organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­kis­(3-chloro-2-methyl­anilinium) cyclo­hexa­phosphate dihydrate

aChemistry Laboratory of Materials, Sciences Faculty of Bizerta, 7021 Jarzouna, Bizerta, Tunisia
*Correspondence e-mail: Lamia.khederi@fsb.rnu.tn

(Received 5 November 2013; accepted 8 December 2013; online 14 December 2013)

In the organic/inorganic salt hydrate, 6C7H9ClN+·P6O186−·2H2O, the cyclo­hexa­phosphate anion resides on an inversion centre. The asymmetric unit consists of three cations, one half-anion and a water mol­ecule. In the crystal, the water mol­ecules and the [P6O18]6− anions are linked by O—H⋯O hydrogen bonds, generating infinite layers parallel to the ab plane. These layers are inter­connected by the organic cations through N—H⋯O hydrogen bonds.

Related literature

For the properties of hybrid materials, see: Shi et al. (2000[Shi, F. N., Shen, Z., You, X. Z. & Duan, C. Y. (2000). J. Mol. Struct. 523, 143-147.]); Yokotani et al. (1989[Yokotani, A., Sasaki, T., Yoshida, K. & Nakai, S. (1989). Appl. Phys. Lett. 55, 2692-2693.]); Xiao et al. (2005[Xiao, D., An, H., Waag, E. & Xu, L. (2005). J. Mol. Struct. 738, 217-225.]); Koo et al. (2004[Koo, B. K., Ouellette, W., Burkholder, E. M., Golub, V., O'Connor, C. J. & Zubieta, J. (2004). Solid State Sci. 6, 461-468.]). For related structures containing cyclo­hexa­phosphate rings, see: Khedhiri et al. (2012[Khedhiri, L., Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst. E68, o2038-o2039.]); Amri et al. (2009[Amri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, o654.]); Marouani & Rzaigui (2010[Marouani, H. & Rzaigui, M. (2010). Acta Cryst. E66, o233.]); Averbuch-Pouchot & Durif (1991[Averbuch-Pouchot, M. T. & Durif, A. (1991). Eur. J. Solid State Inorg. Chem. 28, 9-22.]). For bond lengths, see: Fábry et al. (2002[Fábry, J., Krupková, R. & Studnička, V. (2002). Acta Cryst. E58, o105-o107.]). For the preparation of cyclo­hexa­phospho­ric acid, see: Schülke & Kayser (1985[Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167-175.]).

[Scheme 1]

Experimental

Crystal data
  • 6C7H9ClN+·P6O186−·2H2O

  • Mr = 1365.46

  • Triclinic, [P \overline 1]

  • a = 9.576 (5) Å

  • b = 10.187 (4) Å

  • c = 17.392 (5) Å

  • α = 94.48 (2)°

  • β = 103.74 (4)°

  • γ = 112.25 (4)°

  • V = 1498.5 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 293 K

  • 0.32 × 0.22 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 7464 measured reflections

  • 7229 independent reflections

  • 4800 reflections with I > 2σ(I)

  • Rint = 0.033

  • 2 standard reflections every 120 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.128

  • S = 1.02

  • 7229 reflections

  • 405 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O8 0.95 (4) 1.76 (4) 2.705 (4) 179 (5)
N1—H1B⋯O1Wi 0.97 (4) 1.85 (4) 2.779 (4) 160 (3)
N1—H1C⋯O4ii 0.94 (4) 1.83 (4) 2.766 (4) 173 (3)
O1W—H1W⋯O1iii 0.82 (5) 2.02 (6) 2.813 (4) 164 (5)
O1W—H2W⋯O5ii 0.82 (5) 2.14 (5) 2.934 (4) 163 (5)
N2—H2A⋯O5 0.90 (4) 2.02 (4) 2.871 (4) 156 (4)
N2—H2B⋯O2iv 0.93 (5) 1.85 (5) 2.763 (4) 166 (3)
N2—H2C⋯O1v 0.89 (4) 1.89 (4) 2.775 (4) 176 (4)
N3—H3A⋯O7iv 1.00 (5) 1.77 (5) 2.759 (4) 171 (5)
N3—H3B⋯O4ii 1.01 (4) 1.83 (4) 2.834 (4) 172 (4)
N3—H3C⋯O2iv 0.85 (4) 2.00 (4) 2.827 (4) 166 (3)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) x+1, y, z; (v) -x+1, -y+2, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The interest of hybrid organic-inorganic materials has been continuously growing because of their potential applications in several fields (catalysis, biomoleculaire sciences and nonlinear optics) (Shi et al., 2000, Yokotani et al.,1989). Interest of these compounds stems from the intriguing possibility of combining the features of both inorganic and organic systems within a single material (Koo et al., 2004, Xiao et al., 2005).

This paper reports synthesis and structural characterization of a new organic cyclohexaphosphate (I). The X-ray diffraction study of the title compound leads to the determination of its chemical formula. Configurations of the different organic and inorganic entities are depicted in the Figure 1. The examination of the atomic arrangement shows that the structure consists of inorganic layers made up from P6O18 rings and water molecules connected via hydrogen bonds and extended in the ab plane. The organic 3-chloro-2-methylammonium cations are displayed in the interlayer spaces compensating their negative charges and establishing H-bonds with the oxygen atoms of the anionic framework as shown in Figure 2.

The geometry of the phosphoric ring is commonly observed in other cyclohexaphosphates with a ring of low symmetry (Khedhiri et al., 2012, Marouani et al., 2010, Amri et al., 2009). P—O distances range from 1.468 (2) to 1.606 (2) Å and O(L)—P—O(L) angles from 99.71 (11) to 102.22 (12)°. However, the P—P—P angles values of 97.92 (4), 104.2 (4) and 113.6 (4)° show that the P6O18 ring is significantly distorted from the ideal value 120°. Nevertheless, this distortion is comparatively less important than that observed in Cs6P6O18·6H2O, which shows the greatest distortion for the same angles, ranging between 93.2 and 145.5° (Averbuch-Pouchot & Durif, 1991).

The three crystallography distinct cations involved in this structure exhibit C—C and N—C and C—Cl distances in the range usually found in other molecule analogues such as 4-chloro-2-methylaniline (Fábry et al., 2002). The C—C—C and C—C—N angles are similar to those expected for sp2 hybridization. These groups are almost planar with an average deviation of 0.0018. The mean geometric features of the hydrogen bonds show multiple kinds of hydrogen bonds. The first one involves O—H···O contacts, with O···O distances ranging from 2.813 (4) to 2.934 (4) Å, link between the phosphoric rings which form a bidimensional anionic framework, parallel to the ab plane (Fig. 2). While the second one includes N—H···O contacts, involving weak links since the N···O distances range from 2.705 (4) to 3.079 (4) Å, assuring the cohesion of the network. In addition, some H phenyl atoms also form weak C—H···O(N) interactions with the C···O(N)separations of 2.872 (5)–3.316 (5) Å. All these hydrogen bonds, Van Der Waals, and electrostatic interactions between organic cations and cyclohexaphosphate anions increase the structure stability in the title compound.

Related literature top

For the properties of hybrid materials, see: Shi et al. (2000); Yokotani et al. (1989); Xiao et al. (2005); Koo et al. (2004). For related structures containing cyclohexaphosphate rings, see: Khedhiri et al. (2012); Amri et al. (2009); Marouani et al. (2010); Averbuch-Pouchot & Durif (1991). For bond lengths, see: Fábry et al. (2002). For the preparation of cyclohexaphosphoric acid, see: Schulke & Kayser (1985).

Experimental top

Crystals of the title compound were synthesized by neutralization of an acidic aqueous solution of H6P6O18 (10 ml, 3.5 mmol) by adding dropwise a solution of 3-chloro-2-methylaniline (21 mmol in 20 ml of ethanol). The resulting solution is then kept at room temperature for several days to give colourless crystals of the title compound which are stable under normal conditions of temperature and humidity. The cyclohexaphosphoric acid used in this reaction was produced from an aqueous solution of Li6P6O18 (Schulke et al., 1985) passed through an ion exchange resin (Amberlite IR120)

Refinement top

Hydrogen atoms of the aromatic and methyl groups were placed at calculated positions with C—H = 0.93 and 0.96 Å, respectively and allowed to ride with Uiso(H) = 1.5 Ueq(C). H atoms on water molecules and the coordinates of the hydrogen atoms at the NH3 groups were located in Fourier difference maps and were refined freely simultaneously with individual Uiso values.

Structure description top

The interest of hybrid organic-inorganic materials has been continuously growing because of their potential applications in several fields (catalysis, biomoleculaire sciences and nonlinear optics) (Shi et al., 2000, Yokotani et al.,1989). Interest of these compounds stems from the intriguing possibility of combining the features of both inorganic and organic systems within a single material (Koo et al., 2004, Xiao et al., 2005).

This paper reports synthesis and structural characterization of a new organic cyclohexaphosphate (I). The X-ray diffraction study of the title compound leads to the determination of its chemical formula. Configurations of the different organic and inorganic entities are depicted in the Figure 1. The examination of the atomic arrangement shows that the structure consists of inorganic layers made up from P6O18 rings and water molecules connected via hydrogen bonds and extended in the ab plane. The organic 3-chloro-2-methylammonium cations are displayed in the interlayer spaces compensating their negative charges and establishing H-bonds with the oxygen atoms of the anionic framework as shown in Figure 2.

The geometry of the phosphoric ring is commonly observed in other cyclohexaphosphates with a ring of low symmetry (Khedhiri et al., 2012, Marouani et al., 2010, Amri et al., 2009). P—O distances range from 1.468 (2) to 1.606 (2) Å and O(L)—P—O(L) angles from 99.71 (11) to 102.22 (12)°. However, the P—P—P angles values of 97.92 (4), 104.2 (4) and 113.6 (4)° show that the P6O18 ring is significantly distorted from the ideal value 120°. Nevertheless, this distortion is comparatively less important than that observed in Cs6P6O18·6H2O, which shows the greatest distortion for the same angles, ranging between 93.2 and 145.5° (Averbuch-Pouchot & Durif, 1991).

The three crystallography distinct cations involved in this structure exhibit C—C and N—C and C—Cl distances in the range usually found in other molecule analogues such as 4-chloro-2-methylaniline (Fábry et al., 2002). The C—C—C and C—C—N angles are similar to those expected for sp2 hybridization. These groups are almost planar with an average deviation of 0.0018. The mean geometric features of the hydrogen bonds show multiple kinds of hydrogen bonds. The first one involves O—H···O contacts, with O···O distances ranging from 2.813 (4) to 2.934 (4) Å, link between the phosphoric rings which form a bidimensional anionic framework, parallel to the ab plane (Fig. 2). While the second one includes N—H···O contacts, involving weak links since the N···O distances range from 2.705 (4) to 3.079 (4) Å, assuring the cohesion of the network. In addition, some H phenyl atoms also form weak C—H···O(N) interactions with the C···O(N)separations of 2.872 (5)–3.316 (5) Å. All these hydrogen bonds, Van Der Waals, and electrostatic interactions between organic cations and cyclohexaphosphate anions increase the structure stability in the title compound.

For the properties of hybrid materials, see: Shi et al. (2000); Yokotani et al. (1989); Xiao et al. (2005); Koo et al. (2004). For related structures containing cyclohexaphosphate rings, see: Khedhiri et al. (2012); Amri et al. (2009); Marouani et al. (2010); Averbuch-Pouchot & Durif (1991). For bond lengths, see: Fábry et al. (2002). For the preparation of cyclohexaphosphoric acid, see: Schulke & Kayser (1985).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) with displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) x, y, z]
[Figure 2] Fig. 2. Structure projection of (I) along the b axis. The H-phenyl and H-methyl atoms are omitted for figure clarity. Hydrogen bonds are shown as dashed lines.
Hexakis(3-chloro-2-methylanilinium) cyclohexaphosphate dihydrate top
Crystal data top
6C7H9ClN+·P6O186·2H2OZ = 1
Mr = 1365.46F(000) = 704
Triclinic, P1Dx = 1.513 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.576 (5) ÅCell parameters from 25 reflections
b = 10.187 (4) Åθ = 9–11°
c = 17.392 (5) ŵ = 0.52 mm1
α = 94.48 (2)°T = 293 K
β = 103.74 (4)°Prism, colorless
γ = 112.25 (4)°0.32 × 0.22 × 0.15 mm
V = 1498.5 (12) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.033
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.2°
Graphite monochromatorh = 1212
non–profiled ω scansk = 1313
7464 measured reflectionsl = 022
7229 independent reflections2 standard reflections every 120 min
4800 reflections with I > 2σ(I) intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.4583P]
where P = (Fo2 + 2Fc2)/3
7229 reflections(Δ/σ)max = 0.001
405 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
6C7H9ClN+·P6O186·2H2Oγ = 112.25 (4)°
Mr = 1365.46V = 1498.5 (12) Å3
Triclinic, P1Z = 1
a = 9.576 (5) ÅMo Kα radiation
b = 10.187 (4) ŵ = 0.52 mm1
c = 17.392 (5) ÅT = 293 K
α = 94.48 (2)°0.32 × 0.22 × 0.15 mm
β = 103.74 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.033
7464 measured reflections2 standard reflections every 120 min
7229 independent reflections intensity decay: 5%
4800 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.39 e Å3
7229 reflectionsΔρmin = 0.39 e Å3
405 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.10693 (8)0.76984 (7)0.50600 (4)0.0233 (2)
P20.32227 (7)0.62757 (7)0.52138 (4)0.0217 (2)
P30.13627 (8)0.34633 (7)0.41193 (4)0.0236 (2)
O10.2396 (2)0.9092 (2)0.54611 (13)0.0389 (7)
O20.0196 (2)0.7621 (2)0.43465 (12)0.0320 (6)
O30.1712 (2)0.6560 (2)0.47796 (11)0.0302 (6)
O40.3518 (2)0.6539 (2)0.61045 (11)0.0301 (6)
O50.4520 (2)0.7054 (2)0.48872 (13)0.0363 (7)
O60.2550 (2)0.4574 (2)0.49312 (12)0.0333 (6)
O70.1293 (2)0.4211 (2)0.34254 (12)0.0329 (6)
O80.1743 (2)0.2189 (2)0.41061 (12)0.0343 (6)
O90.0321 (2)0.6948 (2)0.57240 (12)0.0327 (6)
Cl10.34937 (16)0.02530 (14)0.04005 (7)0.0821 (5)
N10.3436 (3)0.1365 (3)0.32844 (15)0.0306 (8)
C10.2839 (3)0.1210 (3)0.24115 (17)0.0308 (8)
C20.3467 (4)0.0618 (3)0.19071 (19)0.0375 (10)
C30.2856 (4)0.0540 (4)0.1089 (2)0.0483 (11)
C40.1740 (5)0.1046 (4)0.0786 (2)0.0564 (11)
C50.1155 (4)0.1631 (4)0.1303 (2)0.0560 (14)
C60.1694 (4)0.1698 (3)0.21233 (19)0.0416 (10)
C70.4738 (5)0.0117 (4)0.2232 (2)0.0579 (16)
Cl20.6890 (2)0.81050 (16)0.11837 (7)0.1000 (6)
N20.7057 (3)0.8023 (3)0.41707 (15)0.0281 (8)
C80.6282 (3)0.7400 (3)0.33153 (17)0.0292 (8)
C90.6979 (4)0.8032 (3)0.27466 (18)0.0359 (10)
C100.6160 (5)0.7370 (4)0.1948 (2)0.0546 (13)
C110.4744 (6)0.6175 (5)0.1737 (3)0.0785 (18)
C120.4108 (5)0.5590 (5)0.2319 (3)0.0726 (17)
C130.4874 (4)0.6200 (4)0.3115 (2)0.0464 (11)
C140.8500 (4)0.9359 (4)0.2981 (2)0.0518 (12)
Cl31.0171 (2)0.67872 (17)0.06613 (8)0.1091 (7)
N30.8848 (3)0.5080 (3)0.32105 (15)0.0317 (8)
C150.8371 (3)0.4984 (3)0.23430 (18)0.0345 (9)
C160.9415 (4)0.5911 (3)0.19903 (19)0.0403 (10)
C170.8953 (5)0.5702 (4)0.1164 (2)0.0641 (14)
C180.7528 (7)0.4644 (6)0.0704 (3)0.109 (2)
C190.6514 (6)0.3770 (6)0.1070 (3)0.105 (2)
C200.6930 (4)0.3946 (4)0.1898 (2)0.0662 (12)
C211.0981 (4)0.7057 (4)0.2497 (3)0.0616 (14)
O1W0.5687 (3)0.0657 (3)0.59977 (17)0.0498 (9)
H1A0.284 (4)0.166 (4)0.357 (2)0.056 (11)*
H1B0.350 (4)0.050 (4)0.346 (2)0.049 (10)*
H1C0.446 (4)0.210 (4)0.3448 (19)0.039 (9)*
H40.138110.099370.023330.0851*
H50.039960.198050.110320.0839*
H60.128520.206980.247690.0624*
H7A0.499650.026570.280920.0874*
H7B0.437300.089120.201930.0874*
H7C0.565710.065630.207570.0874*
H2A0.640 (4)0.755 (4)0.445 (2)0.047 (10)*
H2B0.797 (5)0.786 (4)0.431 (2)0.059 (11)*
H2C0.726 (4)0.896 (4)0.427 (2)0.043 (9)*
H110.422030.576620.119710.1168*
H120.315660.477880.217590.1088*
H130.444710.580850.351450.0694*
H14A0.887320.964260.355690.0779*
H14B0.927090.915520.278870.0779*
H14C0.832861.012770.274640.0779*
H3A0.979 (5)0.484 (5)0.334 (3)0.089 (15)*
H3B0.802 (5)0.442 (4)0.344 (2)0.066 (12)*
H3C0.912 (4)0.591 (4)0.348 (2)0.058 (12)*
H180.725540.452540.014510.1635*
H190.554760.305960.076090.1573*
H200.624110.336620.215260.0991*
H21A1.107610.702440.305680.0919*
H21B1.181800.688560.235870.0919*
H21C1.104590.798950.239900.0919*
H1W0.476 (6)0.015 (5)0.576 (3)0.085 (17)*
H2W0.583 (5)0.135 (5)0.577 (3)0.083 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0201 (3)0.0222 (3)0.0295 (4)0.0093 (3)0.0095 (3)0.0054 (3)
P20.0176 (3)0.0215 (3)0.0254 (4)0.0070 (3)0.0073 (3)0.0033 (3)
P30.0206 (3)0.0227 (3)0.0275 (4)0.0079 (3)0.0090 (3)0.0033 (3)
O10.0334 (11)0.0220 (10)0.0539 (14)0.0051 (9)0.0112 (10)0.0025 (9)
O20.0303 (10)0.0385 (11)0.0341 (11)0.0197 (9)0.0102 (9)0.0125 (9)
O30.0270 (10)0.0348 (11)0.0308 (10)0.0192 (9)0.0038 (8)0.0019 (8)
O40.0260 (10)0.0332 (10)0.0258 (10)0.0085 (8)0.0053 (8)0.0021 (8)
O50.0253 (10)0.0401 (12)0.0422 (12)0.0070 (9)0.0173 (9)0.0110 (10)
O60.0344 (11)0.0223 (10)0.0355 (11)0.0100 (9)0.0005 (9)0.0018 (8)
O70.0339 (11)0.0351 (11)0.0329 (11)0.0134 (9)0.0153 (9)0.0102 (9)
O80.0363 (11)0.0281 (10)0.0425 (12)0.0163 (9)0.0142 (9)0.0032 (9)
O90.0232 (9)0.0468 (12)0.0355 (11)0.0167 (9)0.0146 (8)0.0169 (9)
Cl10.1113 (10)0.0872 (8)0.0560 (6)0.0345 (7)0.0527 (7)0.0022 (6)
N10.0265 (13)0.0326 (14)0.0310 (13)0.0116 (11)0.0078 (10)0.0014 (11)
C10.0283 (14)0.0289 (14)0.0277 (14)0.0048 (12)0.0073 (12)0.0018 (12)
C20.0372 (16)0.0324 (16)0.0406 (18)0.0076 (13)0.0194 (14)0.0029 (13)
C30.055 (2)0.0407 (19)0.0402 (19)0.0060 (16)0.0233 (17)0.0002 (15)
C40.057 (2)0.066 (2)0.0317 (18)0.013 (2)0.0083 (17)0.0068 (17)
C50.046 (2)0.070 (3)0.044 (2)0.0226 (19)0.0013 (17)0.0090 (18)
C60.0369 (17)0.0464 (19)0.0375 (18)0.0168 (15)0.0061 (14)0.0010 (14)
C70.065 (2)0.068 (3)0.068 (3)0.042 (2)0.040 (2)0.023 (2)
Cl20.1609 (14)0.1171 (11)0.0480 (6)0.0661 (10)0.0541 (8)0.0379 (7)
N20.0295 (13)0.0284 (13)0.0300 (13)0.0137 (11)0.0109 (11)0.0083 (10)
C80.0295 (14)0.0285 (14)0.0311 (15)0.0142 (12)0.0078 (12)0.0051 (12)
C90.0436 (17)0.0363 (16)0.0364 (17)0.0218 (14)0.0167 (14)0.0103 (13)
C100.078 (3)0.063 (2)0.0319 (18)0.035 (2)0.0210 (18)0.0123 (17)
C110.094 (4)0.076 (3)0.039 (2)0.025 (3)0.005 (2)0.010 (2)
C120.062 (3)0.058 (3)0.057 (3)0.002 (2)0.004 (2)0.011 (2)
C130.0406 (18)0.0370 (18)0.050 (2)0.0044 (15)0.0136 (16)0.0016 (15)
C140.051 (2)0.047 (2)0.062 (2)0.0133 (17)0.0319 (18)0.0225 (18)
Cl30.1496 (14)0.1094 (11)0.0706 (8)0.0299 (10)0.0648 (9)0.0485 (8)
N30.0322 (14)0.0333 (14)0.0278 (13)0.0114 (12)0.0081 (11)0.0076 (11)
C150.0356 (16)0.0332 (16)0.0313 (15)0.0114 (13)0.0074 (13)0.0090 (12)
C160.0448 (18)0.0356 (17)0.0379 (17)0.0138 (14)0.0111 (15)0.0092 (14)
C170.080 (3)0.059 (2)0.040 (2)0.011 (2)0.020 (2)0.0190 (18)
C180.126 (5)0.109 (4)0.033 (2)0.002 (4)0.002 (3)0.012 (3)
C190.086 (4)0.101 (4)0.050 (3)0.022 (3)0.015 (3)0.001 (3)
C200.050 (2)0.061 (2)0.049 (2)0.0095 (19)0.0008 (18)0.0114 (19)
C210.050 (2)0.051 (2)0.068 (3)0.0003 (18)0.022 (2)0.017 (2)
O1W0.0428 (15)0.0427 (14)0.0590 (16)0.0150 (12)0.0074 (13)0.0182 (13)
Geometric parameters (Å, º) top
Cl1—C31.741 (4)C4—C51.373 (6)
Cl2—C101.737 (4)C5—C61.384 (5)
Cl3—C171.734 (5)C4—H40.9300
P1—O21.487 (2)C5—H50.9300
P1—O91.596 (2)C6—H60.9300
P1—O31.599 (2)C7—H7C0.9600
P1—O11.475 (2)C7—H7B0.9600
P2—O51.468 (2)C7—H7A0.9600
P2—O31.606 (2)C8—C91.388 (4)
P2—O41.490 (2)C8—C131.377 (5)
P2—O61.591 (2)C9—C141.502 (5)
P3—O9i1.601 (2)C9—C101.391 (5)
P3—O71.478 (2)C10—C111.378 (7)
P3—O81.475 (2)C11—C121.365 (7)
P3—O61.606 (2)C12—C131.371 (6)
O1W—H1W0.82 (5)C11—H110.9300
O1W—H2W0.82 (5)C12—H120.9300
N1—C11.462 (4)C13—H130.9300
N1—H1C0.94 (4)C14—H14C0.9600
N1—H1B0.97 (4)C14—H14A0.9600
N1—H1A0.95 (4)C14—H14B0.9600
N2—C81.462 (4)C15—C161.391 (5)
N2—H2B0.93 (5)C15—C201.372 (5)
N2—H2A0.90 (4)C16—C211.508 (6)
N2—H2C0.89 (4)C16—C171.373 (5)
N3—C151.453 (4)C17—C181.377 (7)
N3—H3C0.85 (4)C18—C191.367 (8)
N3—H3B1.01 (4)C19—C201.378 (6)
N3—H3A1.00 (5)C18—H180.9300
C1—C61.375 (5)C19—H190.9300
C1—C21.392 (5)C20—H200.9300
C2—C71.500 (6)C21—H21C0.9600
C2—C31.387 (5)C21—H21A0.9600
C3—C41.370 (6)C21—H21B0.9600
O1—P1—O2120.42 (13)C5—C6—H6120.00
O1—P1—O3110.23 (13)C1—C6—H6120.00
O1—P1—O9108.66 (12)C2—C7—H7C109.00
O2—P1—O3105.54 (12)C2—C7—H7A109.00
O2—P1—O9110.27 (13)C2—C7—H7B109.00
O3—P1—O999.71 (11)H7A—C7—H7B109.00
O3—P2—O4110.07 (12)H7A—C7—H7C109.00
O3—P2—O5108.64 (12)H7B—C7—H7C109.00
O3—P2—O6100.22 (12)N2—C8—C13117.5 (3)
O4—P2—O5118.09 (13)C9—C8—C13123.1 (3)
O4—P2—O6106.34 (12)N2—C8—C9119.4 (3)
O5—P2—O6112.00 (12)C10—C9—C14122.5 (3)
O6—P3—O7110.89 (12)C8—C9—C14122.0 (3)
O6—P3—O8106.05 (12)C8—C9—C10115.5 (3)
O6—P3—O9i102.62 (12)Cl2—C10—C9119.5 (3)
O7—P3—O8121.53 (13)C9—C10—C11122.1 (4)
O7—P3—O9i104.67 (12)Cl2—C10—C11118.4 (3)
O8—P3—O9i109.53 (12)C10—C11—C12120.2 (4)
P1—O3—P2130.72 (13)C11—C12—C13119.9 (5)
P2—O6—P3134.20 (14)C8—C13—C12119.2 (4)
P1—O9—P3i133.29 (14)C12—C11—H11120.00
H1W—O1W—H2W101 (5)C10—C11—H11120.00
H1A—N1—H1B108 (3)C13—C12—H12120.00
H1A—N1—H1C107 (3)C11—C12—H12120.00
C1—N1—H1B114 (2)C8—C13—H13120.00
C1—N1—H1C107 (2)C12—C13—H13120.00
H1B—N1—H1C108 (3)C9—C14—H14C109.00
C1—N1—H1A113 (2)C9—C14—H14B109.00
H2B—N2—H2C112 (4)H14A—C14—H14C109.00
H2A—N2—H2B110 (3)C9—C14—H14A109.00
H2A—N2—H2C109 (4)H14A—C14—H14B109.00
C8—N2—H2A108 (2)H14B—C14—H14C109.00
C8—N2—H2B107 (2)C16—C15—C20122.3 (3)
C8—N2—H2C111 (2)N3—C15—C16118.9 (3)
C15—N3—H3B116 (2)N3—C15—C20118.8 (3)
H3B—N3—H3C104 (3)C15—C16—C21121.1 (3)
C15—N3—H3C114 (2)C17—C16—C21122.5 (4)
C15—N3—H3A107 (3)C15—C16—C17116.4 (3)
H3A—N3—H3C107 (4)Cl3—C17—C18117.5 (3)
H3A—N3—H3B109 (4)C16—C17—C18122.2 (4)
C2—C1—C6122.5 (3)Cl3—C17—C16120.3 (3)
N1—C1—C6117.9 (3)C17—C18—C19119.9 (5)
N1—C1—C2119.6 (3)C18—C19—C20119.7 (5)
C3—C2—C7122.4 (3)C15—C20—C19119.3 (4)
C1—C2—C7121.9 (3)C17—C18—H18120.00
C1—C2—C3115.7 (3)C19—C18—H18120.00
Cl1—C3—C2119.6 (3)C20—C19—H19120.00
C2—C3—C4123.0 (4)C18—C19—H19120.00
Cl1—C3—C4117.4 (3)C15—C20—H20120.00
C3—C4—C5119.6 (3)C19—C20—H20120.00
C4—C5—C6119.7 (4)C16—C21—H21B109.00
C1—C6—C5119.5 (3)C16—C21—H21C109.00
C5—C4—H4120.00C16—C21—H21A109.00
C3—C4—H4120.00H21A—C21—H21C109.00
C4—C5—H5120.00H21B—C21—H21C110.00
C6—C5—H5120.00H21A—C21—H21B109.00
O1—P1—O3—P238.7 (2)C3—C4—C5—C60.3 (6)
O2—P1—O3—P2170.22 (16)C4—C5—C6—C11.6 (5)
O9—P1—O3—P275.42 (19)N2—C8—C9—C10179.9 (3)
O2—P1—O9—P3i19.0 (2)N2—C8—C9—C141.1 (5)
O3—P1—O9—P3i129.62 (18)C13—C8—C9—C100.1 (5)
O1—P1—O9—P3i115.04 (19)C13—C8—C9—C14178.7 (4)
O4—P2—O3—P133.9 (2)N2—C8—C13—C12179.7 (4)
O5—P2—O3—P196.79 (18)C9—C8—C13—C120.2 (6)
O5—P2—O6—P379.6 (2)C8—C9—C10—Cl2177.9 (3)
O6—P2—O3—P1145.66 (17)C8—C9—C10—C110.6 (6)
O3—P2—O6—P335.4 (2)C14—C9—C10—Cl21.0 (6)
O4—P2—O6—P3150.01 (19)C14—C9—C10—C11178.3 (4)
O7—P3—O6—P222.7 (2)Cl2—C10—C11—C12178.1 (4)
O8—P3—O6—P2156.50 (19)C9—C10—C11—C120.8 (8)
O9i—P3—O6—P288.6 (2)C10—C11—C12—C130.5 (8)
O6i—P3i—O9—P161.0 (2)C11—C12—C13—C80.1 (7)
O7i—P3i—O9—P1176.90 (17)N3—C15—C16—C17175.3 (3)
O8i—P3i—O9—P151.3 (2)N3—C15—C16—C213.4 (5)
N1—C1—C2—C3178.7 (3)C20—C15—C16—C172.3 (5)
N1—C1—C2—C70.6 (5)C20—C15—C16—C21179.0 (4)
C6—C1—C2—C30.4 (5)N3—C15—C20—C19175.0 (4)
C6—C1—C2—C7178.8 (3)C16—C15—C20—C192.5 (6)
N1—C1—C6—C5177.0 (3)C15—C16—C17—Cl3179.5 (3)
C2—C1—C6—C51.3 (5)C15—C16—C17—C180.6 (7)
C1—C2—C3—Cl1177.2 (3)C21—C16—C17—Cl30.8 (6)
C1—C2—C3—C41.9 (5)C21—C16—C17—C18179.3 (5)
C7—C2—C3—Cl13.6 (5)Cl3—C17—C18—C19179.2 (5)
C7—C2—C3—C4177.3 (4)C16—C17—C18—C190.7 (9)
Cl1—C3—C4—C5177.5 (3)C17—C18—C19—C200.5 (9)
C2—C3—C4—C51.6 (6)C18—C19—C20—C151.0 (8)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O80.95 (4)1.76 (4)2.705 (4)179 (5)
N1—H1B···O1Wii0.97 (4)1.85 (4)2.779 (4)160 (3)
N1—H1C···O4iii0.94 (4)1.83 (4)2.766 (4)173 (3)
O1W—H1W···O1iv0.82 (5)2.02 (6)2.813 (4)164 (5)
O1W—H2W···O5iii0.82 (5)2.14 (5)2.934 (4)163 (5)
N2—H2A···O50.90 (4)2.02 (4)2.871 (4)156 (4)
N2—H2B···O2v0.93 (5)1.85 (5)2.763 (4)166 (3)
N2—H2C···O1vi0.89 (4)1.89 (4)2.775 (4)176 (4)
N3—H3A···O7v1.00 (5)1.77 (5)2.759 (4)171 (5)
N3—H3B···O4iii1.01 (4)1.83 (4)2.834 (4)172 (4)
N3—H3C···O2v0.85 (4)2.00 (4)2.827 (4)166 (3)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x+1, y, z; (vi) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O80.95 (4)1.76 (4)2.705 (4)179 (5)
N1—H1B···O1Wi0.97 (4)1.85 (4)2.779 (4)160 (3)
N1—H1C···O4ii0.94 (4)1.83 (4)2.766 (4)173 (3)
O1W—H1W···O1iii0.82 (5)2.02 (6)2.813 (4)164 (5)
O1W—H2W···O5ii0.82 (5)2.14 (5)2.934 (4)163 (5)
N2—H2A···O50.90 (4)2.02 (4)2.871 (4)156 (4)
N2—H2B···O2iv0.93 (5)1.85 (5)2.763 (4)166 (3)
N2—H2C···O1v0.89 (4)1.89 (4)2.775 (4)176 (4)
N3—H3A···O7iv1.00 (5)1.77 (5)2.759 (4)171 (5)
N3—H3B···O4ii1.01 (4)1.83 (4)2.834 (4)172 (4)
N3—H3C···O2iv0.85 (4)2.00 (4)2.827 (4)166 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x+1, y, z; (v) x+1, y+2, z+1.
 

References

First citationAmri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, o654.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAverbuch-Pouchot, M. T. & Durif, A. (1991). Eur. J. Solid State Inorg. Chem. 28, 9–22.  CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFábry, J., Krupková, R. & Studnička, V. (2002). Acta Cryst. E58, o105–o107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKhedhiri, L., Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst. E68, o2038–o2039.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKoo, B. K., Ouellette, W., Burkholder, E. M., Golub, V., O'Connor, C. J. & Zubieta, J. (2004). Solid State Sci. 6, 461–468.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarouani, H. & Rzaigui, M. (2010). Acta Cryst. E66, o233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F. N., Shen, Z., You, X. Z. & Duan, C. Y. (2000). J. Mol. Struct. 523, 143–147.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiao, D., An, H., Waag, E. & Xu, L. (2005). J. Mol. Struct. 738, 217–225.  Web of Science CSD CrossRef CAS Google Scholar
First citationYokotani, A., Sasaki, T., Yoshida, K. & Nakai, S. (1989). Appl. Phys. Lett. 55, 2692–2693.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds