organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-[(2E,3E)-Butane-2,3-diyl­idene]bis­[4-fluoro-2-(1-phenyl­eth­yl)aniline]

aKey Laboratory of Eco-Environment-Related Polymer Materials of the Ministry of, Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: she_houde@163.com

(Received 18 December 2013; accepted 5 February 2014; online 12 February 2014)

The title mol­ecule, C32H30F2N2, a product of the condensation reaction of butane-2,3-dione and 4-fluoro-2-(1-phenyl­eth­yl)aniline, is located about an inversion centre. In the asymmetric unit, the dihedral angle between the planes of the benzene and phenyl rings is 84.27 (5)°. Neither hydrogen bonding nor aromatic stacking is observed in the crystal structure.

Related literature

For the synthesis of α-di­imine ligands, see: Grasa et al. (2001[Grasa, G. A., Hillier, A. C. & Nolan, S. P. (2001). Org. Lett. 3, 1077-1080.]); Williams et al. (2008[Williams, T. J., Caffyn, A. J. M., Hazari, N., Oblad, P. F., Labinger, J. A. & Bercaw, J. E. (2008). J. Am. Chem. Soc. 130, 2418-2419.]); Hanhan et al. (2012[Hanhan, M. E., Martínez-Máñez, R. & Ros-Lis, J. V. (2012). Tetrahedron Lett. 53, 2388-2391.]); Partyka (2011[Partyka, D. V. (2011). Chem. Rev. 111, 1529-1595.]); Yuan et al. (2012[Yuan, J., Xie, X., Liu, Y., Miao, C. & Li, J. (2012). Acta Cryst. E68, o210.]). For related structures, see: Zou et al. (2008[Zou, H., Hou, Y., Yong, X., Cen, Y. & Bao, F. (2008). Acta Cryst. E64, o567.]); Lohr et al. (2011[Lohr, T. L., Piers, W. E. & Parvez, M. (2011). Acta Cryst. E67, o2281.]).

[Scheme 1]

Experimental

Crystal data
  • C32H30F2N2

  • Mr = 480.58

  • Monoclinic, P 21 /n

  • a = 11.5335 (11) Å

  • b = 9.5024 (12) Å

  • c = 12.1318 (14) Å

  • β = 91.660 (11)°

  • V = 1329.0 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 295 K

  • 0.35 × 0.28 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.808, Tmax = 0.852

  • 5982 measured reflections

  • 2507 independent reflections

  • 2132 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.118

  • S = 1.07

  • 2507 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

An α-diimine ligands with different electronic property, rigidity and steric hindrance has been widely synthesized due to their significant applications in catalysis, coordination chemistry and carbene chemistry (Grasa et al., 2001; Williams et al., 2008; Hanhan et al., 2012; Partyka, 2011; Yuan et al., 2012). As part of our research efforts focused on developing ligands and organic catalysts, a novel series of imine derivatives were synthesized. Herein, we report the preparation and crystal structure of the title compound (Fig. 1).

The title molecule, is a symmetrical structure, and the central butanediimine moiety (NC(Me)–C(Me)N) is planar. The dihedral angles between the benzene ring C8-C13 and benzene ring C1-C6 is 84.27 (5)°. The molecular dimensions in the title compound agree very well with the corresponding one reported in a few closely related compounds (Zou et al., 2008; Lohr et al. 2011).

Related literature top

For the synthesis of α-diimine ligands, see: Grasa et al. (2001); Williams et al. (2008); Hanhan et al. (2012); Partyka (2011); Yuan et al. (2012). For related structures, see: Zou et al. (2008); Lohr et al. (2011).

Experimental top

Formic acid (1.0 ml) was added to a stirred solution of 4-fluoro-2-(1-phenylethyl)aniline (1.5 mmol) and 2,3-butanedione (0.7 mmol) in 20 ml anhydrous methanol (20 ml). The mixture was stirred at 323 K for 24 h, then cooled, and the precipitate was separated by filtration. The solid was recrystallized from ethanol/dichloromethane (v/v = 12:1), washed with cold ethanol and dried under vacuum to give the title compound (Fig. 2). Yield is 82%. Crystals suitable for X-ray diffraction were grown in cyclohexane/dichloromethane (v/v = 1:2) solution at room temperature by the slow evaporation method. 1H NMR (400 MHz, CDCl3): δ (p.p.m.) 7.19(t, J = 7.4 Hz, 4H), 7.09-7.13 (m, 4H), 7.01-7.05(m, 4H), 6.93 (dt, J = 8.4, 2.9 Hz, 2H), 6.47 (dd, J = 8.6, 5.3 Hz, 2H), 4.08 (q, J = 6.8 Hz, 2H), 1.62 (s, 6H), 1.56 (d, J = 7.2 Hz, 6H). 13C NMR (100 MHz, CDCl3): δ (p.p.m.) 168.54, 161.22, 158.82, 145.58, 144.69, 137.34, 128.31, 127.57, 126.06, 118.94, 113.58, 40.17, 21.42, 20.86.

Refinement top

All hydrogen atoms were placed in calculated positions with C–H distances of 0.93Å, 0.96Å and 0.98Å for aryl, methyl and methine H atoms. They were included in the refinement in a riding model approximation, respectively with Uiso = 1.2Ueq(C) for aryl and methine H, and Uiso = 1.5Ueq(C) for methyl H.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title molecule with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 2] Fig. 2. A condensation reaction of 2,3-butanedione and 4-fluoro-2-(1-phenylethyl)aniline.
N,N'-[(2E,3E)-Butane-2,3-diylidene]bis[4-fluoro-2-(1-phenylethyl)aniline] top
Crystal data top
C32H30F2N2F(000) = 508
Mr = 480.58Dx = 1.201 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 11.5335 (11) ÅCell parameters from 2620 reflections
b = 9.5024 (12) Åθ = 5.2–70.8°
c = 12.1318 (14) ŵ = 0.64 mm1
β = 91.660 (11)°T = 295 K
V = 1329.0 (3) Å3Block, clear light yellow
Z = 20.35 × 0.28 × 0.26 mm
Data collection top
Bruker APEXII CCD
diffractometer
2507 independent reflections
Radiation source: fine-focus sealed tube2132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 70.5°, θmin = 5.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1412
Tmin = 0.808, Tmax = 0.852k = 1110
5982 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.056P)2 + 0.1881P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2507 reflectionsΔρmax = 0.18 e Å3
166 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0100 (10)
Crystal data top
C32H30F2N2V = 1329.0 (3) Å3
Mr = 480.58Z = 2
Monoclinic, P21/nCu Kα radiation
a = 11.5335 (11) ŵ = 0.64 mm1
b = 9.5024 (12) ÅT = 295 K
c = 12.1318 (14) Å0.35 × 0.28 × 0.26 mm
β = 91.660 (11)°
Data collection top
Bruker APEXII CCD
diffractometer
2507 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2132 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.852Rint = 0.019
5982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.07Δρmax = 0.18 e Å3
2507 reflectionsΔρmin = 0.15 e Å3
166 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.37261 (9)0.49441 (12)0.57384 (9)0.0406 (3)
F10.02542 (7)0.78857 (12)0.66670 (9)0.0687 (3)
C10.57482 (13)0.64883 (19)0.75155 (16)0.0602 (4)
H10.58410.55390.76830.072*
C20.67019 (14)0.7270 (2)0.72255 (19)0.0747 (6)
H20.74260.68440.71970.090*
C30.65862 (15)0.8671 (2)0.69791 (18)0.0743 (6)
H30.72240.91940.67690.089*
C40.55119 (15)0.9295 (2)0.70466 (16)0.0687 (5)
H40.54301.02510.68990.082*
C50.45519 (13)0.85116 (16)0.73331 (14)0.0543 (4)
H50.38320.89460.73710.065*
C60.46540 (11)0.70923 (15)0.75624 (11)0.0420 (3)
C70.36098 (11)0.61988 (15)0.78526 (11)0.0419 (3)
H70.38600.52150.78140.050*
C80.26187 (10)0.63660 (13)0.70095 (10)0.0361 (3)
C90.16094 (11)0.71082 (15)0.72229 (11)0.0422 (3)
H90.15250.75550.78980.051*
C100.07376 (11)0.71744 (15)0.64271 (13)0.0468 (3)
C110.08083 (12)0.65451 (17)0.54169 (13)0.0518 (4)
H110.01990.66010.48990.062*
C120.18142 (12)0.58231 (17)0.51907 (11)0.0488 (4)
H120.18850.53850.45100.059*
C130.27209 (11)0.57440 (14)0.59672 (10)0.0379 (3)
C140.32418 (14)0.6453 (2)0.90437 (13)0.0628 (5)
H14A0.30680.74330.91420.094*
H14B0.38620.61850.95450.094*
H14C0.25660.59020.91880.094*
C150.44839 (10)0.54573 (14)0.51063 (10)0.0399 (3)
C160.44521 (14)0.68862 (16)0.45826 (14)0.0558 (4)
H16A0.38150.74140.48620.084*
H16B0.43560.67880.37980.084*
H16C0.51650.73710.47530.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0385 (6)0.0450 (6)0.0388 (6)0.0027 (5)0.0096 (4)0.0018 (5)
F10.0418 (5)0.0843 (7)0.0801 (7)0.0223 (4)0.0027 (4)0.0130 (5)
C10.0394 (7)0.0582 (10)0.0828 (11)0.0038 (7)0.0031 (7)0.0062 (8)
C20.0369 (8)0.0801 (13)0.1072 (16)0.0020 (8)0.0043 (9)0.0174 (11)
C30.0512 (9)0.0828 (13)0.0896 (13)0.0260 (9)0.0173 (9)0.0201 (11)
C40.0681 (11)0.0520 (10)0.0868 (13)0.0131 (8)0.0148 (10)0.0048 (8)
C50.0465 (8)0.0472 (8)0.0698 (10)0.0001 (6)0.0093 (7)0.0048 (7)
C60.0372 (6)0.0461 (8)0.0427 (7)0.0009 (5)0.0001 (5)0.0071 (6)
C70.0396 (7)0.0438 (7)0.0423 (7)0.0011 (5)0.0004 (5)0.0002 (6)
C80.0328 (6)0.0381 (7)0.0377 (6)0.0033 (5)0.0066 (5)0.0001 (5)
C90.0387 (6)0.0454 (7)0.0431 (7)0.0000 (5)0.0085 (5)0.0065 (5)
C100.0341 (6)0.0484 (8)0.0583 (8)0.0063 (5)0.0066 (6)0.0022 (6)
C110.0407 (7)0.0626 (9)0.0515 (8)0.0045 (6)0.0070 (6)0.0020 (7)
C120.0481 (8)0.0597 (9)0.0386 (7)0.0038 (6)0.0011 (6)0.0071 (6)
C130.0353 (6)0.0406 (7)0.0383 (6)0.0003 (5)0.0087 (5)0.0010 (5)
C140.0585 (9)0.0879 (13)0.0420 (8)0.0129 (9)0.0003 (7)0.0006 (8)
C150.0411 (7)0.0427 (7)0.0363 (6)0.0042 (6)0.0088 (5)0.0019 (5)
C160.0559 (8)0.0505 (9)0.0623 (9)0.0119 (7)0.0237 (7)0.0108 (7)
Geometric parameters (Å, º) top
N1—C151.2761 (16)C8—C91.3917 (17)
N1—C131.4204 (15)C8—C131.4039 (17)
F1—C101.3673 (15)C9—C101.375 (2)
C1—C21.382 (2)C9—H90.9300
C1—C61.3890 (19)C10—C111.368 (2)
C1—H10.9300C11—C121.382 (2)
C2—C31.370 (3)C11—H110.9300
C2—H20.9300C12—C131.3892 (19)
C3—C41.378 (3)C12—H120.9300
C3—H30.9300C14—H14A0.9600
C4—C51.387 (2)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C5—C61.381 (2)C15—C161.4992 (19)
C5—H50.9300C15—C15i1.502 (2)
C6—C71.5231 (18)C16—H16A0.9600
C7—C81.5200 (18)C16—H16B0.9600
C7—C141.537 (2)C16—H16C0.9600
C7—H70.9800
C15—N1—C13119.34 (11)C10—C9—H9120.3
C2—C1—C6121.28 (17)C8—C9—H9120.3
C2—C1—H1119.4F1—C10—C11118.60 (13)
C6—C1—H1119.4F1—C10—C9118.19 (13)
C3—C2—C1120.33 (16)C11—C10—C9123.20 (12)
C3—C2—H2119.8C10—C11—C12117.84 (13)
C1—C2—H2119.8C10—C11—H11121.1
C2—C3—C4119.17 (16)C12—C11—H11121.1
C2—C3—H3120.4C11—C12—C13120.79 (13)
C4—C3—H3120.4C11—C12—H12119.6
C3—C4—C5120.61 (17)C13—C12—H12119.6
C3—C4—H4119.7C12—C13—C8120.45 (12)
C5—C4—H4119.7C12—C13—N1119.94 (12)
C6—C5—C4120.71 (15)C8—C13—N1119.45 (11)
C6—C5—H5119.6C7—C14—H14A109.5
C4—C5—H5119.6C7—C14—H14B109.5
C5—C6—C1117.87 (14)H14A—C14—H14B109.5
C5—C6—C7121.83 (12)C7—C14—H14C109.5
C1—C6—C7120.30 (13)H14A—C14—H14C109.5
C8—C7—C6111.74 (11)H14B—C14—H14C109.5
C8—C7—C14113.17 (12)N1—C15—C16126.30 (12)
C6—C7—C14111.80 (12)N1—C15—C15i116.24 (15)
C8—C7—H7106.5C16—C15—C15i117.44 (14)
C6—C7—H7106.5C15—C16—H16A109.5
C14—C7—H7106.5C15—C16—H16B109.5
C9—C8—C13118.26 (12)H16A—C16—H16B109.5
C9—C8—C7122.99 (12)C15—C16—H16C109.5
C13—C8—C7118.74 (11)H16A—C16—H16C109.5
C10—C9—C8119.41 (12)H16B—C16—H16C109.5
C6—C1—C2—C30.2 (3)C7—C8—C9—C10178.02 (13)
C1—C2—C3—C41.3 (3)C8—C9—C10—F1178.66 (12)
C2—C3—C4—C51.6 (3)C8—C9—C10—C110.3 (2)
C3—C4—C5—C60.4 (3)F1—C10—C11—C12179.60 (13)
C4—C5—C6—C11.1 (2)C9—C10—C11—C120.7 (2)
C4—C5—C6—C7178.53 (14)C10—C11—C12—C130.0 (2)
C2—C1—C6—C51.4 (2)C11—C12—C13—C81.7 (2)
C2—C1—C6—C7178.26 (16)C11—C12—C13—N1177.16 (13)
C5—C6—C7—C851.52 (17)C9—C8—C13—C122.62 (19)
C1—C6—C7—C8128.13 (14)C7—C8—C13—C12177.29 (12)
C5—C6—C7—C1476.48 (18)C9—C8—C13—N1178.09 (11)
C1—C6—C7—C14103.86 (17)C7—C8—C13—N11.83 (18)
C6—C7—C8—C9107.17 (14)C15—N1—C13—C1277.96 (17)
C14—C7—C8—C920.09 (19)C15—N1—C13—C8106.56 (14)
C6—C7—C8—C1372.91 (15)C13—N1—C15—C162.1 (2)
C14—C7—C8—C13159.82 (13)C13—N1—C15—C15i179.36 (13)
C13—C8—C9—C101.89 (19)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC32H30F2N2
Mr480.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)11.5335 (11), 9.5024 (12), 12.1318 (14)
β (°) 91.660 (11)
V3)1329.0 (3)
Z2
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.35 × 0.28 × 0.26
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.808, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
5982, 2507, 2132
Rint0.019
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.118, 1.07
No. of reflections2507
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge the Natural Science Foundation of China (21261021), the Program for Changjiang Scholars and Innovative Research Teams in Universities of the Ministry of Education of China (IRT1177), the Natural Science Foundation of Gansu Province (1208RJZA140) and the NWNU Young Teachers Reseach Improving Program (NWNU-LKQN-10-11) for financial support.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrasa, G. A., Hillier, A. C. & Nolan, S. P. (2001). Org. Lett. 3, 1077-1080.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHanhan, M. E., Martínez-Máñez, R. & Ros-Lis, J. V. (2012). Tetrahedron Lett. 53, 2388-2391.  Web of Science CrossRef CAS Google Scholar
First citationLohr, T. L., Piers, W. E. & Parvez, M. (2011). Acta Cryst. E67, o2281.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPartyka, D. V. (2011). Chem. Rev. 111, 1529-1595.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, T. J., Caffyn, A. J. M., Hazari, N., Oblad, P. F., Labinger, J. A. & Bercaw, J. E. (2008). J. Am. Chem. Soc. 130, 2418-2419.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYuan, J., Xie, X., Liu, Y., Miao, C. & Li, J. (2012). Acta Cryst. E68, o210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZou, H., Hou, Y., Yong, X., Cen, Y. & Bao, F. (2008). Acta Cryst. E64, o567.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds