organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o379-o380

5-Chloro-5′′-(4-chloro­benzyl­­idene)-4′-(4-chloro­phen­yl)-1′,1′′-di­methyldi­spiro­[indoline-3,2′-pyrrolidine-3′,3′′-piperidine]-2,4′′-dione

aCrystallography Laboratory, Solid State Department, Physics Division, National Research Centre, Dokki, Giza 12622, Egypt, bPesticide Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt, and cPhysics Department, Faculty of Science, Helwan University, Helwan, Cairo, Egypt
*Correspondence e-mail: mabied@xrdlab-nrc-eg.org

(Received 23 January 2014; accepted 25 February 2014; online 28 February 2014)

The racemic title compound, C30H26Cl3N3O2, comprises two spiro links, the first connecting the piperidine and pyrrolidine rings and the other connecting the indole and pyrrolidine rings. The piperidine ring adopts a half-chair conformation, while the pyrrolidine ring has an envelope conformation with the unsubstituted C atom as the flap. The dihedral angles between the two p-Cl-substituted benzene rings and the indole ring are 33.13 (14) and 54.11 (14)°. In the crystal, mol­ecules form inversion dimers through pairs of N—H⋯O hydrogen bonds [graph set R22(8)]. Aromatic C—H⋯O hydrogen bonds extend these dimers into a ribbon structure, enclosing R22(14) ring motifs, along the a-axis direction.

Related literature

For the biological activity of related di­spiro-oxindole analogues, see: Girgis et al. (2009a[Girgis, A. S. (2009a). Eur. J. Med. Chem. 44, 91-100.],b[Girgis, A. S. (2009b). Eur. J. Med. Chem. 44, 1257-1264.], 2012[Girgis, A. S., Stawinski, J., Ismail, N. S. M. & Farag, H. (2012). Eur. J. Med. Chem. 47, 312-322.]); George et al. (2013[George, R. F., Ismail, N. S. M., Stawinski, J. & Girgis, A. S. (2013). Eur. J. Med. Chem. 68, 339-351.]). For related structural studies, see: Farag et al. (2014a[Farag, I. S. A., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2014a). Acta Cryst. E70, o22-o23.],b[Farag, I. S. A., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2014b). Acta Cryst. E70, o43-o44.],c[Farag, I. S. A., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2014c). Acta Cryst. E70, o70-o71.]); Moustafa et al. (2012[Moustafa, A. M., Girgis, A. S., Shalaby, S. M. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2197-o2198.]). For the synthesis of the precursor mol­ecule, see: Modzelewska et al. (2006[Modzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491-3495.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For details of the weighting scheme used, see: Watkin et al. (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]). H atoms were refined with riding constraints (Cooper et al., 2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]).

[Scheme 1]

Experimental

Crystal data
  • C30H26Cl3N3O2

  • Mr = 566.91

  • Triclinic, [P \overline 1]

  • a = 11.2102 (3) Å

  • b = 11.5909 (3) Å

  • c = 12.3569 (4) Å

  • α = 99.0734 (8)°

  • β = 90.1887 (9)°

  • γ = 116.4041 (10)°

  • V = 1415.22 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 K

  • 0.35 × 0.19 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan [Görbitz (1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]) and DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])] Tmin = 0.630, Tmax = 0.876

  • 16419 measured reflections

  • 6508 independent reflections

  • 3663 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.111

  • S = 1.01

  • 3663 reflections

  • 344 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H61⋯O19i 0.96 2.47 3.168 (5) 130
N30—H301⋯O29ii 0.96 1.90 2.844 (5) 167
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+2.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]) and DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: CRYSTALS; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Introduction top

Spiro­pyrrolidinyl-oxindole represents the main alkaloid skeleton of naturally occurring substances characterized by promising biological and/or pharmacological properties. In continuation of our research program directed towards synthesis of biologically active compounds possessing this motif (Farag et al., 2014a-c; George et al., 2013; Girgis et al., 2012, 2009a,b; Moustafa et al., 2012), a novel analog, C30H26Cl3N3O2, is described in the present study utilizing a facile regio- as well as stereoselective procedure.

Experimental top

Synthesis and crystallization top

A mixture of equimolar amounts of 3E,5E-3,5-bis­(4-chloro­phenyl­methyl­idene)-1-methyl-4-piperidone (5 mmol) [prepared by a literature procedure (Modzelewska et al., 2006)], 5-chloro­isatin and sarcosine in absolute ethanol (25 ml) was heated under reflux for 9 h (TLC monitoring). The separated solid was collected and recrystallized from n-butanol affording the title compound, 5-chloro-5''-(4-chloro­benzyl­idene)-4'-(4-chloro­phenyl)-1',1''-di­methyl­dispiro­[indoline-3,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione, as pale-yellow crystals. M.p. 237-239 °C; Yield 81%; Anal. Calcd. for C30H26Cl3N3O2 (566.92): C, 63.56; H, 4.62; N, 7.41. Found: C, 63.69; H, 4.71; N, 7.48. IR: νmax/cm-1 3164 (NH), 1690 (CO), 1594, 1483 (CC).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The relatively large ratio of minimum to maximum corrections applied in the multiscan process reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling [DENZO/SCALEPACK (Otwinowski & Minor, 1997)]. The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically and initially refined with soft restraints on the bond lengths and angles to regularise their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89, N—H to 0.86 and O—H = 0.82 Å) and U>iso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010).

(Results and Discussion) top

In the racemic title molecule (Fig. 1), two spiro links exist, one in which the piperidine and pyrrolidine rings are connected at C12, the other with the pyrrolidine ring and indole residue connected at C11. The piperidine ring adopts a half-chair conformation where the C13 atom lies 0.75 (2) Å out of the mean plane of the remaining five atoms (C12–N14) with maximum deviation 0.086 (2) at C16. The pyrrolidine ring has an envelope conformation with the flap atom being C9 which lies 0.608 (3) Å out of the mean plane of the remaining four atoms (C8–N10), in which the maximum deviation [0.088 (3)] is at C11. The two 4-chloro-substituted benzene rings defined by (C2–C7) and (C21–C27) make dihedral angles of 33.1 (14) and 54.11 (14)°, respectively, with the indole ring. In the crystal, the molecules form centrosymmetric cyclic dimers through duplex inter­molecular N30—H···O29i hydrogen bonds (Table 1) [graph set R22(8) (Etter et al., 1990)]. Centrosymmetric duplex aromatic C6—H···O19ii hydrogen-bonding associations [graph set R22(14)] extend these dimers into a one-dimensional ribbon structure extending along a (Fig. 2) (for symmetry codes, see Table 1). Also present in the molecule is an intra­molecular C38—H···π inter­action with the ring centroid (Cg) of the five-membered C28–N30 ring.

Related literature top

For the biological activity of related dispiro-oxindole analogues, see: Girgis et al. (2009a,b, 2012); George et al. (2013). For related structural studies, see: Farag et al. (2014a,b,c); Moustafa et al. (2012). For the synthesis of the precursor molecule, see: Modzelewska et al. (2006). For graph-set analysis, see: Etter et al. (1990). For details of the weighting scheme used, see: Watkin et al. (1994). H atoms were refined with riding constraints (Cooper et al., 2010).

Computing details top

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996) and DIAMOND (Brandenburg, 2012); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, showing the N—H···O and C—H···O hydrogen bonds and the C—H..π interaction as violet, turquoise and green dashed lines, respectively.
5-Chloro-5''-(4-chlorobenzylidene)-4'-(4-chlorophenyl)-1',1''-dimethyldispiro[indoline-3,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione top
Crystal data top
C30H26Cl3N3O2Z = 2
Mr = 566.91F(000) = 588
Triclinic, P1Dx = 1.330 Mg m3
Hall symbol: -P 1Melting point = 510–512 K
a = 11.2102 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5909 (3) ÅCell parameters from 8506 reflections
c = 12.3569 (4) Åθ = 3–27°
α = 99.0734 (8)°µ = 0.36 mm1
β = 90.1887 (9)°T = 298 K
γ = 116.4041 (10)°Plate, pale yellow
V = 1415.22 (7) Å30.35 × 0.19 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
3663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
φ and ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
[Görbitz (1999) and DENZO/SCALEPACK (Otwinowski & Minor, 1997)]
h = 1413
Tmin = 0.630, Tmax = 0.876k = 1415
16419 measured reflectionsl = 1316
6508 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 Method, part 1, Chebychev polynomial, (Watkin et al., 1994) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 100. 168. 111. 49.9 14.3
wR(F2) = 0.111(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.55 e Å3
3663 reflectionsΔρmin = 0.54 e Å3
344 parametersExtinction correction: Larson (1970), Equation 22
0 restraintsExtinction coefficient: 400 (70)
Crystal data top
C30H26Cl3N3O2γ = 116.4041 (10)°
Mr = 566.91V = 1415.22 (7) Å3
Triclinic, P1Z = 2
a = 11.2102 (3) ÅMo Kα radiation
b = 11.5909 (3) ŵ = 0.36 mm1
c = 12.3569 (4) ÅT = 298 K
α = 99.0734 (8)°0.35 × 0.19 × 0.10 mm
β = 90.1887 (9)°
Data collection top
Nonius KappaCCD
diffractometer
6508 independent reflections
Absorption correction: multi-scan
[Görbitz (1999) and DENZO/SCALEPACK (Otwinowski & Minor, 1997)]
3663 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 0.876Rint = 0.076
16419 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.01Δρmax = 0.55 e Å3
3663 reflectionsΔρmin = 0.54 e Å3
344 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.60430 (10)0.03618 (8)0.26749 (8)0.0754
C20.6044 (3)0.1352 (3)0.3894 (3)0.0503
C30.6541 (3)0.1232 (3)0.4866 (3)0.0529
C40.6557 (3)0.2027 (3)0.5831 (3)0.0487
C50.6067 (3)0.2943 (2)0.5838 (2)0.0417
C60.5543 (3)0.3014 (3)0.4848 (2)0.0492
C70.5530 (3)0.2237 (3)0.3873 (3)0.0542
C80.6072 (2)0.3840 (2)0.6877 (2)0.0409
C90.5750 (3)0.3253 (3)0.7914 (3)0.0516
N100.6166 (2)0.4411 (2)0.8759 (2)0.0492
C110.7498 (3)0.5363 (2)0.8520 (2)0.0397
C120.7408 (2)0.5121 (2)0.7215 (2)0.0354
C130.8657 (2)0.5050 (2)0.6782 (2)0.0400
N140.9809 (2)0.6228 (2)0.73096 (19)0.0418
C151.1053 (3)0.6102 (3)0.7277 (3)0.0639
C160.9952 (3)0.7356 (2)0.6850 (2)0.0432
C170.8667 (3)0.7462 (2)0.6750 (2)0.0367
C180.7363 (3)0.6297 (2)0.6818 (2)0.0374
O190.63054 (19)0.62778 (19)0.65825 (18)0.0539
C200.8581 (3)0.8543 (2)0.6587 (2)0.0402
C210.9613 (3)0.9854 (3)0.6496 (2)0.0406
C221.0951 (3)1.0193 (3)0.6338 (2)0.0477
C231.1861 (3)1.1452 (3)0.6272 (3)0.0532
C241.1446 (3)1.2413 (3)0.6355 (3)0.0522
Cl251.25982 (10)1.40017 (8)0.62645 (10)0.0835
C261.0126 (3)1.2121 (3)0.6494 (3)0.0598
C270.9234 (3)1.0851 (3)0.6562 (3)0.0521
C280.8616 (3)0.5122 (3)0.9037 (2)0.0482
O290.8737 (2)0.4106 (2)0.88320 (18)0.0582
N300.9342 (3)0.6146 (2)0.9844 (2)0.0591
C310.8905 (3)0.7109 (3)0.9914 (3)0.0578
C320.7834 (3)0.6724 (3)0.9147 (2)0.0466
C330.7187 (3)0.7487 (3)0.9109 (3)0.0559
C340.7670 (5)0.8668 (3)0.9847 (3)0.0756
Cl350.68788 (17)0.96581 (12)0.98031 (12)0.1253
C360.8741 (5)0.9054 (4)1.0601 (3)0.0925
C370.9380 (5)0.8278 (4)1.0642 (3)0.0812
C380.6049 (4)0.4161 (4)0.9884 (3)0.0741
H310.68750.06000.48750.0634*
H410.69120.19470.65080.0584*
H610.51790.36220.48390.0591*
H710.51710.23090.31940.0651*
H810.53980.41080.67380.0490*
H910.62490.27800.80110.0619*
H920.48130.26840.79060.0619*
H1310.87020.42920.69590.0480*
H1320.86310.50030.59990.0480*
H1511.17790.69080.76370.0769*
H1521.09700.54050.76480.0769*
H1531.12240.59120.65260.0769*
H1611.05990.81330.73170.0518*
H1621.02650.72930.61310.0518*
H2010.76830.84380.65170.0482*
H2211.12470.95260.62740.0572*
H2311.27781.16590.61680.0638*
H2610.98351.27900.65420.0717*
H2710.83171.06490.66590.0624*
H3310.64310.72150.85930.0669*
H3610.90450.98681.11050.1110*
H3711.01330.85471.11600.0974*
H3810.63430.49741.03880.0890*
H3820.65940.37461.00270.0890*
H3830.51340.35970.99770.0890*
H3011.00630.62041.03070.0710*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0825 (6)0.0603 (5)0.0685 (6)0.0259 (4)0.0069 (5)0.0100 (4)
C20.0439 (16)0.0407 (15)0.0535 (19)0.0097 (13)0.0027 (14)0.0021 (13)
C30.0552 (19)0.0391 (15)0.067 (2)0.0250 (14)0.0025 (16)0.0058 (14)
C40.0498 (17)0.0480 (16)0.0542 (18)0.0276 (14)0.0035 (14)0.0085 (14)
C50.0327 (14)0.0361 (13)0.0516 (17)0.0129 (11)0.0049 (12)0.0032 (12)
C60.0486 (17)0.0442 (15)0.0554 (19)0.0226 (13)0.0095 (14)0.0053 (14)
C70.0500 (18)0.0528 (17)0.056 (2)0.0208 (15)0.0087 (14)0.0062 (15)
C80.0321 (14)0.0375 (13)0.0520 (17)0.0160 (11)0.0036 (12)0.0044 (12)
C90.0406 (16)0.0400 (15)0.065 (2)0.0101 (13)0.0063 (14)0.0100 (14)
N100.0506 (14)0.0472 (13)0.0492 (15)0.0193 (11)0.0139 (11)0.0150 (11)
C110.0409 (15)0.0392 (13)0.0391 (16)0.0179 (12)0.0033 (12)0.0083 (11)
C120.0338 (14)0.0341 (12)0.0392 (15)0.0161 (11)0.0021 (11)0.0067 (11)
C130.0385 (15)0.0359 (13)0.0483 (17)0.0200 (12)0.0008 (12)0.0055 (12)
N140.0338 (12)0.0379 (11)0.0572 (15)0.0182 (10)0.0009 (10)0.0117 (10)
C150.0433 (17)0.0531 (18)0.105 (3)0.0271 (15)0.0038 (18)0.0238 (19)
C160.0409 (15)0.0358 (13)0.0547 (18)0.0187 (12)0.0050 (13)0.0090 (12)
C170.0420 (14)0.0401 (14)0.0332 (14)0.0227 (12)0.0008 (11)0.0072 (11)
C180.0391 (15)0.0421 (14)0.0345 (14)0.0222 (12)0.0022 (11)0.0043 (11)
O190.0432 (12)0.0533 (12)0.0723 (15)0.0251 (10)0.0040 (10)0.0206 (10)
C200.0426 (15)0.0426 (14)0.0399 (16)0.0227 (12)0.0008 (12)0.0091 (12)
C210.0491 (17)0.0409 (14)0.0338 (15)0.0222 (13)0.0027 (12)0.0059 (11)
C220.0560 (18)0.0423 (15)0.0528 (18)0.0289 (14)0.0095 (14)0.0096 (13)
C230.0528 (18)0.0480 (16)0.064 (2)0.0260 (15)0.0117 (15)0.0129 (14)
C240.0551 (19)0.0389 (14)0.060 (2)0.0192 (13)0.0050 (15)0.0075 (13)
Cl250.0753 (6)0.0397 (4)0.1315 (9)0.0217 (4)0.0239 (6)0.0166 (5)
C260.066 (2)0.0391 (15)0.080 (2)0.0298 (15)0.0029 (17)0.0089 (15)
C270.0483 (17)0.0483 (16)0.066 (2)0.0277 (14)0.0018 (14)0.0101 (14)
C280.0530 (18)0.0491 (16)0.0441 (17)0.0219 (14)0.0003 (13)0.0164 (14)
O290.0642 (14)0.0510 (12)0.0678 (14)0.0315 (11)0.0091 (11)0.0171 (10)
N300.0666 (17)0.0545 (15)0.0520 (16)0.0234 (13)0.0198 (13)0.0101 (13)
C310.074 (2)0.0489 (17)0.0404 (17)0.0196 (16)0.0052 (15)0.0071 (14)
C320.0567 (17)0.0461 (15)0.0370 (16)0.0218 (14)0.0102 (13)0.0110 (13)
C330.074 (2)0.0544 (17)0.0493 (19)0.0361 (16)0.0206 (16)0.0134 (14)
C340.115 (3)0.059 (2)0.066 (2)0.050 (2)0.029 (2)0.0090 (19)
Cl350.1911 (15)0.0969 (8)0.1324 (11)0.1058 (10)0.0520 (10)0.0150 (8)
C360.153 (4)0.057 (2)0.054 (2)0.040 (3)0.007 (3)0.0053 (18)
C370.119 (3)0.061 (2)0.043 (2)0.025 (2)0.011 (2)0.0012 (17)
C380.085 (3)0.074 (2)0.062 (2)0.030 (2)0.0281 (19)0.0254 (19)
Geometric parameters (Å, º) top
Cl1—C21.743 (3)C16—H1620.960
C2—C31.375 (4)C17—C181.500 (4)
C2—C71.386 (4)C17—C201.345 (3)
C3—C41.382 (4)C18—O191.209 (3)
C3—H310.960C20—C211.467 (4)
C4—C51.394 (4)C20—H2010.960
C4—H410.960C21—C221.395 (4)
C5—C61.386 (4)C21—C271.389 (4)
C5—C81.517 (4)C22—C231.376 (4)
C6—C71.382 (4)C22—H2210.960
C6—H610.960C23—C241.375 (4)
C7—H710.960C23—H2310.960
C8—C91.514 (4)C24—Cl251.739 (3)
C8—C121.563 (3)C24—C261.381 (4)
C8—H810.960C26—C271.380 (4)
C9—N101.452 (4)C26—H2610.960
C9—H910.960C27—H2710.960
C9—H920.960C28—O291.230 (3)
N10—C111.474 (3)C28—N301.352 (4)
N10—C381.459 (4)N30—C311.397 (4)
C11—C121.588 (4)N30—H3010.960
C11—C281.556 (4)C31—C321.385 (4)
C11—C321.521 (4)C31—C371.378 (5)
C12—C131.532 (4)C32—C331.376 (4)
C12—C181.540 (3)C33—C341.393 (5)
C13—N141.450 (3)C33—H3310.960
C13—H1310.960C34—Cl351.741 (4)
C13—H1320.960C34—C361.376 (6)
N14—C151.464 (3)C36—C371.382 (6)
N14—C161.452 (3)C36—H3610.960
C15—H1510.960C37—H3710.960
C15—H1520.960C38—H3810.960
C15—H1530.960C38—H3820.960
C16—C171.505 (4)C38—H3830.960
C16—H1610.960
Cl1—C2—C3119.5 (2)C17—C16—H161108.5
Cl1—C2—C7119.7 (3)N14—C16—H162108.5
C3—C2—C7120.8 (3)C17—C16—H162108.5
C2—C3—C4119.5 (3)H161—C16—H162109.5
C2—C3—H31120.2C16—C17—C18119.6 (2)
C4—C3—H31120.2C16—C17—C20124.7 (2)
C3—C4—C5121.2 (3)C18—C17—C20115.6 (2)
C3—C4—H41119.4C12—C18—C17117.8 (2)
C5—C4—H41119.4C12—C18—O19120.7 (2)
C4—C5—C6117.8 (3)C17—C18—O19121.5 (2)
C4—C5—C8122.9 (3)C17—C20—C21131.5 (3)
C6—C5—C8119.3 (2)C17—C20—H201114.2
C5—C6—C7121.9 (3)C21—C20—H201114.3
C5—C6—H61119.0C20—C21—C22125.7 (2)
C7—C6—H61119.0C20—C21—C27117.8 (3)
C2—C7—C6118.7 (3)C22—C21—C27116.5 (2)
C2—C7—H71120.6C21—C22—C23122.1 (3)
C6—C7—H71120.7C21—C22—H221119.0
C5—C8—C9116.7 (2)C23—C22—H221119.0
C5—C8—C12115.4 (2)C22—C23—C24119.4 (3)
C9—C8—C12104.3 (2)C22—C23—H231120.3
C5—C8—H81106.6C24—C23—H231120.3
C9—C8—H81106.6C23—C24—Cl25119.3 (2)
C12—C8—H81106.6C23—C24—C26120.7 (3)
C8—C9—N10101.9 (2)Cl25—C24—C26120.1 (2)
C8—C9—H91111.3C24—C26—C27118.8 (3)
N10—C9—H91111.3C24—C26—H261120.6
C8—C9—H92111.3C27—C26—H261120.6
N10—C9—H92111.3C21—C27—C26122.5 (3)
H91—C9—H92109.5C21—C27—H271118.7
C9—N10—C11107.0 (2)C26—C27—H271118.7
C9—N10—C38114.9 (2)C11—C28—O29125.7 (3)
C11—N10—C38115.6 (3)C11—C28—N30108.9 (2)
N10—C11—C12103.0 (2)O29—C28—N30125.0 (3)
N10—C11—C28110.9 (2)C28—N30—C31111.0 (2)
C12—C11—C28113.1 (2)C28—N30—H301124.5
N10—C11—C32110.3 (2)C31—N30—H301124.5
C12—C11—C32119.1 (2)N30—C31—C32110.5 (3)
C28—C11—C32100.6 (2)N30—C31—C37128.0 (3)
C8—C12—C11103.6 (2)C32—C31—C37121.5 (3)
C8—C12—C13115.0 (2)C11—C32—C31108.8 (2)
C11—C12—C13111.2 (2)C11—C32—C33130.2 (3)
C8—C12—C18111.9 (2)C31—C32—C33120.7 (3)
C11—C12—C18108.90 (19)C32—C33—C34117.6 (3)
C13—C12—C18106.2 (2)C32—C33—H331121.2
C12—C13—N14107.5 (2)C34—C33—H331121.2
C12—C13—H131109.9C33—C34—Cl35118.5 (4)
N14—C13—H131109.9C33—C34—C36121.5 (3)
C12—C13—H132110.0Cl35—C34—C36120.0 (3)
N14—C13—H132110.0C34—C36—C37120.6 (3)
H131—C13—H132109.5C34—C36—H361119.7
C13—N14—C15113.2 (2)C37—C36—H361119.7
C13—N14—C16111.3 (2)C36—C37—C31118.1 (4)
C15—N14—C16110.6 (2)C36—C37—H371121.0
N14—C15—H151109.5C31—C37—H371121.0
N14—C15—H152109.5N10—C38—H381109.5
H151—C15—H152109.5N10—C38—H382109.5
N14—C15—H153109.4H381—C38—H382109.5
H151—C15—H153109.5N10—C38—H383109.4
H152—C15—H153109.5H381—C38—H383109.5
N14—C16—C17113.3 (2)H382—C38—H383109.5
N14—C16—H161108.5
Cl1—C2—C7—C6179.9 (3)C11—C32—C33—C34175.1 (3)
C34—C36—C37—C310.1 (6)C20—C21—C27—C26179.6 (3)
C12—C13—N14—C15160.2 (2)O29—C28—N30—C31175.9 (3)
C8—C12—C18—O1920.1 (3)N30—C31—C32—C111.4 (4)
N14—C16—C17—C1816.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H61···O19i0.962.473.168 (5)130
N30—H301···O29ii0.961.902.844 (5)167
C38—H381···Cg0.952.632.818 (5)91 (1)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H61···O19i0.962.473.168 (5)130
N30—H301···O29ii0.961.902.844 (5)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+2.
 

Footnotes

Additional correspondence author, e-mail: ibfarag@xrdlab-nrc-eg.org.

Acknowledgements

This study was supported financially by the Science and Technology Development Fund (STDF), Egypt (grant No. 1133).

References

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarag, I. S. A., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2014a). Acta Cryst. E70, o22–o23.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarag, I. S. A., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2014b). Acta Cryst. E70, o43–o44.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarag, I. S. A., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2014c). Acta Cryst. E70, o70–o71.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGeorge, R. F., Ismail, N. S. M., Stawinski, J. & Girgis, A. S. (2013). Eur. J. Med. Chem. 68, 339–351.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGirgis, A. S. (2009a). Eur. J. Med. Chem. 44, 91–100.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGirgis, A. S. (2009b). Eur. J. Med. Chem. 44, 1257–1264.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGirgis, A. S., Stawinski, J., Ismail, N. S. M. & Farag, H. (2012). Eur. J. Med. Chem. 47, 312–322.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationModzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491–3495.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoustafa, A. M., Girgis, A. S., Shalaby, S. M. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2197–o2198.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o379-o380
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds