organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o534-o535

4,4′-{[1,2-Phenyl­enebis(methyl­ene)]bis­­(­­oxy)}di­benzoic acid di­methyl­formamide disolvate

aFaculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650050, People's Republic of China
*Correspondence e-mail: zaxchem@126.com

(Received 24 March 2014; accepted 27 March 2014; online 12 April 2014)

In the title solvate, C22H18O6·2C3H7NO, the complete dicarboxylic acid molecule is generated by a crystallographic twofold axis, which bisects the central benzene ring and one N,N-di­methyl­formamide solvent mol­ecule. The dihedral angle between the central and pendant benzene rings is 54.53 (5)° while that between the pendant rings is 45.44 (5)°. In the crystal, the acid molecules are linked to the solvent molecules via O—H⋯O and weak C—H⋯O hydrogen bonds. Further weak C—H⋯O inter­actions link adjacent acid mol­ecules into a three-dimensional network.

Related literature

For multi­carb­oxy­lic acid ligands and derivatives used in the synthesis of porous metal-organic frameworks, see: Eddaoudi et al. (2002[Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469-472.]); Eubank et al. (2011[Eubank, J. F., Mouttaki, H., Cairns, A. J., Belmabkhout, Y., Wojtas, L., Luebke, R., Alkordi, M. & Eddaoudi, M. (2011). J. Am. Chem. Soc. 133, 14204-14207.]); Zhang et al. (2012[Zhang, Y.-B., Zhou, H.-L., Lin, R.-B., Zhang, C., Lin, J.-B., Zhang, J.-P. & Chen, X.-M. (2012). Nat. Commun. 3, 642.]). For structures constructed by the acid mol­ecule of the title compound, see: Cao et al. (2009a[Cao, X.-Y., Yao, Y.-G., Batten, S. R., Ma, E., Qin, Y.-Y., Zhang, J., Zhang, R.-B. & Cheng, J.-K. (2009a). CrystEngComm, 11, 1030-1036.]); Hu et al. (2013[Hu, F.-L., Wu, W., Liang, P., Gu, Y.-Q., Zhu, L.-G., Wei, H. & Lang, J.-P. (2013). Cryst. Growth Des. 13, 5050-5061.]). For [Zn(1,2-BAB)(4,4′-bipy)1/2]n (H2BAB =4,4′-{[1,2-phenylenebis(methylene)]bis(oxy)}dibenzoic acid), see Cao et al. (2009a[Cao, X.-Y., Yao, Y.-G., Batten, S. R., Ma, E., Qin, Y.-Y., Zhang, J., Zhang, R.-B. & Cheng, J.-K. (2009a). CrystEngComm, 11, 1030-1036.]) and for [Cd(1,2-BAB)2(phen)2]n, see: Cao et al. (2009b[Cao, X.-Y., Yao, Y.-G., Qin, Y.-Y., Lin, Q.-P., Li, Z.-J., Cheng, J.-K. & Zhang, R.-B. (2009b). CrystEngComm, 11, 1815-1818.]). For the synthesis of the title compound, see: Cao et al. (2009a[Cao, X.-Y., Yao, Y.-G., Batten, S. R., Ma, E., Qin, Y.-Y., Zhang, J., Zhang, R.-B. & Cheng, J.-K. (2009a). CrystEngComm, 11, 1030-1036.]); Rajakumar et al. (2009[Rajakumar, P., Sekar, K., Shanmugaiah, V. & Mathivanan, N. (2009). Eur. J. Med. Chem. 44, 3040-3045.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18O6·2C3H7NO

  • Mr = 524.56

  • Monoclinic, C 2/c

  • a = 12.568 (3) Å

  • b = 11.081 (2) Å

  • c = 19.688 (4) Å

  • β = 98.04 (3)°

  • V = 2715.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.37 × 0.26 × 0.21 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.783, Tmax = 1.000

