organic compounds
Hexakis(3-chloro-2-methylanilinium) cyclohexaphosphate dihydrate
aChemistry Laboratory of Materials, Sciences Faculty of Bizerta, 7021 Jarzouna, Bizerta, Tunisia
*Correspondence e-mail: Lamia.khederi@fsb.rnu.tn
In the organic/inorganic salt hydrate, 6C7H9ClN+·P6O186−·2H2O, the cyclohexaphosphate anion resides on an inversion centre. The consists of three cations, one half-anion and a water molecule. In the crystal, the water molecules and the [P6O18]6− anions are linked by O—H⋯O hydrogen bonds, generating infinite layers parallel to the ab plane. These layers are interconnected by the organic cations through N—H⋯O hydrogen bonds.
CCDC reference: 975722
Related literature
For the properties of hybrid materials, see: Shi et al. (2000); Yokotani et al. (1989); Xiao et al. (2005); Koo et al. (2004). For related structures containing cyclohexaphosphate rings, see: Khedhiri et al. (2012); Amri et al. (2009); Marouani & Rzaigui (2010); Averbuch-Pouchot & Durif (1991). For bond lengths, see: Fábry et al. (2002). For the preparation of cyclohexaphosphoric acid, see: Schülke & Kayser (1985).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 975722
https://doi.org/10.1107/S1600536813033230/fj2652sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813033230/fj2652Isup2.hkl
Crystals of the title compound were synthesized by neutralization of an acidic aqueous solution of H6P6O18 (10 ml, 3.5 mmol) by adding dropwise a solution of 3-chloro-2-methylaniline (21 mmol in 20 ml of ethanol). The resulting solution is then kept at room temperature for several days to give colourless crystals of the title compound which are stable under normal conditions of temperature and humidity. The cyclohexaphosphoric acid used in this reaction was produced from an aqueous solution of Li6P6O18 (Schulke et al., 1985) passed through an ion exchange resin (Amberlite IR120)
Hydrogen atoms of the aromatic and methyl groups were placed at calculated positions with C—H = 0.93 and 0.96 Å, respectively and allowed to ride with Uiso(H) = 1.5 Ueq(C). H atoms on water molecules and the coordinates of the hydrogen atoms at the NH3 groups were located in Fourier difference maps and were refined freely simultaneously with individual Uiso values.
The interest of hybrid organic-inorganic materials has been continuously growing because of their potential applications in several fields (catalysis, biomoleculaire sciences and nonlinear optics) (Shi et al., 2000, Yokotani et al.,1989). Interest of these compounds stems from the intriguing possibility of combining the features of both inorganic and organic systems within a single material (Koo et al., 2004, Xiao et al., 2005).
This paper reports synthesis and structural characterization of a new organic cyclohexaphosphate (I). The X-ray diffraction study of the title compound leads to the determination of its chemical formula. Configurations of the different organic and inorganic entities are depicted in the Figure 1. The examination of the atomic arrangement shows that the structure consists of inorganic layers made up from P6O18 rings and water molecules connected via hydrogen bonds and extended in the ab plane. The organic 3-chloro-2-methylammonium cations are displayed in the interlayer spaces compensating their negative charges and establishing H-bonds with the oxygen atoms of the anionic framework as shown in Figure 2.
The geometry of the phosphoric ring is commonly observed in other cyclohexaphosphates with a ring of low symmetry (Khedhiri et al., 2012, Marouani et al., 2010, Amri et al., 2009). P—O distances range from 1.468 (2) to 1.606 (2) Å and O(L)—P—O(L) angles from 99.71 (11) to 102.22 (12)°. However, the P—P—P angles values of 97.92 (4), 104.2 (4) and 113.6 (4)° show that the P6O18 ring is significantly distorted from the ideal value 120°. Nevertheless, this distortion is comparatively less important than that observed in Cs6P6O18·6H2O, which shows the greatest distortion for the same angles, ranging between 93.2 and 145.5° (Averbuch-Pouchot & Durif, 1991).
The three crystallography distinct cations involved in this structure exhibit C—C and N—C and C—Cl distances in the range usually found in other molecule analogues such as 4-chloro-2-methylaniline (Fábry et al., 2002). The C—C—C and C—C—N angles are similar to those expected for sp2
These groups are almost planar with an average deviation of 0.0018. The mean geometric features of the hydrogen bonds show multiple kinds of hydrogen bonds. The first one involves O—H···O contacts, with O···O distances ranging from 2.813 (4) to 2.934 (4) Å, link between the phosphoric rings which form a bidimensional anionic framework, parallel to the ab plane (Fig. 2). While the second one includes N—H···O contacts, involving weak links since the N···O distances range from 2.705 (4) to 3.079 (4) Å, assuring the cohesion of the network. In addition, some H phenyl atoms also form weak C—H···O(N) interactions with the C···O(N)separations of 2.872 (5)–3.316 (5) Å. All these hydrogen bonds, Van Der Waals, and electrostatic interactions between organic cations and cyclohexaphosphate anions increase the structure stability in the title compound.For the properties of hybrid materials, see: Shi et al. (2000); Yokotani et al. (1989); Xiao et al. (2005); Koo et al. (2004). For related structures containing cyclohexaphosphate rings, see: Khedhiri et al. (2012); Amri et al. (2009); Marouani et al. (2010); Averbuch-Pouchot & Durif (1991). For bond lengths, see: Fábry et al. (2002). For the preparation of cyclohexaphosphoric acid, see: Schulke & Kayser (1985).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. ORTEP drawing of (I) with displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) x, y, z] | |
Fig. 2. Structure projection of (I) along the b axis. The H-phenyl and H-methyl atoms are omitted for figure clarity. Hydrogen bonds are shown as dashed lines. |
6C7H9ClN+·P6O186−·2H2O | Z = 1 |
Mr = 1365.46 | F(000) = 704 |
Triclinic, P1 | Dx = 1.513 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.576 (5) Å | Cell parameters from 25 reflections |
b = 10.187 (4) Å | θ = 9–11° |
c = 17.392 (5) Å | µ = 0.52 mm−1 |
α = 94.48 (2)° | T = 293 K |
β = 103.74 (4)° | Prism, colorless |
γ = 112.25 (4)° | 0.32 × 0.22 × 0.15 mm |
V = 1498.5 (12) Å3 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.033 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.2° |
Graphite monochromator | h = −12→12 |
non–profiled ω scans | k = −13→13 |
7464 measured reflections | l = 0→22 |
7229 independent reflections | 2 standard reflections every 120 min |
4800 reflections with I > 2σ(I) | intensity decay: 5% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.128 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0596P)2 + 0.4583P] where P = (Fo2 + 2Fc2)/3 |
7229 reflections | (Δ/σ)max = 0.001 |
405 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
6C7H9ClN+·P6O186−·2H2O | γ = 112.25 (4)° |
Mr = 1365.46 | V = 1498.5 (12) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.576 (5) Å | Mo Kα radiation |
b = 10.187 (4) Å | µ = 0.52 mm−1 |
c = 17.392 (5) Å | T = 293 K |
α = 94.48 (2)° | 0.32 × 0.22 × 0.15 mm |
β = 103.74 (4)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.033 |
7464 measured reflections | 2 standard reflections every 120 min |
7229 independent reflections | intensity decay: 5% |
4800 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.128 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.39 e Å−3 |
7229 reflections | Δρmin = −0.39 e Å−3 |
405 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.10693 (8) | 0.76984 (7) | 0.50600 (4) | 0.0233 (2) | |
P2 | 0.32227 (7) | 0.62757 (7) | 0.52138 (4) | 0.0217 (2) | |
P3 | 0.13627 (8) | 0.34633 (7) | 0.41193 (4) | 0.0236 (2) | |
O1 | 0.2396 (2) | 0.9092 (2) | 0.54611 (13) | 0.0389 (7) | |
O2 | −0.0196 (2) | 0.7621 (2) | 0.43465 (12) | 0.0320 (6) | |
O3 | 0.1712 (2) | 0.6560 (2) | 0.47796 (11) | 0.0302 (6) | |
O4 | 0.3518 (2) | 0.6539 (2) | 0.61045 (11) | 0.0301 (6) | |
O5 | 0.4520 (2) | 0.7054 (2) | 0.48872 (13) | 0.0363 (7) | |
O6 | 0.2550 (2) | 0.4574 (2) | 0.49312 (12) | 0.0333 (6) | |
O7 | 0.1293 (2) | 0.4211 (2) | 0.34254 (12) | 0.0329 (6) | |
O8 | 0.1743 (2) | 0.2189 (2) | 0.41061 (12) | 0.0343 (6) | |
O9 | 0.0321 (2) | 0.6948 (2) | 0.57240 (12) | 0.0327 (6) | |
Cl1 | 0.34937 (16) | −0.02530 (14) | 0.04005 (7) | 0.0821 (5) | |
N1 | 0.3436 (3) | 0.1365 (3) | 0.32844 (15) | 0.0306 (8) | |
C1 | 0.2839 (3) | 0.1210 (3) | 0.24115 (17) | 0.0308 (8) | |
C2 | 0.3467 (4) | 0.0618 (3) | 0.19071 (19) | 0.0375 (10) | |
C3 | 0.2856 (4) | 0.0540 (4) | 0.1089 (2) | 0.0483 (11) | |
C4 | 0.1740 (5) | 0.1046 (4) | 0.0786 (2) | 0.0564 (11) | |
C5 | 0.1155 (4) | 0.1631 (4) | 0.1303 (2) | 0.0560 (14) | |
C6 | 0.1694 (4) | 0.1698 (3) | 0.21233 (19) | 0.0416 (10) | |
C7 | 0.4738 (5) | 0.0117 (4) | 0.2232 (2) | 0.0579 (16) | |
Cl2 | 0.6890 (2) | 0.81050 (16) | 0.11837 (7) | 0.1000 (6) | |
N2 | 0.7057 (3) | 0.8023 (3) | 0.41707 (15) | 0.0281 (8) | |
C8 | 0.6282 (3) | 0.7400 (3) | 0.33153 (17) | 0.0292 (8) | |
C9 | 0.6979 (4) | 0.8032 (3) | 0.27466 (18) | 0.0359 (10) | |
C10 | 0.6160 (5) | 0.7370 (4) | 0.1948 (2) | 0.0546 (13) | |
C11 | 0.4744 (6) | 0.6175 (5) | 0.1737 (3) | 0.0785 (18) | |
C12 | 0.4108 (5) | 0.5590 (5) | 0.2319 (3) | 0.0726 (17) | |
C13 | 0.4874 (4) | 0.6200 (4) | 0.3115 (2) | 0.0464 (11) | |
C14 | 0.8500 (4) | 0.9359 (4) | 0.2981 (2) | 0.0518 (12) | |
Cl3 | 1.0171 (2) | 0.67872 (17) | 0.06613 (8) | 0.1091 (7) | |
N3 | 0.8848 (3) | 0.5080 (3) | 0.32105 (15) | 0.0317 (8) | |
C15 | 0.8371 (3) | 0.4984 (3) | 0.23430 (18) | 0.0345 (9) | |
C16 | 0.9415 (4) | 0.5911 (3) | 0.19903 (19) | 0.0403 (10) | |
C17 | 0.8953 (5) | 0.5702 (4) | 0.1164 (2) | 0.0641 (14) | |
C18 | 0.7528 (7) | 0.4644 (6) | 0.0704 (3) | 0.109 (2) | |
C19 | 0.6514 (6) | 0.3770 (6) | 0.1070 (3) | 0.105 (2) | |
C20 | 0.6930 (4) | 0.3946 (4) | 0.1898 (2) | 0.0662 (12) | |
C21 | 1.0981 (4) | 0.7057 (4) | 0.2497 (3) | 0.0616 (14) | |
O1W | 0.5687 (3) | 0.0657 (3) | 0.59977 (17) | 0.0498 (9) | |
H1A | 0.284 (4) | 0.166 (4) | 0.357 (2) | 0.056 (11)* | |
H1B | 0.350 (4) | 0.050 (4) | 0.346 (2) | 0.049 (10)* | |
H1C | 0.446 (4) | 0.210 (4) | 0.3448 (19) | 0.039 (9)* | |
H4 | 0.13811 | 0.09937 | 0.02333 | 0.0851* | |
H5 | 0.03996 | 0.19805 | 0.11032 | 0.0839* | |
H6 | 0.12852 | 0.20698 | 0.24769 | 0.0624* | |
H7A | 0.49965 | 0.02657 | 0.28092 | 0.0874* | |
H7B | 0.43730 | −0.08912 | 0.20193 | 0.0874* | |
H7C | 0.56571 | 0.06563 | 0.20757 | 0.0874* | |
H2A | 0.640 (4) | 0.755 (4) | 0.445 (2) | 0.047 (10)* | |
H2B | 0.797 (5) | 0.786 (4) | 0.431 (2) | 0.059 (11)* | |
H2C | 0.726 (4) | 0.896 (4) | 0.427 (2) | 0.043 (9)* | |
H11 | 0.42203 | 0.57662 | 0.11971 | 0.1168* | |
H12 | 0.31566 | 0.47788 | 0.21759 | 0.1088* | |
H13 | 0.44471 | 0.58085 | 0.35145 | 0.0694* | |
H14A | 0.88732 | 0.96426 | 0.35569 | 0.0779* | |
H14B | 0.92709 | 0.91552 | 0.27887 | 0.0779* | |
H14C | 0.83286 | 1.01277 | 0.27464 | 0.0779* | |
H3A | 0.979 (5) | 0.484 (5) | 0.334 (3) | 0.089 (15)* | |
H3B | 0.802 (5) | 0.442 (4) | 0.344 (2) | 0.066 (12)* | |
H3C | 0.912 (4) | 0.591 (4) | 0.348 (2) | 0.058 (12)* | |
H18 | 0.72554 | 0.45254 | 0.01451 | 0.1635* | |
H19 | 0.55476 | 0.30596 | 0.07609 | 0.1573* | |
H20 | 0.62411 | 0.33662 | 0.21526 | 0.0991* | |
H21A | 1.10761 | 0.70244 | 0.30568 | 0.0919* | |
H21B | 1.18180 | 0.68856 | 0.23587 | 0.0919* | |
H21C | 1.10459 | 0.79895 | 0.23990 | 0.0919* | |
H1W | 0.476 (6) | 0.015 (5) | 0.576 (3) | 0.085 (17)* | |
H2W | 0.583 (5) | 0.135 (5) | 0.577 (3) | 0.083 (16)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0201 (3) | 0.0222 (3) | 0.0295 (4) | 0.0093 (3) | 0.0095 (3) | 0.0054 (3) |
P2 | 0.0176 (3) | 0.0215 (3) | 0.0254 (4) | 0.0070 (3) | 0.0073 (3) | 0.0033 (3) |
P3 | 0.0206 (3) | 0.0227 (3) | 0.0275 (4) | 0.0079 (3) | 0.0090 (3) | 0.0033 (3) |
O1 | 0.0334 (11) | 0.0220 (10) | 0.0539 (14) | 0.0051 (9) | 0.0112 (10) | 0.0025 (9) |
O2 | 0.0303 (10) | 0.0385 (11) | 0.0341 (11) | 0.0197 (9) | 0.0102 (9) | 0.0125 (9) |
O3 | 0.0270 (10) | 0.0348 (11) | 0.0308 (10) | 0.0192 (9) | 0.0038 (8) | −0.0019 (8) |
O4 | 0.0260 (10) | 0.0332 (10) | 0.0258 (10) | 0.0085 (8) | 0.0053 (8) | 0.0021 (8) |
O5 | 0.0253 (10) | 0.0401 (12) | 0.0422 (12) | 0.0070 (9) | 0.0173 (9) | 0.0110 (10) |
O6 | 0.0344 (11) | 0.0223 (10) | 0.0355 (11) | 0.0100 (9) | 0.0005 (9) | 0.0018 (8) |
O7 | 0.0339 (11) | 0.0351 (11) | 0.0329 (11) | 0.0134 (9) | 0.0153 (9) | 0.0102 (9) |
O8 | 0.0363 (11) | 0.0281 (10) | 0.0425 (12) | 0.0163 (9) | 0.0142 (9) | 0.0032 (9) |
O9 | 0.0232 (9) | 0.0468 (12) | 0.0355 (11) | 0.0167 (9) | 0.0146 (8) | 0.0169 (9) |
Cl1 | 0.1113 (10) | 0.0872 (8) | 0.0560 (6) | 0.0345 (7) | 0.0527 (7) | 0.0022 (6) |
N1 | 0.0265 (13) | 0.0326 (14) | 0.0310 (13) | 0.0116 (11) | 0.0078 (10) | 0.0014 (11) |
C1 | 0.0283 (14) | 0.0289 (14) | 0.0277 (14) | 0.0048 (12) | 0.0073 (12) | 0.0018 (12) |
C2 | 0.0372 (16) | 0.0324 (16) | 0.0406 (18) | 0.0076 (13) | 0.0194 (14) | 0.0029 (13) |
C3 | 0.055 (2) | 0.0407 (19) | 0.0402 (19) | 0.0060 (16) | 0.0233 (17) | −0.0002 (15) |
C4 | 0.057 (2) | 0.066 (2) | 0.0317 (18) | 0.013 (2) | 0.0083 (17) | 0.0068 (17) |
C5 | 0.046 (2) | 0.070 (3) | 0.044 (2) | 0.0226 (19) | 0.0013 (17) | 0.0090 (18) |
C6 | 0.0369 (17) | 0.0464 (19) | 0.0375 (18) | 0.0168 (15) | 0.0061 (14) | 0.0010 (14) |
C7 | 0.065 (2) | 0.068 (3) | 0.068 (3) | 0.042 (2) | 0.040 (2) | 0.023 (2) |
Cl2 | 0.1609 (14) | 0.1171 (11) | 0.0480 (6) | 0.0661 (10) | 0.0541 (8) | 0.0379 (7) |
N2 | 0.0295 (13) | 0.0284 (13) | 0.0300 (13) | 0.0137 (11) | 0.0109 (11) | 0.0083 (10) |
C8 | 0.0295 (14) | 0.0285 (14) | 0.0311 (15) | 0.0142 (12) | 0.0078 (12) | 0.0051 (12) |
C9 | 0.0436 (17) | 0.0363 (16) | 0.0364 (17) | 0.0218 (14) | 0.0167 (14) | 0.0103 (13) |
C10 | 0.078 (3) | 0.063 (2) | 0.0319 (18) | 0.035 (2) | 0.0210 (18) | 0.0123 (17) |
C11 | 0.094 (4) | 0.076 (3) | 0.039 (2) | 0.025 (3) | −0.005 (2) | −0.010 (2) |
C12 | 0.062 (3) | 0.058 (3) | 0.057 (3) | −0.002 (2) | −0.004 (2) | −0.011 (2) |
C13 | 0.0406 (18) | 0.0370 (18) | 0.050 (2) | 0.0044 (15) | 0.0136 (16) | 0.0016 (15) |
C14 | 0.051 (2) | 0.047 (2) | 0.062 (2) | 0.0133 (17) | 0.0319 (18) | 0.0225 (18) |
Cl3 | 0.1496 (14) | 0.1094 (11) | 0.0706 (8) | 0.0299 (10) | 0.0648 (9) | 0.0485 (8) |
N3 | 0.0322 (14) | 0.0333 (14) | 0.0278 (13) | 0.0114 (12) | 0.0081 (11) | 0.0076 (11) |
C15 | 0.0356 (16) | 0.0332 (16) | 0.0313 (15) | 0.0114 (13) | 0.0074 (13) | 0.0090 (12) |
C16 | 0.0448 (18) | 0.0356 (17) | 0.0379 (17) | 0.0138 (14) | 0.0111 (15) | 0.0092 (14) |
C17 | 0.080 (3) | 0.059 (2) | 0.040 (2) | 0.011 (2) | 0.020 (2) | 0.0190 (18) |
C18 | 0.126 (5) | 0.109 (4) | 0.033 (2) | −0.002 (4) | 0.002 (3) | 0.012 (3) |
C19 | 0.086 (4) | 0.101 (4) | 0.050 (3) | −0.022 (3) | −0.015 (3) | 0.001 (3) |
C20 | 0.050 (2) | 0.061 (2) | 0.049 (2) | −0.0095 (19) | −0.0008 (18) | 0.0114 (19) |
C21 | 0.050 (2) | 0.051 (2) | 0.068 (3) | −0.0003 (18) | 0.022 (2) | 0.017 (2) |
O1W | 0.0428 (15) | 0.0427 (14) | 0.0590 (16) | 0.0150 (12) | 0.0074 (13) | 0.0182 (13) |
Cl1—C3 | 1.741 (4) | C4—C5 | 1.373 (6) |
Cl2—C10 | 1.737 (4) | C5—C6 | 1.384 (5) |
Cl3—C17 | 1.734 (5) | C4—H4 | 0.9300 |
P1—O2 | 1.487 (2) | C5—H5 | 0.9300 |
P1—O9 | 1.596 (2) | C6—H6 | 0.9300 |
P1—O3 | 1.599 (2) | C7—H7C | 0.9600 |
P1—O1 | 1.475 (2) | C7—H7B | 0.9600 |
P2—O5 | 1.468 (2) | C7—H7A | 0.9600 |
P2—O3 | 1.606 (2) | C8—C9 | 1.388 (4) |
P2—O4 | 1.490 (2) | C8—C13 | 1.377 (5) |
P2—O6 | 1.591 (2) | C9—C14 | 1.502 (5) |
P3—O9i | 1.601 (2) | C9—C10 | 1.391 (5) |
P3—O7 | 1.478 (2) | C10—C11 | 1.378 (7) |
P3—O8 | 1.475 (2) | C11—C12 | 1.365 (7) |
P3—O6 | 1.606 (2) | C12—C13 | 1.371 (6) |
O1W—H1W | 0.82 (5) | C11—H11 | 0.9300 |
O1W—H2W | 0.82 (5) | C12—H12 | 0.9300 |
N1—C1 | 1.462 (4) | C13—H13 | 0.9300 |
N1—H1C | 0.94 (4) | C14—H14C | 0.9600 |
N1—H1B | 0.97 (4) | C14—H14A | 0.9600 |
N1—H1A | 0.95 (4) | C14—H14B | 0.9600 |
N2—C8 | 1.462 (4) | C15—C16 | 1.391 (5) |
N2—H2B | 0.93 (5) | C15—C20 | 1.372 (5) |
N2—H2A | 0.90 (4) | C16—C21 | 1.508 (6) |
N2—H2C | 0.89 (4) | C16—C17 | 1.373 (5) |
N3—C15 | 1.453 (4) | C17—C18 | 1.377 (7) |
N3—H3C | 0.85 (4) | C18—C19 | 1.367 (8) |
N3—H3B | 1.01 (4) | C19—C20 | 1.378 (6) |
N3—H3A | 1.00 (5) | C18—H18 | 0.9300 |
C1—C6 | 1.375 (5) | C19—H19 | 0.9300 |
C1—C2 | 1.392 (5) | C20—H20 | 0.9300 |
C2—C7 | 1.500 (6) | C21—H21C | 0.9600 |
C2—C3 | 1.387 (5) | C21—H21A | 0.9600 |
C3—C4 | 1.370 (6) | C21—H21B | 0.9600 |
O1—P1—O2 | 120.42 (13) | C5—C6—H6 | 120.00 |
O1—P1—O3 | 110.23 (13) | C1—C6—H6 | 120.00 |
O1—P1—O9 | 108.66 (12) | C2—C7—H7C | 109.00 |
O2—P1—O3 | 105.54 (12) | C2—C7—H7A | 109.00 |
O2—P1—O9 | 110.27 (13) | C2—C7—H7B | 109.00 |
O3—P1—O9 | 99.71 (11) | H7A—C7—H7B | 109.00 |
O3—P2—O4 | 110.07 (12) | H7A—C7—H7C | 109.00 |
O3—P2—O5 | 108.64 (12) | H7B—C7—H7C | 109.00 |
O3—P2—O6 | 100.22 (12) | N2—C8—C13 | 117.5 (3) |
O4—P2—O5 | 118.09 (13) | C9—C8—C13 | 123.1 (3) |
O4—P2—O6 | 106.34 (12) | N2—C8—C9 | 119.4 (3) |
O5—P2—O6 | 112.00 (12) | C10—C9—C14 | 122.5 (3) |
O6—P3—O7 | 110.89 (12) | C8—C9—C14 | 122.0 (3) |
O6—P3—O8 | 106.05 (12) | C8—C9—C10 | 115.5 (3) |
O6—P3—O9i | 102.62 (12) | Cl2—C10—C9 | 119.5 (3) |
O7—P3—O8 | 121.53 (13) | C9—C10—C11 | 122.1 (4) |
O7—P3—O9i | 104.67 (12) | Cl2—C10—C11 | 118.4 (3) |
O8—P3—O9i | 109.53 (12) | C10—C11—C12 | 120.2 (4) |
P1—O3—P2 | 130.72 (13) | C11—C12—C13 | 119.9 (5) |
P2—O6—P3 | 134.20 (14) | C8—C13—C12 | 119.2 (4) |
P1—O9—P3i | 133.29 (14) | C12—C11—H11 | 120.00 |
H1W—O1W—H2W | 101 (5) | C10—C11—H11 | 120.00 |
H1A—N1—H1B | 108 (3) | C13—C12—H12 | 120.00 |
H1A—N1—H1C | 107 (3) | C11—C12—H12 | 120.00 |
C1—N1—H1B | 114 (2) | C8—C13—H13 | 120.00 |
C1—N1—H1C | 107 (2) | C12—C13—H13 | 120.00 |
H1B—N1—H1C | 108 (3) | C9—C14—H14C | 109.00 |
C1—N1—H1A | 113 (2) | C9—C14—H14B | 109.00 |
H2B—N2—H2C | 112 (4) | H14A—C14—H14C | 109.00 |
H2A—N2—H2B | 110 (3) | C9—C14—H14A | 109.00 |
H2A—N2—H2C | 109 (4) | H14A—C14—H14B | 109.00 |
C8—N2—H2A | 108 (2) | H14B—C14—H14C | 109.00 |
C8—N2—H2B | 107 (2) | C16—C15—C20 | 122.3 (3) |
C8—N2—H2C | 111 (2) | N3—C15—C16 | 118.9 (3) |
C15—N3—H3B | 116 (2) | N3—C15—C20 | 118.8 (3) |
H3B—N3—H3C | 104 (3) | C15—C16—C21 | 121.1 (3) |
C15—N3—H3C | 114 (2) | C17—C16—C21 | 122.5 (4) |
C15—N3—H3A | 107 (3) | C15—C16—C17 | 116.4 (3) |
H3A—N3—H3C | 107 (4) | Cl3—C17—C18 | 117.5 (3) |
H3A—N3—H3B | 109 (4) | C16—C17—C18 | 122.2 (4) |
C2—C1—C6 | 122.5 (3) | Cl3—C17—C16 | 120.3 (3) |
N1—C1—C6 | 117.9 (3) | C17—C18—C19 | 119.9 (5) |
N1—C1—C2 | 119.6 (3) | C18—C19—C20 | 119.7 (5) |
C3—C2—C7 | 122.4 (3) | C15—C20—C19 | 119.3 (4) |
C1—C2—C7 | 121.9 (3) | C17—C18—H18 | 120.00 |
C1—C2—C3 | 115.7 (3) | C19—C18—H18 | 120.00 |
Cl1—C3—C2 | 119.6 (3) | C20—C19—H19 | 120.00 |
C2—C3—C4 | 123.0 (4) | C18—C19—H19 | 120.00 |
Cl1—C3—C4 | 117.4 (3) | C15—C20—H20 | 120.00 |
C3—C4—C5 | 119.6 (3) | C19—C20—H20 | 120.00 |
C4—C5—C6 | 119.7 (4) | C16—C21—H21B | 109.00 |
C1—C6—C5 | 119.5 (3) | C16—C21—H21C | 109.00 |
C5—C4—H4 | 120.00 | C16—C21—H21A | 109.00 |
C3—C4—H4 | 120.00 | H21A—C21—H21C | 109.00 |
C4—C5—H5 | 120.00 | H21B—C21—H21C | 110.00 |
C6—C5—H5 | 120.00 | H21A—C21—H21B | 109.00 |
O1—P1—O3—P2 | 38.7 (2) | C3—C4—C5—C6 | −0.3 (6) |
O2—P1—O3—P2 | 170.22 (16) | C4—C5—C6—C1 | 1.6 (5) |
O9—P1—O3—P2 | −75.42 (19) | N2—C8—C9—C10 | −179.9 (3) |
O2—P1—O9—P3i | −19.0 (2) | N2—C8—C9—C14 | −1.1 (5) |
O3—P1—O9—P3i | −129.62 (18) | C13—C8—C9—C10 | −0.1 (5) |
O1—P1—O9—P3i | 115.04 (19) | C13—C8—C9—C14 | 178.7 (4) |
O4—P2—O3—P1 | 33.9 (2) | N2—C8—C13—C12 | 179.7 (4) |
O5—P2—O3—P1 | −96.79 (18) | C9—C8—C13—C12 | −0.2 (6) |
O5—P2—O6—P3 | −79.6 (2) | C8—C9—C10—Cl2 | 177.9 (3) |
O6—P2—O3—P1 | 145.66 (17) | C8—C9—C10—C11 | 0.6 (6) |
O3—P2—O6—P3 | 35.4 (2) | C14—C9—C10—Cl2 | −1.0 (6) |
O4—P2—O6—P3 | 150.01 (19) | C14—C9—C10—C11 | −178.3 (4) |
O7—P3—O6—P2 | 22.7 (2) | Cl2—C10—C11—C12 | −178.1 (4) |
O8—P3—O6—P2 | 156.50 (19) | C9—C10—C11—C12 | −0.8 (8) |
O9i—P3—O6—P2 | −88.6 (2) | C10—C11—C12—C13 | 0.5 (8) |
O6i—P3i—O9—P1 | 61.0 (2) | C11—C12—C13—C8 | −0.1 (7) |
O7i—P3i—O9—P1 | 176.90 (17) | N3—C15—C16—C17 | 175.3 (3) |
O8i—P3i—O9—P1 | −51.3 (2) | N3—C15—C16—C21 | −3.4 (5) |
N1—C1—C2—C3 | −178.7 (3) | C20—C15—C16—C17 | −2.3 (5) |
N1—C1—C2—C7 | 0.6 (5) | C20—C15—C16—C21 | 179.0 (4) |
C6—C1—C2—C3 | −0.4 (5) | N3—C15—C20—C19 | −175.0 (4) |
C6—C1—C2—C7 | 178.8 (3) | C16—C15—C20—C19 | 2.5 (6) |
N1—C1—C6—C5 | 177.0 (3) | C15—C16—C17—Cl3 | −179.5 (3) |
C2—C1—C6—C5 | −1.3 (5) | C15—C16—C17—C18 | 0.6 (7) |
C1—C2—C3—Cl1 | −177.2 (3) | C21—C16—C17—Cl3 | −0.8 (6) |
C1—C2—C3—C4 | 1.9 (5) | C21—C16—C17—C18 | 179.3 (5) |
C7—C2—C3—Cl1 | 3.6 (5) | Cl3—C17—C18—C19 | −179.2 (5) |
C7—C2—C3—C4 | −177.3 (4) | C16—C17—C18—C19 | 0.7 (9) |
Cl1—C3—C4—C5 | 177.5 (3) | C17—C18—C19—C20 | −0.5 (9) |
C2—C3—C4—C5 | −1.6 (6) | C18—C19—C20—C15 | −1.0 (8) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O8 | 0.95 (4) | 1.76 (4) | 2.705 (4) | 179 (5) |
N1—H1B···O1Wii | 0.97 (4) | 1.85 (4) | 2.779 (4) | 160 (3) |
N1—H1C···O4iii | 0.94 (4) | 1.83 (4) | 2.766 (4) | 173 (3) |
O1W—H1W···O1iv | 0.82 (5) | 2.02 (6) | 2.813 (4) | 164 (5) |
O1W—H2W···O5iii | 0.82 (5) | 2.14 (5) | 2.934 (4) | 163 (5) |
N2—H2A···O5 | 0.90 (4) | 2.02 (4) | 2.871 (4) | 156 (4) |
N2—H2B···O2v | 0.93 (5) | 1.85 (5) | 2.763 (4) | 166 (3) |
N2—H2C···O1vi | 0.89 (4) | 1.89 (4) | 2.775 (4) | 176 (4) |
N3—H3A···O7v | 1.00 (5) | 1.77 (5) | 2.759 (4) | 171 (5) |
N3—H3B···O4iii | 1.01 (4) | 1.83 (4) | 2.834 (4) | 172 (4) |
N3—H3C···O2v | 0.85 (4) | 2.00 (4) | 2.827 (4) | 166 (3) |
Symmetry codes: (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) x+1, y, z; (vi) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O8 | 0.95 (4) | 1.76 (4) | 2.705 (4) | 179 (5) |
N1—H1B···O1Wi | 0.97 (4) | 1.85 (4) | 2.779 (4) | 160 (3) |
N1—H1C···O4ii | 0.94 (4) | 1.83 (4) | 2.766 (4) | 173 (3) |
O1W—H1W···O1iii | 0.82 (5) | 2.02 (6) | 2.813 (4) | 164 (5) |
O1W—H2W···O5ii | 0.82 (5) | 2.14 (5) | 2.934 (4) | 163 (5) |
N2—H2A···O5 | 0.90 (4) | 2.02 (4) | 2.871 (4) | 156 (4) |
N2—H2B···O2iv | 0.93 (5) | 1.85 (5) | 2.763 (4) | 166 (3) |
N2—H2C···O1v | 0.89 (4) | 1.89 (4) | 2.775 (4) | 176 (4) |
N3—H3A···O7iv | 1.00 (5) | 1.77 (5) | 2.759 (4) | 171 (5) |
N3—H3B···O4ii | 1.01 (4) | 1.83 (4) | 2.834 (4) | 172 (4) |
N3—H3C···O2iv | 0.85 (4) | 2.00 (4) | 2.827 (4) | 166 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z; (iv) x+1, y, z; (v) −x+1, −y+2, −z+1. |
References
Amri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, o654. Web of Science CSD CrossRef IUCr Journals Google Scholar
Averbuch-Pouchot, M. T. & Durif, A. (1991). Eur. J. Solid State Inorg. Chem. 28, 9–22. CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Fábry, J., Krupková, R. & Studnička, V. (2002). Acta Cryst. E58, o105–o107. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Khedhiri, L., Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst. E68, o2038–o2039. CSD CrossRef CAS IUCr Journals Google Scholar
Koo, B. K., Ouellette, W., Burkholder, E. M., Golub, V., O'Connor, C. J. & Zubieta, J. (2004). Solid State Sci. 6, 461–468. Web of Science CSD CrossRef CAS Google Scholar
Marouani, H. & Rzaigui, M. (2010). Acta Cryst. E66, o233. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, F. N., Shen, Z., You, X. Z. & Duan, C. Y. (2000). J. Mol. Struct. 523, 143–147. Web of Science CSD CrossRef CAS Google Scholar
Xiao, D., An, H., Waag, E. & Xu, L. (2005). J. Mol. Struct. 738, 217–225. Web of Science CSD CrossRef CAS Google Scholar
Yokotani, A., Sasaki, T., Yoshida, K. & Nakai, S. (1989). Appl. Phys. Lett. 55, 2692–2693. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The interest of hybrid organic-inorganic materials has been continuously growing because of their potential applications in several fields (catalysis, biomoleculaire sciences and nonlinear optics) (Shi et al., 2000, Yokotani et al.,1989). Interest of these compounds stems from the intriguing possibility of combining the features of both inorganic and organic systems within a single material (Koo et al., 2004, Xiao et al., 2005).
This paper reports synthesis and structural characterization of a new organic cyclohexaphosphate (I). The X-ray diffraction study of the title compound leads to the determination of its chemical formula. Configurations of the different organic and inorganic entities are depicted in the Figure 1. The examination of the atomic arrangement shows that the structure consists of inorganic layers made up from P6O18 rings and water molecules connected via hydrogen bonds and extended in the ab plane. The organic 3-chloro-2-methylammonium cations are displayed in the interlayer spaces compensating their negative charges and establishing H-bonds with the oxygen atoms of the anionic framework as shown in Figure 2.
The geometry of the phosphoric ring is commonly observed in other cyclohexaphosphates with a ring of low symmetry (Khedhiri et al., 2012, Marouani et al., 2010, Amri et al., 2009). P—O distances range from 1.468 (2) to 1.606 (2) Å and O(L)—P—O(L) angles from 99.71 (11) to 102.22 (12)°. However, the P—P—P angles values of 97.92 (4), 104.2 (4) and 113.6 (4)° show that the P6O18 ring is significantly distorted from the ideal value 120°. Nevertheless, this distortion is comparatively less important than that observed in Cs6P6O18·6H2O, which shows the greatest distortion for the same angles, ranging between 93.2 and 145.5° (Averbuch-Pouchot & Durif, 1991).
The three crystallography distinct cations involved in this structure exhibit C—C and N—C and C—Cl distances in the range usually found in other molecule analogues such as 4-chloro-2-methylaniline (Fábry et al., 2002). The C—C—C and C—C—N angles are similar to those expected for sp2 hybridization. These groups are almost planar with an average deviation of 0.0018. The mean geometric features of the hydrogen bonds show multiple kinds of hydrogen bonds. The first one involves O—H···O contacts, with O···O distances ranging from 2.813 (4) to 2.934 (4) Å, link between the phosphoric rings which form a bidimensional anionic framework, parallel to the ab plane (Fig. 2). While the second one includes N—H···O contacts, involving weak links since the N···O distances range from 2.705 (4) to 3.079 (4) Å, assuring the cohesion of the network. In addition, some H phenyl atoms also form weak C—H···O(N) interactions with the C···O(N)separations of 2.872 (5)–3.316 (5) Å. All these hydrogen bonds, Van Der Waals, and electrostatic interactions between organic cations and cyclohexaphosphate anions increase the structure stability in the title compound.