organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o604-o605

5-Amino-6-benzoyl-8-nitro-2,3-di­hydro-1H-spiro­[imidazo[1,2-a]pyridine-7,3′-indolin]-2′-one di­methyl sulfoxide monosolvate

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 11 March 2014; accepted 17 April 2014; online 26 April 2014)

In the title compound C21H17N5O4·C2H6OS, the central six-membered ring derived from 1,4-di­hydro­pyridine adopts a distorted boat conformation with a small puckering amplitude of 0.127 (3) Å. The sums of bond angles around the pyridine N atom [358.7 (2)°] and the other imidazolidine N atom [60 (2)°] indicate that these atoms are in sp2 hybridization, leading to an essentially planar imidazolidine ring. The last heterocycle, an oxindole moiety, is also nearly planar with an r.m.s. deviation of 0.0185 (1) Å. The amine NH2 group forms an intra­molecular hydrogen bond with the benzoyl group, giving a S(6) motif. In the crystal, N—H⋯O hydrogen bonds lead to the formation of chains along the c-axis direction. Within the chains there are further N—H⋯O and C—H⋯O hydrogen bonds enclosing R22(14) ring motifs. The chains are linked via N—H⋯O and C—H⋯O hydrogen bonds involving the dimethyl sulfoxide solvent mol­ecule which acts as both an acceptor and a donor..

Related literature

For a previous related work, see: Suresh et al. (2013[Suresh, J., Nagalakshmi, R. A., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2013). Acta Cryst. E69, o256-o257.]). For conformational analysis of ring systems, and small rings fused to benzene, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Allen (1981[Allen, F. H. (1981). Acta Cryst. B37, 900-906.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17N5O4·C2H6OS

  • Mr = 481.52

  • Monoclinic, P 21 /c

  • a = 16.476 (3) Å

  • b = 13.527 (2) Å

  • c = 10.0727 (18) Å

  • β = 99.868 (5)°

  • V = 2211.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.974

  • 31940 measured reflections

  • 4109 independent reflections

  • 2818 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.160

  • S = 1.05

  • 4109 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O4 0.86 1.92 2.549 (3) 129
N2—H2A⋯O3i 0.86 2.30 2.939 (3) 131
N3—H3⋯O5ii 0.86 1.92 2.779 (4) 177
N5—H5⋯O3iii 0.86 2.31 2.924 (3) 129
C6—H6B⋯O2iii 0.97 2.59 3.274 (4) 128
C11—H11⋯O4i 0.93 2.43 3.346 (4) 167
C15—H15C⋯O2iv 0.96 2.55 3.448 (4) 156
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z+1; (iii) -x, -y+1, -z+1; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Experimental top

Synthesis and crystallization top

A mixture of benzoyl­aceto­nitrile (1.0 mmol), isatin (1.0 mmol) and 2-(nitro­methyl­ene) imidazolidine was dissolved in 10 ml of EtOH, and tri­ethyl­amine (1.0 mmol) was added. The reaction mixture was refluxed for 45 min. After completion of the reaction, as evident from TLC, the precipitated solid product was filtered and dried to obtain pure pale brown solid. Yield 94%. Melting point 530 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93 (aromatic CH), 0.96 (methyl CH3) or 0.97 Å (methyl­ene CH2), and N—H = 0.86 Å. Isotropic displacement parameters for H atoms were calculated as Uiso = 1.5Ueq(C) for CH3 groups and Uiso = 1.2Ueq(carrier atom) for all other H atoms.

Results and discussion top

Our inter­est in preparing pharmacologically active pyridine-related compounds (Suresh et al., 2013) led us to the title compound, derived from a 1,4-di­hydro­pyridine, and we have undertaken X-ray crystal structure determination of this compound in order to establish its molecular conformation.

In the title compound (Fig. 1), the central pyridine ring adopts a skew-boat conformation with the puckering parameters Q = 0.127 (3) Å, θ = 87.3 (13) and ϕ = 198.3 (3)° (Cremer & Pople, 1975). The sums of bond angles around N4 and N5, 358.7 (2)° and 360 (2)° respectively, show that N atoms are in sp2 hybridization, leading to an essentially planar imidazolidine ring. The C2/C8/N3/C9/C10 ring of the oxindole moiety is planar with r.m.s. deviation of 0.0185 (1) Å. The small tilt between the planes of the five and six-membered rings in the oxindole unit is 1.21 (1)°. The sum of the bond angles around N3 atom is 360 (1)° implying a noticeable flattening of the geometry about N3. The shorter bond lengths N3—C8 = 1.337 (4) Å and N3—C9 = 1.401 (4) Å indicate the electron donating effect of the N atom. The nitro group, N1/O1/O2, is twisted away from the mean plane of the six-membered ring, forming the dihedral angle of 8.90 (1)°. In the benzene ring (C9···C14) of the oxindole ring system, the expansion of the ipso angles at C9, C12 and C13 [121.9 (3), 120.8 (3) and 121.3 (3)°, respectively] and the contraction of the apical angles at C10, C11 and C14 [120.5 (3), 118.1 (3) and 117.3 (3)°, respectively] are caused by the fusion of the smaller ring to the six-membered benzene ring, and the strain is taken up by the angular distortion rather than by bond length distortions (Allen, 1981). The short contacts H2A···H7A (2.17 Å) and H2A···H7B (2.31 Å) result in the substantial widening of angle C7—N4—C4 to 124.9 (2)°.

The crystal structure features weak intra-molecular N—H···O inter­actions and N—H···O and C—H···O inter-molecular inter­actions. An inter-molecular N2—H2A···O3 inter­action forms a chain along the c axis, while inter-molecular N5—H5···O3 and C6—H6B···O2 inter­actions form ring motifs R22(14). The solvent molecule, dimetyl sulfoxide, also takes part in the N—H···O and in the C—H···O inter-molecular inter­actions (Fig. 2).

Related literature top

For a previous related work, see: Suresh et al. (2013). For conformational analysis of ring systems, and small rings fused to benzene, see: Cremer & Pople (1975); Allen (1981).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 20% probability displacement ellipsoids. All H atoms are omitted for clarity.
[Figure 2] Fig. 2. Partial packing diagram of the title compound. Dashed bonds represent inter-molecular hydrogen bonds.
(I) top
Crystal data top
C21H17N5O4·C2H6OSF(000) = 1008
Mr = 481.52Dx = 1.446 Mg m3
Monoclinic, P21/cMelting point: 530 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.476 (3) ÅCell parameters from 2000 reflections
b = 13.527 (2) Åθ = 2–31°
c = 10.0727 (18) ŵ = 0.19 mm1
β = 99.868 (5)°T = 293 K
V = 2211.7 (7) Å3Block, brown
Z = 40.21 × 0.19 × 0.18 mm
Data collection top
Bruker Kappa APEXII
diffractometer
4109 independent reflections
Radiation source: fine-focus sealed tube2818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 2.5°
ω and ϕ scansh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1616
Tmin = 0.967, Tmax = 0.974l = 1212
31940 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0634P)2 + 2.4142P]
where P = (Fo2 + 2Fc2)/3
4109 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.47 e Å3
0 constraints
Crystal data top
C21H17N5O4·C2H6OSV = 2211.7 (7) Å3
Mr = 481.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.476 (3) ŵ = 0.19 mm1
b = 13.527 (2) ÅT = 293 K
c = 10.0727 (18) Å0.21 × 0.19 × 0.18 mm
β = 99.868 (5)°
Data collection top
Bruker Kappa APEXII
diffractometer
4109 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2818 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.070
31940 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.05Δρmax = 0.92 e Å3
4109 reflectionsΔρmin = 0.47 e Å3
307 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12735 (16)0.47401 (19)0.4943 (3)0.0273 (6)
C20.19857 (15)0.4409 (2)0.6005 (3)0.0268 (6)
C30.20085 (16)0.3272 (2)0.6119 (3)0.0285 (6)
C40.14829 (16)0.2694 (2)0.5220 (3)0.0292 (6)
C50.08157 (16)0.4092 (2)0.4049 (3)0.0292 (6)
C60.01200 (18)0.3357 (2)0.2370 (3)0.0429 (8)
H6A0.00320.33430.14420.051*
H6B0.07050.32910.23840.051*
C70.03642 (18)0.2551 (2)0.3186 (3)0.0432 (8)
H7A0.00100.21470.36410.052*
H7B0.06410.21320.26220.052*
C80.18947 (16)0.4842 (2)0.7405 (3)0.0293 (6)
C90.30975 (16)0.5444 (2)0.6929 (3)0.0330 (7)
C100.27937 (15)0.4874 (2)0.5812 (3)0.0295 (6)
C110.32187 (17)0.4803 (2)0.4754 (3)0.0371 (7)
H110.30220.44140.40060.045*
C120.39483 (19)0.5327 (2)0.4833 (4)0.0473 (8)
H120.42440.52930.41270.057*
C130.42409 (19)0.5898 (3)0.5948 (4)0.0494 (9)
H130.47310.62460.59780.059*
C140.38202 (18)0.5964 (2)0.7022 (4)0.0434 (8)
H140.40190.63460.77750.052*
C150.2595 (3)0.6930 (3)0.2703 (4)0.0615 (10)
H15A0.31580.69790.31470.092*
H15B0.22460.68270.33620.092*
H15C0.24390.75310.22180.092*
C160.1423 (2)0.6058 (3)0.0959 (4)0.0730 (12)
H16A0.12450.55540.03020.109*
H16B0.13190.66970.05500.109*
H16C0.11260.59950.16950.109*
C310.25828 (18)0.2769 (2)0.7134 (3)0.0362 (7)
C320.33727 (18)0.3217 (2)0.7853 (3)0.0363 (7)
C330.4043 (2)0.3233 (3)0.7190 (4)0.0495 (9)
H330.39800.30650.62830.059*
C340.4805 (2)0.3501 (3)0.7889 (5)0.0672 (12)
H340.52590.35000.74530.081*
C350.4901 (3)0.3769 (3)0.9213 (5)0.0768 (14)
H350.54180.39510.96720.092*
C360.4236 (3)0.3768 (3)0.9867 (4)0.0719 (13)
H360.42990.39681.07630.086*
C370.3472 (2)0.3471 (3)0.9197 (3)0.0519 (9)
H370.30270.34430.96510.062*
N10.10891 (14)0.57350 (18)0.4841 (2)0.0330 (6)
N20.14345 (15)0.17067 (18)0.5281 (3)0.0398 (6)
H2A0.10970.13910.46840.048*
H2B0.17410.13890.59170.048*
N30.25616 (14)0.53850 (17)0.7866 (2)0.0342 (6)
H30.26510.56650.86440.041*
N40.09609 (13)0.31051 (18)0.4158 (2)0.0326 (6)
N50.02048 (14)0.42620 (19)0.3037 (2)0.0374 (6)
H50.00210.48420.28010.045*
O10.05174 (13)0.60506 (16)0.3938 (2)0.0445 (6)
O20.14848 (13)0.63220 (15)0.5658 (2)0.0431 (6)
O30.13161 (12)0.46735 (14)0.80020 (19)0.0352 (5)
O40.24819 (17)0.18945 (18)0.7443 (3)0.0682 (8)
O50.28997 (18)0.6227 (3)0.0417 (3)0.0927 (12)
S10.24911 (7)0.59246 (8)0.15647 (10)0.0650 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0223 (13)0.0279 (15)0.0298 (14)0.0015 (11)0.0003 (11)0.0011 (12)
C20.0203 (13)0.0296 (14)0.0287 (14)0.0009 (11)0.0009 (11)0.0003 (12)
C30.0221 (13)0.0311 (15)0.0312 (15)0.0011 (11)0.0015 (11)0.0002 (12)
C40.0213 (13)0.0322 (16)0.0343 (15)0.0013 (11)0.0048 (11)0.0007 (12)
C50.0209 (13)0.0380 (17)0.0283 (14)0.0006 (11)0.0034 (11)0.0006 (12)
C60.0273 (16)0.057 (2)0.0399 (17)0.0011 (14)0.0074 (13)0.0116 (15)
C70.0305 (16)0.0461 (19)0.0474 (19)0.0066 (14)0.0093 (14)0.0115 (15)
C80.0247 (14)0.0260 (14)0.0352 (15)0.0037 (11)0.0007 (12)0.0025 (12)
C90.0234 (14)0.0331 (16)0.0404 (16)0.0002 (12)0.0006 (12)0.0012 (13)
C100.0192 (13)0.0307 (15)0.0366 (15)0.0018 (11)0.0009 (11)0.0020 (12)
C110.0277 (15)0.0436 (18)0.0385 (17)0.0032 (13)0.0015 (12)0.0028 (14)
C120.0321 (17)0.054 (2)0.058 (2)0.0006 (15)0.0134 (15)0.0095 (17)
C130.0248 (16)0.050 (2)0.073 (2)0.0077 (14)0.0066 (16)0.0033 (18)
C140.0257 (15)0.0425 (19)0.058 (2)0.0073 (13)0.0031 (14)0.0093 (16)
C150.074 (3)0.059 (2)0.049 (2)0.005 (2)0.0023 (19)0.0067 (18)
C160.059 (3)0.089 (3)0.071 (3)0.006 (2)0.012 (2)0.018 (2)
C310.0331 (16)0.0346 (17)0.0383 (17)0.0008 (13)0.0012 (13)0.0013 (13)
C320.0307 (16)0.0320 (16)0.0423 (17)0.0042 (12)0.0049 (13)0.0066 (13)
C330.0407 (19)0.050 (2)0.058 (2)0.0070 (15)0.0094 (16)0.0066 (17)
C340.0297 (19)0.068 (3)0.103 (4)0.0031 (18)0.007 (2)0.021 (2)
C350.042 (2)0.081 (3)0.095 (3)0.020 (2)0.024 (2)0.028 (3)
C360.073 (3)0.081 (3)0.050 (2)0.023 (2)0.021 (2)0.009 (2)
C370.047 (2)0.064 (2)0.0402 (19)0.0104 (17)0.0042 (15)0.0026 (17)
N10.0254 (12)0.0367 (14)0.0352 (13)0.0021 (10)0.0006 (10)0.0050 (11)
N20.0381 (14)0.0295 (14)0.0482 (15)0.0054 (11)0.0028 (12)0.0016 (11)
N30.0299 (13)0.0379 (14)0.0322 (13)0.0008 (10)0.0019 (10)0.0067 (11)
N40.0218 (12)0.0362 (14)0.0364 (13)0.0002 (10)0.0045 (10)0.0058 (11)
N50.0274 (13)0.0447 (15)0.0355 (13)0.0032 (11)0.0080 (10)0.0004 (12)
O10.0371 (12)0.0430 (13)0.0466 (13)0.0088 (10)0.0117 (10)0.0091 (10)
O20.0402 (12)0.0334 (12)0.0500 (13)0.0012 (9)0.0083 (10)0.0052 (10)
O30.0287 (11)0.0408 (12)0.0360 (11)0.0024 (9)0.0054 (9)0.0033 (9)
O40.0734 (18)0.0428 (15)0.0733 (18)0.0118 (13)0.0298 (14)0.0201 (13)
O50.0581 (18)0.163 (3)0.0610 (17)0.0245 (19)0.0210 (14)0.053 (2)
S10.0735 (7)0.0610 (7)0.0544 (6)0.0189 (5)0.0064 (5)0.0117 (5)
Geometric parameters (Å, º) top
C1—N11.380 (4)C13—H130.9300
C1—C51.384 (4)C14—H140.9300
C1—C21.514 (3)C15—S11.769 (4)
C2—C101.515 (4)C15—H15A0.9600
C2—C31.542 (4)C15—H15B0.9600
C2—C81.558 (4)C15—H15C0.9600
C3—C41.383 (4)C16—S11.771 (4)
C3—C311.439 (4)C16—H16A0.9600
C4—N21.340 (4)C16—H16B0.9600
C4—N41.370 (3)C16—H16C0.9600
C5—N51.324 (3)C31—O41.242 (4)
C5—N41.357 (4)C31—C321.504 (4)
C6—N51.454 (4)C32—C371.380 (5)
C6—C71.509 (4)C32—C331.385 (4)
C6—H6A0.9700C33—C341.379 (5)
C6—H6B0.9700C33—H330.9300
C7—N41.468 (3)C34—C351.364 (6)
C7—H7A0.9700C34—H340.9300
C7—H7B0.9700C35—C361.372 (6)
C8—O31.232 (3)C35—H350.9300
C8—N31.337 (4)C36—C371.382 (5)
C9—C141.373 (4)C36—H360.9300
C9—C101.385 (4)C37—H370.9300
C9—N31.401 (4)N1—O21.245 (3)
C10—C111.375 (4)N1—O11.266 (3)
C11—C121.386 (4)N2—H2A0.8600
C11—H110.9300N2—H2B0.8600
C12—C131.380 (5)N3—H30.8600
C12—H120.9300N5—H50.8600
C13—C141.384 (5)O5—S11.491 (3)
N1—C1—C5118.8 (2)S1—C15—H15A109.5
N1—C1—C2118.4 (2)S1—C15—H15B109.5
C5—C1—C2122.8 (2)H15A—C15—H15B109.5
C1—C2—C10112.2 (2)S1—C15—H15C109.5
C1—C2—C3110.7 (2)H15A—C15—H15C109.5
C10—C2—C3114.4 (2)H15B—C15—H15C109.5
C1—C2—C8110.2 (2)S1—C16—H16A109.5
C10—C2—C8100.5 (2)S1—C16—H16B109.5
C3—C2—C8108.2 (2)H16A—C16—H16B109.5
C4—C3—C31117.4 (3)S1—C16—H16C109.5
C4—C3—C2120.7 (2)H16A—C16—H16C109.5
C31—C3—C2121.9 (2)H16B—C16—H16C109.5
N2—C4—N4114.0 (2)O4—C31—C3121.9 (3)
N2—C4—C3124.7 (3)O4—C31—C32113.9 (3)
N4—C4—C3121.4 (2)C3—C31—C32124.1 (3)
N5—C5—N4109.5 (2)C37—C32—C33119.9 (3)
N5—C5—C1130.4 (3)C37—C32—C31121.4 (3)
N4—C5—C1120.1 (2)C33—C32—C31118.1 (3)
N5—C6—C7103.8 (2)C34—C33—C32119.3 (4)
N5—C6—H6A111.0C34—C33—H33120.3
C7—C6—H6A111.0C32—C33—H33120.3
N5—C6—H6B111.0C35—C34—C33120.8 (4)
C7—C6—H6B111.0C35—C34—H34119.6
H6A—C6—H6B109.0C33—C34—H34119.6
N4—C7—C6103.1 (2)C34—C35—C36120.1 (4)
N4—C7—H7A111.2C34—C35—H35120.0
C6—C7—H7A111.2C36—C35—H35120.0
N4—C7—H7B111.2C35—C36—C37120.1 (4)
C6—C7—H7B111.2C35—C36—H36120.0
H7A—C7—H7B109.1C37—C36—H36120.0
O3—C8—N3126.2 (3)C32—C37—C36119.8 (4)
O3—C8—C2125.1 (2)C32—C37—H37120.1
N3—C8—C2108.7 (2)C36—C37—H37120.1
C14—C9—C10121.9 (3)O2—N1—O1120.1 (2)
C14—C9—N3128.6 (3)O2—N1—C1119.3 (2)
C10—C9—N3109.5 (2)O1—N1—C1120.6 (2)
C11—C10—C9120.5 (3)C4—N2—H2A120.0
C11—C10—C2130.2 (3)C4—N2—H2B120.0
C9—C10—C2109.3 (2)H2A—N2—H2B120.0
C10—C11—C12118.1 (3)C8—N3—C9111.9 (2)
C10—C11—H11120.9C8—N3—H3124.1
C12—C11—H11120.9C9—N3—H3124.1
C13—C12—C11120.8 (3)C5—N4—C4122.7 (2)
C13—C12—H12119.6C5—N4—C7111.1 (2)
C11—C12—H12119.6C4—N4—C7124.9 (2)
C12—C13—C14121.3 (3)C5—N5—C6112.4 (2)
C12—C13—H13119.3C5—N5—H5123.8
C14—C13—H13119.3C6—N5—H5123.8
C9—C14—C13117.3 (3)O5—S1—C15106.5 (2)
C9—C14—H14121.3O5—S1—C16105.0 (2)
C13—C14—H14121.3C15—S1—C1697.2 (2)
N1—C1—C2—C1060.0 (3)C10—C9—C14—C130.1 (5)
C5—C1—C2—C10118.2 (3)N3—C9—C14—C13179.9 (3)
N1—C1—C2—C3170.8 (2)C12—C13—C14—C90.4 (5)
C5—C1—C2—C310.9 (4)C4—C3—C31—O418.9 (5)
N1—C1—C2—C851.1 (3)C2—C3—C31—O4162.4 (3)
C5—C1—C2—C8130.6 (3)C4—C3—C31—C32157.3 (3)
C1—C2—C3—C46.8 (4)C2—C3—C31—C3221.4 (4)
C10—C2—C3—C4121.2 (3)O4—C31—C32—C3773.6 (4)
C8—C2—C3—C4127.7 (3)C3—C31—C32—C37109.9 (4)
C1—C2—C3—C31174.6 (2)O4—C31—C32—C3396.9 (4)
C10—C2—C3—C3157.4 (3)C3—C31—C32—C3379.6 (4)
C8—C2—C3—C3153.7 (3)C37—C32—C33—C340.2 (5)
C31—C3—C4—N24.5 (4)C31—C32—C33—C34170.4 (3)
C2—C3—C4—N2176.8 (3)C32—C33—C34—C351.3 (6)
C31—C3—C4—N4174.9 (3)C33—C34—C35—C360.3 (6)
C2—C3—C4—N43.8 (4)C34—C35—C36—C371.8 (7)
N1—C1—C5—N51.4 (5)C33—C32—C37—C361.9 (5)
C2—C1—C5—N5176.8 (3)C31—C32—C37—C36172.2 (3)
N1—C1—C5—N4177.4 (2)C35—C36—C37—C322.8 (6)
C2—C1—C5—N44.4 (4)C5—C1—N1—O2178.4 (2)
N5—C6—C7—N44.7 (3)C2—C1—N1—O23.3 (4)
C1—C2—C8—O361.2 (3)C5—C1—N1—O10.7 (4)
C10—C2—C8—O3179.8 (3)C2—C1—N1—O1177.6 (2)
C3—C2—C8—O360.0 (3)O3—C8—N3—C9179.0 (3)
C1—C2—C8—N3121.4 (2)C2—C8—N3—C93.6 (3)
C10—C2—C8—N32.8 (3)C14—C9—N3—C8177.1 (3)
C3—C2—C8—N3117.4 (2)C10—C9—N3—C82.9 (3)
C14—C9—C10—C110.8 (4)N5—C5—N4—C4171.2 (2)
N3—C9—C10—C11179.2 (2)C1—C5—N4—C47.8 (4)
C14—C9—C10—C2179.2 (3)N5—C5—N4—C73.7 (3)
N3—C9—C10—C20.9 (3)C1—C5—N4—C7175.3 (3)
C1—C2—C10—C1161.7 (4)N2—C4—N4—C5168.5 (3)
C3—C2—C10—C1165.5 (4)C3—C4—N4—C512.0 (4)
C8—C2—C10—C11178.8 (3)N2—C4—N4—C72.8 (4)
C1—C2—C10—C9118.2 (3)C3—C4—N4—C7177.8 (3)
C3—C2—C10—C9114.6 (3)C6—C7—N4—C55.3 (3)
C8—C2—C10—C91.1 (3)C6—C7—N4—C4172.5 (3)
C9—C10—C11—C120.9 (4)N4—C5—N5—C60.3 (3)
C2—C10—C11—C12179.0 (3)C1—C5—N5—C6178.6 (3)
C10—C11—C12—C130.4 (5)C7—C6—N5—C53.0 (3)
C11—C12—C13—C140.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O40.861.922.549 (3)129
N2—H2A···O3i0.862.302.939 (3)131
N3—H3···O5ii0.861.922.779 (4)177
N5—H5···O10.862.082.604 (3)119
N5—H5···O3iii0.862.312.924 (3)129
C6—H6B···O2iii0.972.593.274 (4)128
C11—H11···O4i0.932.433.346 (4)167
C15—H15C···O2iv0.962.553.448 (4)156
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O40.861.922.549 (3)129.1
N2—H2A···O3i0.862.302.939 (3)131.4
N3—H3···O5ii0.861.922.779 (4)176.5
N5—H5···O3iii0.862.312.924 (3)128.7
C6—H6B···O2iii0.972.593.274 (4)128.2
C11—H11···O4i0.932.433.346 (4)166.7
C15—H15C···O2iv0.962.553.448 (4)155.8
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x, y+3/2, z1/2.
 

Acknowledgements

JS and RAN thank the management of the Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under the fast-track scheme (No. SR/FT/CS-073/2009).

References

First citationAllen, F. H. (1981). Acta Cryst. B37, 900–906.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, J., Nagalakshmi, R. A., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2013). Acta Cryst. E69, o256–o257.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o604-o605
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds