −0.1902 | 0.075* | |
C2 | 0.13788 (11) | 0.4820 (5) | −0.13939 (9) | 0.0643 (6) | |
H2A | 0.1709 | 0.5636 | −0.1531 | 0.077* | |
H2B | 0.1499 | 0.3045 | −0.1310 | 0.077* | |
C3 | 0.13382 (11) | 0.6119 (5) | −0.08498 (9) | 0.0549 (5) | |
C4 | 0.18352 (9) | 0.6053 (4) | 0.02127 (8) | 0.0423 (4) | |
C5 | 0.13280 (9) | 0.9128 (4) | 0.07449 (8) | 0.0446 (4) | |
C6 | 0.15981 (10) | 0.8404 (4) | 0.13142 (9) | 0.0522 (5) | |
H6 | 0.1885 | 0.7046 | 0.1404 | 0.063* | |
C7 | 0.14349 (11) | 0.9724 (4) | 0.17438 (9) | 0.0542 (5) | |
C8 | 0.10111 (12) | 1.1733 (5) | 0.16383 (11) | 0.0633 (6) | |
H8 | 0.0910 | 1.2581 | 0.1940 | 0.076* | |
C9 | 0.07415 (11) | 1.2451 (5) | 0.10774 (11) | 0.0623 (6) | |
H9 | 0.0452 | 1.3802 | 0.0994 | 0.075* | |
C10 | 0.08968 (9) | 1.1184 (4) | 0.06386 (9) | 0.0488 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0769 (4) | 0.0880 (5) | 0.0603 (4) | −0.0004 (3) | 0.0144 (3) | 0.0036 (3) |
Cl2 | 0.0538 (3) | 0.0559 (3) | 0.0650 (4) | 0.0055 (2) | 0.0129 (3) | 0.0085 (3) |
S1 | 0.0527 (3) | 0.0642 (4) | 0.0402 (3) | 0.0126 (2) | 0.0063 (2) | 0.0008 (2) |
O1 | 0.0931 (13) | 0.0910 (13) | 0.0459 (9) | 0.0442 (11) | 0.0013 (8) | −0.0009 (9) |
O2 | 0.1354 (19) | 0.1033 (17) | 0.0538 (11) | 0.0309 (15) | 0.0222 (11) | 0.0075 (11) |
O3 | 0.1274 (18) | 0.1121 (16) | 0.0543 (11) | 0.0061 (13) | 0.0387 (11) | −0.0152 (11) |
N1 | 0.0480 (9) | 0.0518 (10) | 0.0379 (8) | 0.0064 (7) | 0.0101 (7) | −0.0004 (7) |
N2 | 0.0559 (10) | 0.0499 (10) | 0.0389 (9) | 0.0100 (8) | 0.0082 (7) | 0.0002 (7) |
N3 | 0.0830 (14) | 0.0789 (14) | 0.0504 (11) | −0.0075 (12) | 0.0233 (10) | −0.0064 (11) |
C1 | 0.0694 (14) | 0.0764 (16) | 0.0370 (10) | 0.0101 (12) | 0.0092 (10) | 0.0061 (10) |
C2 | 0.0597 (13) | 0.0895 (18) | 0.0401 (11) | 0.0143 (12) | 0.0080 (10) | −0.0035 (11) |
C3 | 0.0560 (12) | 0.0647 (13) | 0.0405 (11) | 0.0111 (11) | 0.0077 (9) | 0.0017 (10) |
C4 | 0.0429 (10) | 0.0446 (10) | 0.0386 (10) | −0.0046 (8) | 0.0104 (8) | −0.0011 (8) |
C5 | 0.0450 (10) | 0.0430 (11) | 0.0462 (11) | −0.0058 (8) | 0.0133 (8) | −0.0055 (9) |
C6 | 0.0551 (12) | 0.0519 (12) | 0.0499 (12) | −0.0007 (10) | 0.0156 (9) | −0.0052 (9) |
C7 | 0.0585 (12) | 0.0588 (13) | 0.0471 (11) | −0.0104 (10) | 0.0177 (10) | −0.0072 (10) |
C8 | 0.0682 (15) | 0.0651 (15) | 0.0640 (15) | −0.0021 (12) | 0.0306 (12) | −0.0160 (12) |
C9 | 0.0588 (13) | 0.0592 (14) | 0.0733 (16) | 0.0069 (11) | 0.0257 (12) | −0.0086 (12) |
C10 | 0.0430 (10) | 0.0474 (11) | 0.0555 (12) | −0.0050 (9) | 0.0128 (9) | −0.0013 (9) |
Cl1—C1 | 1.788 (3) | C1—H1A | 0.9700 |
Cl2—C10 | 1.732 (2) | C1—H1B | 0.9700 |
S1—C4 | 1.656 (2) | C2—C3 | 1.503 (3) |
O1—C3 | 1.209 (3) | C2—H2A | 0.9700 |
O2—N3 | 1.215 (3) | C2—H2B | 0.9700 |
O3—N3 | 1.211 (3) | C5—C6 | 1.386 (3) |
N1—C3 | 1.368 (3) | C5—C10 | 1.402 (3) |
N1—C4 | 1.391 (2) | C6—C7 | 1.373 (3) |
N1—H1 | 0.8600 | C6—H6 | 0.9300 |
N2—C4 | 1.336 (3) | C7—C8 | 1.373 (3) |
N2—C5 | 1.403 (2) | C8—C9 | 1.367 (3) |
N2—H2 | 0.8600 | C8—H8 | 0.9300 |
N3—C7 | 1.472 (3) | C9—C10 | 1.370 (3) |
C1—C2 | 1.501 (3) | C9—H9 | 0.9300 |
C3—N1—C4 | 128.54 (18) | N1—C3—C2 | 115.24 (19) |
C3—N1—H1 | 115.7 | N2—C4—N1 | 114.09 (17) |
C4—N1—H1 | 115.7 | N2—C4—S1 | 127.65 (15) |
C4—N2—C5 | 131.77 (17) | N1—C4—S1 | 118.27 (15) |
C4—N2—H2 | 114.1 | C6—C5—C10 | 117.74 (19) |
C5—N2—H2 | 114.1 | C6—C5—N2 | 125.45 (19) |
O3—N3—O2 | 123.3 (2) | C10—C5—N2 | 116.79 (18) |
O3—N3—C7 | 118.3 (2) | C7—C6—C5 | 118.9 (2) |
O2—N3—C7 | 118.3 (2) | C7—C6—H6 | 120.5 |
C2—C1—Cl1 | 110.94 (17) | C5—C6—H6 | 120.5 |
C2—C1—H1A | 109.5 | C6—C7—C8 | 123.2 (2) |
Cl1—C1—H1A | 109.5 | C6—C7—N3 | 118.4 (2) |
C2—C1—H1B | 109.5 | C8—C7—N3 | 118.4 (2) |
Cl1—C1—H1B | 109.5 | C9—C8—C7 | 118.1 (2) |
H1A—C1—H1B | 108.0 | C9—C8—H8 | 120.9 |
C1—C2—C3 | 111.67 (19) | C7—C8—H8 | 120.9 |
C1—C2—H2A | 109.3 | C8—C9—C10 | 120.1 (2) |
C3—C2—H2A | 109.3 | C8—C9—H9 | 119.9 |
C1—C2—H2B | 109.3 | C10—C9—H9 | 119.9 |
C3—C2—H2B | 109.3 | C9—C10—C5 | 121.8 (2) |
H2A—C2—H2B | 107.9 | C9—C10—Cl2 | 118.31 (18) |
O1—C3—N1 | 122.5 (2) | C5—C10—Cl2 | 119.85 (16) |
O1—C3—C2 | 122.22 (19) | ||
Cl1—C1—C2—C3 | −70.4 (3) | C5—C6—C7—N3 | 177.91 (19) |
C4—N1—C3—O1 | 2.2 (4) | O3—N3—C7—C6 | 177.6 (2) |
C4—N1—C3—C2 | −178.1 (2) | O2—N3—C7—C6 | −4.9 (3) |
C1—C2—C3—O1 | −25.3 (4) | O3—N3—C7—C8 | −4.8 (3) |
C1—C2—C3—N1 | 155.0 (2) | O2—N3—C7—C8 | 172.7 (2) |
C5—N2—C4—N1 | 175.19 (19) | C6—C7—C8—C9 | −0.2 (4) |
C5—N2—C4—S1 | −4.5 (3) | N3—C7—C8—C9 | −177.7 (2) |
C3—N1—C4—N2 | −3.1 (3) | C7—C8—C9—C10 | −0.2 (4) |
C3—N1—C4—S1 | 176.60 (18) | C8—C9—C10—C5 | 0.4 (3) |
C4—N2—C5—C6 | −4.7 (3) | C8—C9—C10—Cl2 | −179.30 (18) |
C4—N2—C5—C10 | 176.6 (2) | C6—C5—C10—C9 | −0.2 (3) |
C10—C5—C6—C7 | −0.2 (3) | N2—C5—C10—C9 | 178.68 (19) |
N2—C5—C6—C7 | −178.95 (19) | C6—C5—C10—Cl2 | 179.49 (15) |
C5—C6—C7—C8 | 0.4 (3) | N2—C5—C10—Cl2 | −1.7 (2) |
Acknowledgements
The authors would like to thank the Universiti Kebangsaan Malaysia for research grants DLP-2013-009 and DIP-2012-11 and the Centre of Research and Instrumentation (CRIM) for research facilities.
References
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Othman, E. A., Soh, S. K. C. & Yamin, B. M. (2010). Acta Cryst. E66, o628. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamin, B. M. & Othman, N. E. A. (2011). Acta Cryst. E67, o1629. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yamin, B. M., Othman, N. E. A., Yusof, M. S. M. & Embong, F. (2011). Acta Cryst. E67, o419. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yusof, M. S. M., Embong, N. F., Othman, E. A. & Yamin, B. M. (2011). Acta Cryst. E67, o1849. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of halogenoalkoylthiourea will enable to further synthesized thiourea derivatives making use of the C-Cl functionality. N-(4-chlorobutanoyl)-N'-phenylthiourea (Yamin et al., 2011), N-(4-chlorobutanoyl)-N'-(2-fluorophenyl)thiourea (Yusof et al., 2011) and N-(4-bromobutanoyl)-N'-phenylthiourea (Yamin et al., 2011) are some examples that have been reported so far. The title compound is similar to N-(3-chloropropionyl)-N'-phenylthiourea (Othman et al. 2010) except the presence of chlorine atom and nitro group at the ortho and meta-position of the phenyl ring, respectively.
The whole molecule is not planar (Fig. 1) because of the dihedral angle of 9.35 (8)° between benzene ring, C5-C10, and S1/O1/N1/N2/C2/C3/C4/C5/C9/C10 fragments. Both fragments are each planar with maximum deviation of 0.066 (2)Å for C10 atom from the least square plane of the benzene fragment. The molecule maintains trans-cis configuration with respect to the position of chloropropionyl and chloronitrophenyl against the thiono group about N1-C4 and N2-C4 bonds, respectively.
There is intrahydrogen bond N2-H2···O1 forming pseudo six-membered ring [N2-C4-N1-C3-O1···H2]. In the crystal packing, the molecules are linked by N1-H1···S1 intermolecular hydrogen bond (symmetry codes as in Table 1) to form centrosymmetric dimers and arranged along ac face (Fig. 2). There is also Cl2-Cl2 interaction with the contact distance of 3.386 (13) Å.