metal-organic compounds
trans-Diaquabis(pyridazine-3-carboxylato-κ2N2,O)copper(II)
aDepartamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad de País Vasco (UPV/EHU), PO Box 644, E-48080 Bilbao, Spain
*Correspondence e-mail: juanma.zorrilla@ehu.es
In the title compound, [Cu(C5H3N2O2)2(H2O)2], the CuII ion, located on an inversion center, exhibits an octahedral coordination geometry. The equatorial plane is defined by two trans-related N,O-bidentate pyridazine-3-carboxylate ligands and the axial positions are occupied by two water molecules. In the crystal, molecules are connected by O—H⋯O hydrogen bonds between the water molecules and the noncoordinating carboxylate O atoms, forming layers parallel to the bc plane. The layers are stacked along the a axis by further O—H⋯O hydrogen bonds between the water molecules and the coordinating carboxylate O atoms. Weak C—H⋯O hydrogen bonds are also observed between the pyridazine rings and the water molecules and between the pyridazine rings and the non-coordinating carboxylate O atoms.
CCDC reference: 988680
Related literature
For the isotypic zinc complex, see: Gryz et al. (2004). For a related cobalt(II) complex which contains two non-coordinating water molecules, see: Artetxe et al. (2013).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 988680
10.1107/S1600536814004334/is5342sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814004334/is5342Isup2.hkl
To a solution of CuCl2.2H2O (34 mg, 0.2 mmol) in water (10 mL) 3-pyridazine carboxylic acid (48 mg, 0.4 mmol) was dropwise added and the resulting solution was stirred for 1 h at 80 °C. Blue prismatic crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation of the resulting solution after six days.
H atoms of the water molecules were located in a Fourier difference map and refined isotropically with O—H bond lengths restrained to 0.88 (1) Å. All H atoms of the pyridazine ring were positioned geometrically and refined using a riding model with standard SHELXL parameters.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. Molecular structure of the title compound, showing atom labelling and 50% probability displacement ellipsoids. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.] | |
Fig. 2. Left: View of the crystal packing along the b axis. Right: Projection of a layer along the a axis (O—H···O hydrogen bonds represented as dotted red lines and weak C—H···O interactions as dotted green lines). |
[Cu(C5H3N2O2)2(H2O)2] | F(000) = 350 |
Mr = 345.76 | Dx = 1.951 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1663 reflections |
a = 5.4014 (1) Å | θ = 2.8–28.4° |
b = 11.5633 (3) Å | µ = 1.89 mm−1 |
c = 9.6283 (2) Å | T = 100 K |
β = 101.837 (3)° | Prism, blue |
V = 588.58 (2) Å3 | 0.19 × 0.09 × 0.06 mm |
Z = 2 |
Agilent SuperNova diffractometer | 1216 independent reflections |
Radiation source: Nova (Mo) X-ray micro-source | 1077 reflections with I > 2σ(I) |
Multilayer optics monochromator | Rint = 0.022 |
Detector resolution: 16.2439 pixels mm-1 | θmax = 26.5°, θmin = 2.8° |
ω scans | h = −6→6 |
Absorption correction: numerical (CrysAlis PRO; Agilent, 2012) | k = −13→14 |
Tmin = 0.772, Tmax = 0.898 | l = −12→9 |
2532 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0235P)2 + 0.6643P] where P = (Fo2 + 2Fc2)/3 |
1216 reflections | (Δ/σ)max < 0.001 |
105 parameters | Δρmax = 0.44 e Å−3 |
3 restraints | Δρmin = −0.45 e Å−3 |
[Cu(C5H3N2O2)2(H2O)2] | V = 588.58 (2) Å3 |
Mr = 345.76 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.4014 (1) Å | µ = 1.89 mm−1 |
b = 11.5633 (3) Å | T = 100 K |
c = 9.6283 (2) Å | 0.19 × 0.09 × 0.06 mm |
β = 101.837 (3)° |
Agilent SuperNova diffractometer | 1216 independent reflections |
Absorption correction: numerical (CrysAlis PRO; Agilent, 2012) | 1077 reflections with I > 2σ(I) |
Tmin = 0.772, Tmax = 0.898 | Rint = 0.022 |
2532 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 3 restraints |
wR(F2) = 0.065 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.44 e Å−3 |
1216 reflections | Δρmin = −0.45 e Å−3 |
105 parameters |
Experimental. IR (cm-1): 3554(s), 3315(s), 3233(s), 1628(s), 1571(m), 1578(s), 1365(w), 1231(w), 1152(w), 1091(w), 1072(w), 1039(w), 978(m), 851(m), 785(m), 722(m), 669(w), 536(w), 440(w). |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C3 | 0.4961 (4) | 0.27046 (19) | 0.4096 (2) | 0.0083 (4) | |
C4 | 0.4421 (4) | 0.15278 (19) | 0.3920 (2) | 0.0107 (4) | |
H4 | 0.5153 | 0.1071 | 0.3318 | 0.013* | |
C5 | 0.2754 (4) | 0.10781 (19) | 0.4680 (2) | 0.0106 (5) | |
H5 | 0.2313 | 0.03 | 0.4606 | 0.013* | |
C6 | 0.1737 (4) | 0.18136 (19) | 0.5564 (2) | 0.0111 (5) | |
H6 | 0.0632 | 0.1503 | 0.6089 | 0.013* | |
C7 | 0.6781 (4) | 0.33471 (19) | 0.3358 (2) | 0.0097 (4) | |
Cu1 | 0.5 | 0.5 | 0.5 | 0.00820 (13) | |
N1 | 0.2267 (3) | 0.29375 (16) | 0.5696 (2) | 0.0101 (4) | |
N2 | 0.3890 (3) | 0.33637 (16) | 0.49462 (18) | 0.0084 (4) | |
O1 | 0.7022 (3) | 0.44303 (13) | 0.36438 (16) | 0.0100 (3) | |
O2 | 0.7873 (3) | 0.28108 (13) | 0.25561 (17) | 0.0135 (4) | |
O1W | 0.1555 (3) | 0.53934 (14) | 0.30161 (17) | 0.0121 (3) | |
H1WA | 0.014 (3) | 0.514 (2) | 0.321 (3) | 0.024 (8)* | |
H1WB | 0.149 (6) | 0.6143 (9) | 0.292 (4) | 0.051 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C3 | 0.0088 (10) | 0.0095 (11) | 0.0063 (10) | 0.0001 (8) | 0.0005 (8) | 0.0003 (8) |
C4 | 0.0128 (11) | 0.0094 (11) | 0.0094 (10) | 0.0035 (9) | 0.0014 (9) | −0.0004 (8) |
C5 | 0.0107 (10) | 0.0082 (11) | 0.0117 (11) | −0.0007 (8) | −0.0007 (9) | 0.0019 (8) |
C6 | 0.0106 (10) | 0.0125 (11) | 0.0106 (11) | −0.0011 (9) | 0.0028 (9) | 0.0014 (9) |
C7 | 0.0091 (10) | 0.0120 (11) | 0.0080 (10) | −0.0007 (8) | 0.0018 (9) | 0.0001 (9) |
Cu1 | 0.0111 (2) | 0.0052 (2) | 0.0101 (2) | −0.00061 (14) | 0.00618 (15) | −0.00061 (14) |
N1 | 0.0107 (9) | 0.0099 (9) | 0.0104 (9) | −0.0019 (7) | 0.0039 (8) | −0.0002 (7) |
N2 | 0.0091 (9) | 0.0092 (9) | 0.0072 (9) | 0.0007 (7) | 0.0021 (7) | 0.0013 (7) |
O1 | 0.0112 (7) | 0.0071 (8) | 0.0128 (8) | −0.0012 (6) | 0.0052 (6) | 0.0004 (6) |
O2 | 0.0158 (8) | 0.0120 (8) | 0.0152 (8) | −0.0009 (6) | 0.0094 (7) | −0.0033 (6) |
O1W | 0.0101 (8) | 0.0105 (8) | 0.0161 (8) | 0.0006 (6) | 0.0037 (7) | 0.0023 (7) |
C3—N2 | 1.334 (3) | C7—C3 | 1.520 (3) |
C3—C4 | 1.395 (3) | Cu1—O1i | 1.9792 (15) |
C3—C7 | 1.520 (3) | Cu1—O1 | 1.9792 (15) |
C4—C5 | 1.374 (3) | Cu1—N2 | 1.9822 (18) |
C4—H4 | 0.93 | Cu1—N2i | 1.9822 (18) |
C5—C6 | 1.393 (3) | Cu1—O1W | 2.4207 (16) |
C5—H5 | 0.93 | Cu1—O1Wi | 2.4207 (16) |
C6—N1 | 1.331 (3) | N1—N2 | 1.339 (3) |
C6—H6 | 0.93 | O1W—H1WA | 0.872 (10) |
C7—O2 | 1.231 (3) | O1W—H1WB | 0.872 (10) |
C7—O1 | 1.283 (3) | ||
N2—C3—C4 | 121.7 (2) | O1i—Cu1—N2i | 82.52 (7) |
N2—C3—C7 | 114.28 (19) | N2—Cu1—N2i | 180 |
C4—C3—C7 | 124.0 (2) | O1—Cu1—O1W | 88.90 (6) |
C5—C4—C3 | 116.6 (2) | O1i—Cu1—O1W | 91.10 (6) |
C5—C4—H4 | 121.7 | N2—Cu1—O1W | 88.82 (6) |
C3—C4—H4 | 121.7 | N2i—Cu1—O1W | 91.18 (6) |
C4—C5—C6 | 118.6 (2) | O1—Cu1—O1Wi | 91.10 (6) |
C4—C5—H5 | 120.7 | O1i—Cu1—O1Wi | 88.90 (6) |
C6—C5—H5 | 120.7 | N2—Cu1—O1Wi | 91.18 (6) |
N1—C6—C5 | 123.4 (2) | N2i—Cu1—O1Wi | 88.82 (6) |
N1—C6—H6 | 118.3 | O1W—Cu1—O1Wi | 180 |
C5—C6—H6 | 118.3 | C6—N1—N2 | 117.37 (19) |
O2—C7—O1 | 125.8 (2) | C3—N2—N1 | 122.33 (19) |
O2—C7—C3 | 119.1 (2) | C3—N2—Cu1 | 113.24 (15) |
O1—C7—C3 | 115.06 (19) | N1—N2—Cu1 | 124.43 (14) |
O1i—Cu1—O1 | 180 | C7—O1—Cu1 | 114.89 (13) |
O1—Cu1—N2 | 82.52 (7) | Cu1—O1W—H1WA | 109.8 (19) |
O1i—Cu1—N2 | 97.48 (7) | Cu1—O1W—H1WB | 106 (2) |
O1—Cu1—N2i | 97.48 (7) | H1WA—O1W—H1WB | 109 (2) |
N2—C3—C4—C5 | −0.8 (3) | O1W—Cu1—N2—C3 | 89.46 (15) |
C7—C3—C4—C5 | 179.22 (19) | O1Wi—Cu1—N2—C3 | −90.54 (15) |
C3—C4—C5—C6 | −0.2 (3) | O1—Cu1—N2—N1 | 179.32 (17) |
C4—C5—C6—N1 | 1.1 (3) | O1i—Cu1—N2—N1 | −0.68 (17) |
C5—C6—N1—N2 | −0.9 (3) | O1W—Cu1—N2—N1 | −91.63 (16) |
C4—C3—N2—N1 | 1.0 (3) | O1Wi—Cu1—N2—N1 | 88.37 (16) |
C7—C3—N2—N1 | −179.04 (18) | O2—C7—O1—Cu1 | −179.34 (18) |
C4—C3—N2—Cu1 | 179.92 (16) | C3—C7—O1—Cu1 | 0.8 (2) |
C7—C3—N2—Cu1 | −0.1 (2) | N2—Cu1—O1i—C7i | −179.30 (15) |
C6—N1—N2—C3 | −0.1 (3) | N2—Cu1—O1—C7 | −0.70 (15) |
C6—N1—N2—Cu1 | −178.91 (15) | O1W—Cu1—O1—C7 | −89.65 (15) |
O1—Cu1—N2—C3 | 0.41 (14) | O1Wi—Cu1—O1—C7 | 90.35 (15) |
O1i—Cu1—N2—C3 | −179.59 (14) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O1ii | 0.87 (2) | 1.99 (2) | 2.865 (2) | 175 (2) |
O1W—H1WB···O2iii | 0.87 (1) | 2.03 (2) | 2.878 (2) | 165 (3) |
C4—H4···O1Wiv | 0.93 | 2.52 | 3.403 (3) | 158 |
C6—H6···O2v | 0.93 | 2.39 | 3.141 (3) | 138 |
Symmetry codes: (ii) x−1, y, z; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2; (v) x−1, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O1i | 0.874 (19) | 1.993 (19) | 2.865 (2) | 175 (2) |
O1W—H1WB···O2ii | 0.872 (11) | 2.028 (15) | 2.878 (2) | 165 (3) |
C4—H4···O1Wiii | 0.930 | 2.52 | 3.403 (3) | 158 |
C6—H6···O2iv | 0.930 | 2.39 | 3.141 (3) | 138 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x−1, −y+1/2, z+1/2. |
Acknowledgements
This work was supported financially by Eusko Jaurlaritza/Gobierno Vasco (grant IT477–10). AP also thanks EJ/GV for predoctoral fellowships.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Inc., Santa Clara, CA, USA. Google Scholar
Artetxe, B., Reinoso, S., San Felices, L., Martín-Caballero, J. & Gutiérrez-Zorrilla, J. M. (2013). Acta Cryst. E69, m420–m421. CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gryz, M., Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, m1481–m1483. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The metal ion, the pyridazine ring and carboxylate atoms are coplanar. As expected, the Cu—O and Cu—N distances (Table 1) are similar to the Zn(II) and Co(II) analogue compounds (Gryz et al., 2004; Artetxe et al., 2013). Table 2 summarizes the geometrical parameters of the O—H···O and C—H···O hydrogen bonding interactions.