  • 12992 measured reflections

  • 3112 independent reflections

  • 2522 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.132

  • S = 1.08

  • 3112 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4 0.90 (2) 1.71 (2) 2.6064 (14) 174 (2)
C3—H3A⋯O1i 0.93 2.55 3.3714 (17) 147
C8—H8B⋯O2ii 0.97 2.58 3.4920 (18) 157
C14—H14A⋯O2 0.93 2.50 3.2110 (19) 134
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In the past few years, multicarboxylic acids and their derivatives have attracted increasing attention as an important class of ligands used for the synthesis of porous metal organic framework compounds (Eddaoudi et al. 2002; Eubank et al. 2011; Zhang et al. 2012). The acid molecule in the title compound, as a conformationally flexible V-shaped long bicarboxylate ligand, has been already used to synthesize entangled frameworks having both polyrotaxane and polycatenane characteristics that also achieve different topological structures in the entangled system (Cao et al. 2009a; Hu et al. 2013). Although there are crystal structure reports in the literature regarding the title multicarboxylic acid, no crystallographic study has been already performed on the ligand itself.

The crystal structure of the title compound is composed of 4,4'-(1,2-phenylenebis(methylene))bis(oxy)dibenzoic (dicarboxylic) acid and N,N-dimethylformamide and has monoclinic symmetry (space group: C2/c). The acid molecule adopts an E configuration, and contains a crystallographic C2 axis passing through the central benzene group (Fig. 1). The dihedral angles between the benzene rings are 45.44 (5)° and 54.53 (5)°, values which are significantly smaller than those in metal organic frameworks containing the acid molecules with an E configuration (where the acid molecule loses both protons from the carboxylic groups); for example, [Zn(1,2-BAB)(4,4'-bipy)1/2]n (4,4'-bipy = 4,4'-Bipyridine) and [Cd(1,2-BAB)2(phen)2]n (phen = 1,10-phenanthroline) the dihedral angles range from 58.2 (1)° to 70.9 (1)° and from 65.6 (1)° to 84.7 (1)°, respectively (Cao et al. 2009a,b).

In the crystal, the acid molecule are linked to the solvent molecules by a strong O—HO and a weak C—HO hydrogen bond [Table 1 (entries 1 and 4) and Fig. 1]. Besides, weak intermolecular C—H···O interactions link the adjacent acid molecules into a three-dimensional network [Table 1 (entries 2 and 3) and Fig 2].

Related literature top

For multicarboxylic acid ligands and derivatives used in the synthesis of porous metal-organic frameworks, see: Eddaoudi et al. (2002); Eubank et al. (2011); Zhang et al. (2012). For structures constructed by the acid molecule of the title compound, see: Cao et al. (2009a); Hu et al. (2013). For [Zn(1,2-BAB)(4,4'-bipy)1/2]n, see Cao et al. (2009a) and for [Cd(1,2-BAB)2(phen)2]n, see: Cao et al. (2009b). For the synthesis of the title compound, see: Cao et al. (2009a); Rajakumar et al. (2009).

Experimental top

The ligand 4,4'-(1,2-phenylenebis(methylene))bis(oxy)dibenzoic acid was synthesized according to the literature method (Cao et al. 2009a; Rajakumar et al. 2009). A mixture of 4,4'-(1,2-phenylenebis(methylene))bis(oxy)dibenzoic acid (37.8 mg, 0.1 mmol) and DMF (4 ml) was placed in a Teflon-lined stainless steel vessel (15 ml) and heated at 368 k for 48 h and then cooled to room temperature at a rate of 5 K h-1. The resulting colorless solution slowly evaporated in air for over two weeks and colorless block crystals of the title compound suitable for X-ray diffraction were obtained.

Refinement top

The positions of the hydroxyl hydrogen H1A could be obtained from the difference electron-density map, and the other H atoms were placed in idealized positions (O—H = 0.82 Å and C—H = 0.93–0.97 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C, N) and Uiso(H) = 1.5Ueq(O, Cmethyl).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound drawn with 30% probability displacement ellipsoids for the non-H atoms. The intermolecular interactions between the acid and solvent molecules are shown as dashed lines. Symmetry code (A): 1-x, y, -z+1/2.
[Figure 2] Fig. 2. Packing of the acid molecules in the title compound viewed along the b-axis showing the hydrogen bonding interactions with dashed lines. H atoms not involved in H-bonding have been omitted for clarity.
4,4'-{[1,2-Phenylenebis(methylene)]bis(oxy)}dibenzoic acid dimethylformamide disolvate top
Crystal data top
C22H18O6·2C3H7NOZ = 4
Mr = 524.56F(000) = 1112
Monoclinic, C2/cDx = 1.283 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 12.568 (3) ŵ = 0.09 mm1
b = 11.081 (2) ÅT = 293 K
c = 19.688 (4) ÅBlock, colorless
β = 98.04 (3)°0.37 × 0.26 × 0.21 mm
V = 2715.0 (9) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3112 independent reflections
Radiation source: fine-focus sealed tube2522 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1616
Tmin = 0.783, Tmax = 1.000k = 1414
12992 measured reflectionsl = 2524
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.5159P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.004
3112 reflectionsΔρmax = 0.20 e Å3
179 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0067 (9)
Crystal data top
C22H18O6·2C3H7NOV = 2715.0 (9) Å3
Mr = 524.56Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.568 (3) ŵ = 0.09 mm1
b = 11.081 (2) ÅT = 293 K
c = 19.688 (4) Å0.37 × 0.26 × 0.21 mm
β = 98.04 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3112 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2522 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 1.000Rint = 0.023
12992 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.20 e Å3
3112 reflectionsΔρmin = 0.18 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40156 (8)0.62429 (9)0.44602 (5)0.0603 (3)
H1A0.3863 (16)0.701 (2)0.4567 (11)0.097 (6)*
O20.25800 (8)0.64860 (9)0.36718 (5)0.0634 (3)
O30.40553 (7)0.12257 (8)0.29461 (5)0.0542 (3)
O40.37129 (9)0.84725 (9)0.48090 (5)0.0697 (3)
N10.27647 (9)1.01724 (11)0.45297 (6)0.0612 (3)
C10.33217 (9)0.58739 (11)0.39294 (6)0.0454 (3)
C20.35606 (9)0.46508 (10)0.36834 (6)0.0426 (3)
C30.43792 (10)0.39435 (11)0.40211 (6)0.0466 (3)
H3A0.47970.42430.44120.056*
C40.45868 (10)0.27970 (11)0.37878 (6)0.0477 (3)
H4A0.51400.23330.40170.057*
C50.39532 (9)0.23540 (10)0.32053 (6)0.0442 (3)
C60.31335 (10)0.30568 (12)0.28570 (7)0.0523 (3)
H6A0.27160.27580.24660.063*
C70.29425 (10)0.41968 (12)0.30942 (6)0.0497 (3)
H7A0.23980.46670.28600.060*
C80.49311 (10)0.04951 (11)0.32584 (6)0.0477 (3)
H8A0.48380.03080.37280.057*
H8B0.56040.09270.32640.057*
C90.49515 (9)0.06479 (10)0.28507 (6)0.0431 (3)
C100.49017 (10)0.17419 (11)0.31849 (7)0.0522 (3)
H10A0.48340.17470.36490.063*
C110.49509 (11)0.28268 (11)0.28426 (7)0.0574 (3)
H11A0.49170.35520.30760.069*
C120.33915 (15)1.08831 (15)0.50625 (9)0.0759 (5)
H12A0.40151.04340.52550.114*
H12B0.29621.10640.54160.114*
H12C0.36131.16220.48690.114*
C130.18927 (15)1.07654 (18)0.40971 (12)0.0903 (6)
H13A0.16001.02270.37370.135*
H13B0.21581.14790.39010.135*
H13C0.13421.09830.43670.135*
C140.29748 (12)0.90176 (14)0.44604 (8)0.0617 (4)
H14A0.25370.85850.41260.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0695 (6)0.0499 (5)0.0549 (5)0.0117 (4)0.0139 (4)0.0105 (4)
O20.0590 (6)0.0563 (5)0.0690 (6)0.0145 (4)0.0118 (5)0.0082 (4)
O30.0496 (5)0.0479 (5)0.0597 (5)0.0077 (4)0.0111 (4)0.0126 (4)
O40.0791 (7)0.0580 (6)0.0679 (6)0.0169 (5)0.0038 (5)0.0100 (5)
N10.0563 (7)0.0543 (6)0.0735 (7)0.0069 (5)0.0113 (6)0.0046 (5)
C10.0462 (6)0.0455 (6)0.0433 (6)0.0008 (5)0.0020 (5)0.0015 (5)
C20.0419 (6)0.0432 (5)0.0417 (5)0.0010 (4)0.0029 (4)0.0006 (4)
C30.0496 (6)0.0462 (6)0.0405 (5)0.0010 (5)0.0055 (5)0.0021 (5)
C40.0472 (6)0.0463 (6)0.0457 (6)0.0047 (5)0.0069 (5)0.0002 (5)
C50.0422 (6)0.0433 (6)0.0456 (6)0.0002 (4)0.0012 (5)0.0034 (5)
C60.0469 (6)0.0544 (7)0.0505 (6)0.0023 (5)0.0108 (5)0.0082 (5)
C70.0440 (6)0.0508 (6)0.0504 (6)0.0060 (5)0.0077 (5)0.0013 (5)
C80.0475 (6)0.0476 (6)0.0457 (6)0.0048 (5)0.0016 (5)0.0023 (5)
C90.0368 (5)0.0436 (6)0.0477 (6)0.0012 (4)0.0015 (4)0.0005 (4)
C100.0530 (7)0.0503 (6)0.0535 (6)0.0002 (5)0.0078 (5)0.0066 (5)
C110.0549 (7)0.0422 (6)0.0753 (8)0.0006 (5)0.0102 (6)0.0089 (6)
C120.0867 (11)0.0567 (8)0.0852 (11)0.0003 (8)0.0155 (9)0.0087 (8)
C130.0650 (10)0.0815 (11)0.1215 (16)0.0154 (9)0.0034 (10)0.0215 (11)
C140.0602 (8)0.0604 (8)0.0635 (8)0.0056 (6)0.0056 (6)0.0060 (6)
Geometric parameters (Å, º) top
O1—C11.3285 (15)C6—H6A0.9300
O1—H1A0.90 (2)C7—H7A0.9300
O2—C11.2059 (14)C8—C91.5016 (16)
O3—C51.3633 (14)C8—H8A0.9700
O3—C81.4338 (14)C8—H8B0.9700
O4—C141.2323 (17)C9—C101.3848 (16)
N1—C141.3175 (19)C9—C9i1.403 (2)
N1—C131.448 (2)C10—C111.3837 (18)
N1—C121.453 (2)C10—H10A0.9300
C1—C21.4841 (16)C11—C11i1.372 (3)
C2—C31.3868 (16)C11—H11A0.9300
C2—C71.3966 (16)C12—H12A0.9600
C3—C41.3879 (17)C12—H12B0.9600
C3—H3A0.9300C12—H12C0.9600
C4—C51.3911 (16)C13—H13A0.9600
C4—H4A0.9300C13—H13B0.9600
C5—C61.3929 (16)C13—H13C0.9600
C6—C71.3794 (18)C14—H14A0.9300
C1—O1—H1A109.6 (13)C9—C8—H8A110.0
C5—O3—C8117.65 (9)O3—C8—H8B110.0
C14—N1—C13121.73 (14)C9—C8—H8B110.0
C14—N1—C12120.34 (13)H8A—C8—H8B108.4
C13—N1—C12117.91 (14)C10—C9—C9i118.91 (7)
O2—C1—O1122.79 (11)C10—C9—C8118.63 (11)
O2—C1—C2123.80 (11)C9i—C9—C8122.44 (7)
O1—C1—C2113.41 (10)C11—C10—C9121.41 (12)
C3—C2—C7118.94 (11)C11—C10—H10A119.3
C3—C2—C1122.01 (10)C9—C10—H10A119.3
C7—C2—C1119.05 (10)C11i—C11—C10119.68 (8)
C4—C3—C2121.32 (10)C11i—C11—H11A120.2
C4—C3—H3A119.3C10—C11—H11A120.2
C2—C3—H3A119.3N1—C12—H12A109.5
C3—C4—C5118.90 (10)N1—C12—H12B109.5
C3—C4—H4A120.5H12A—C12—H12B109.5
C5—C4—H4A120.5N1—C12—H12C109.5
O3—C5—C4124.01 (10)H12A—C12—H12C109.5
O3—C5—C6115.48 (10)H12B—C12—H12C109.5
C4—C5—C6120.49 (11)N1—C13—H13A109.5
C7—C6—C5119.81 (10)N1—C13—H13B109.5
C7—C6—H6A120.1H13A—C13—H13B109.5
C5—C6—H6A120.1N1—C13—H13C109.5
C6—C7—C2120.54 (10)H13A—C13—H13C109.5
C6—C7—H7A119.7H13B—C13—H13C109.5
C2—C7—H7A119.7O4—C14—N1124.37 (14)
O3—C8—C9108.45 (9)O4—C14—H14A117.8
O3—C8—H8A110.0N1—C14—H14A117.8
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.90 (2)1.71 (2)2.6064 (14)174 (2)
C3—H3A···O1ii0.932.553.3714 (17)147
C8—H8B···O2iii0.972.583.4920 (18)157
C14—H14A···O20.932.503.2110 (19)134
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.90 (2)1.71 (2)2.6064 (14)174 (2)
C3—H3A···O1i0.932.553.3714 (17)146.9
C8—H8B···O2ii0.972.583.4920 (18)157.3
C14—H14A···O20.932.503.2110 (19)133.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z.
 

Acknowledgements

The authors thank the Science and Technology Department (2010ZC070, 2011FZ080 and 2012FB141) of Yunnan Province for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCao, X.-Y., Yao, Y.-G., Batten, S. R., Ma, E., Qin, Y.-Y., Zhang, J., Zhang, R.-B. & Cheng, J.-K. (2009a). CrystEngComm, 11, 1030–1036.  Web of Science CSD CrossRef CAS Google Scholar
First citationCao, X.-Y., Yao, Y.-G., Qin, Y.-Y., Lin, Q.-P., Li, Z.-J., Cheng, J.-K. & Zhang, R.-B. (2009b). CrystEngComm, 11, 1815–1818.  Web of Science CSD CrossRef Google Scholar
First citationEddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEubank, J. F., Mouttaki, H., Cairns, A. J., Belmabkhout, Y., Wojtas, L., Luebke, R., Alkordi, M. & Eddaoudi, M. (2011). J. Am. Chem. Soc. 133, 14204–14207.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, F.-L., Wu, W., Liang, P., Gu, Y.-Q., Zhu, L.-G., Wei, H. & Lang, J.-P. (2013). Cryst. Growth Des. 13, 5050–5061.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajakumar, P., Sekar, K., Shanmugaiah, V. & Mathivanan, N. (2009). Eur. J. Med. Chem. 44, 3040–3045.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-B., Zhou, H.-L., Lin, R.-B., Zhang, C., Lin, J.-B., Zhang, J.-P. & Chen, X.-M. (2012). Nat. Commun. 3, 642.  Web of Science CSD CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o534-o535
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds