organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-2,7-di­methyl-3-(3-methyl­phenyl­sulfon­yl)-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 27 March 2014; accepted 11 April 2014; online 16 April 2014)

In the title compound, C17H15BrO3S, the dihedral angle between the mean planes of the benzo­furan and 3-methyl­phenyl rings is 77.37 (5)°. In the crystal, mol­ecules are linked via pairs of Br⋯O [Br⋯O = 3.335 (2) Å] contacts into inversion dimers. These dimers are further linked by C—H⋯O hydrogen bonds and ππ inter­actions between the benzene and furan rings of neighbouring mol­ecules [centroid–centroid separation = 3.884 (3) Å] into supra­molecular chains running along the a-axis direction.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2011[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o1279.], 2012[Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o3208.], 2013[Choi, H. D., Seo, P. J. & Lee, U. (2013). Acta Cryst. E69, o720.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15BrO3S

  • Mr = 379.26

  • Monoclinic, P 21 /c

  • a = 8.8813 (3) Å

  • b = 6.5976 (2) Å

  • c = 26.5044 (8) Å

  • β = 97.635 (1)°

  • V = 1539.26 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.82 mm−1

  • T = 296 K

  • 0.50 × 0.46 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.379, Tmax = 0.746

  • 26392 measured reflections

  • 3831 independent reflections

  • 3188 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.07

  • 3831 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O2i 0.96 2.54 3.338 (3) 141
C17—H17C⋯O3ii 0.96 2.41 3.357 (3) 170
Symmetry codes: (i) x, y-1, z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Experimental top

Synthesis and crystallization top

3-Chloro­per­oxy­benzoic acid (77%, 448 mg, 2.0 mmol) was added in small portions to a stirred solution of 5-bromo-2,7-di­methyl-3-(3-methyl­phenyl­sulfanyl)-1-benzo­furan (312 mg, 0.9 mmol) in di­chloro­methane (40 mL) at 273 K. After being stirred at room temperature for 8 h., the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 68%, m.p. 438–439 K; Rf = 0.51 (hexane–ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms, respectively. Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL-97's command AFIX 137 (Sheldrick, 2008).

Results and discussion top

As a part of our ongoing study of 5-bromo-2,7-di­methyl-1-benzo­furan derivatives containing cyclo­hexyl­sulfonyl (Choi et al., 2011), 4-fluoro­phenyl­sulfonyl (Choi et al., 2012) and 4-methyl­phenyl­sulfinyl (Choi et al., 2013) substituents in the 3-position, we report here on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzo­furan ring system is essentially planar, with a mean deviation of 0.010 (2) Å from the least-squares plane defined by the nine constituent atoms. The 3-methyl­phenyl ring is essentially planar, with a mean deviation of 0.004 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzo­furan ring system and the 3-methyl­phenyl ring is 77.37 (5)°. In the crystal structure (Fig. 2), molecules are linked by pairs of Br···O halogen-bondings (Politzer et al. 2007) between the bromine and the O atom of the OSO unit [Br1···O2iii = 3.335 (2) Å, C4—Br1···O2iii = 168.67 (6)°, symmetry code: (iii) -x+1, -y+2, -z+1]. These dimers are further linked by C—H···O hydrogen bonds (Table 1), and by π···π inter­actions between the benzene and furan rings of neighbouring molecules, with a Cg1···Cg2iv distance of 3.884 (3) Å and an inter­planar distance of 3.440 (3) Å resulting in a slippage of 1.804 (3) Å (Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively), forming supra­molecular chains running along the a–axis direction.

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2011, 2012, 2013). For a review of halogen bonding, see: Politzer et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom numbering scheme The displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O, Br···O and π···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x, y - 1, z; (ii) x + 1, y, z; (iii) - x + 1, - y + 2, - z + 1; (iv) - x, - y + 1, - z + 1.]
5-Bromo-2,7-dimethyl-3-(3-methylphenylsulfonyl)-1-benzofuran top
Crystal data top
C17H15BrO3SF(000) = 768
Mr = 379.26Dx = 1.637 Mg m3
Monoclinic, P21/cMelting point = 439–438 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.8813 (3) ÅCell parameters from 9774 reflections
b = 6.5976 (2) Åθ = 2.3–28.2°
c = 26.5044 (8) ŵ = 2.82 mm1
β = 97.635 (1)°T = 296 K
V = 1539.26 (8) Å3Block, colourless
Z = 40.50 × 0.46 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3831 independent reflections
Radiation source: rotating anode3188 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.043
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 1.6°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 88
Tmin = 0.379, Tmax = 0.746l = 3535
26392 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.081H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.7777P]
where P = (Fo2 + 2Fc2)/3
3831 reflections(Δ/σ)max = 0.002
202 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C17H15BrO3SV = 1539.26 (8) Å3
Mr = 379.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8813 (3) ŵ = 2.82 mm1
b = 6.5976 (2) ÅT = 296 K
c = 26.5044 (8) Å0.50 × 0.46 × 0.15 mm
β = 97.635 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3831 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3188 reflections with I > 2σ(I)
Tmin = 0.379, Tmax = 0.746Rint = 0.043
26392 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.07Δρmax = 0.56 e Å3
3831 reflectionsΔρmin = 0.45 e Å3
202 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.46068 (3)0.80654 (4)0.428686 (8)0.04118 (9)
S10.26202 (5)0.72154 (8)0.641971 (18)0.02783 (11)
O10.09711 (16)0.2852 (2)0.55049 (5)0.0314 (3)
O20.27849 (16)0.9169 (2)0.61959 (5)0.0352 (3)
O30.16243 (16)0.7009 (3)0.68033 (6)0.0380 (4)
C10.2041 (2)0.5514 (3)0.59334 (7)0.0284 (4)
C20.2454 (2)0.5613 (3)0.54261 (7)0.0277 (4)
C30.3313 (2)0.6908 (3)0.51640 (7)0.0305 (4)
H30.37770.80620.53140.037*
C40.3435 (2)0.6375 (4)0.46673 (7)0.0318 (4)
C50.2756 (2)0.4660 (4)0.44286 (7)0.0347 (5)
H50.28880.43800.40930.042*
C60.1884 (2)0.3360 (3)0.46849 (8)0.0325 (4)
C70.1763 (2)0.3932 (3)0.51806 (7)0.0291 (4)
C80.1157 (2)0.3850 (3)0.59611 (7)0.0302 (4)
C90.1153 (3)0.1474 (4)0.44553 (8)0.0415 (5)
H9A0.17090.03120.45960.062*
H9B0.11570.14990.40930.062*
H9C0.01250.13990.45290.062*
C100.0370 (3)0.2911 (3)0.63612 (9)0.0368 (5)
H10A0.04630.37770.66550.055*
H10B0.08210.16190.64540.055*
H10C0.06850.27300.62350.055*
C110.4444 (2)0.6401 (3)0.66941 (7)0.0283 (4)
C120.5609 (2)0.7803 (3)0.67428 (7)0.0314 (4)
H120.54520.90900.66030.038*
C130.7026 (2)0.7273 (4)0.70039 (8)0.0389 (5)
C140.7213 (3)0.5329 (4)0.71966 (8)0.0461 (6)
H140.81520.49500.73690.055*
C150.6045 (3)0.3937 (4)0.71410 (8)0.0444 (6)
H150.62080.26380.72740.053*
C160.4631 (2)0.4458 (4)0.68888 (8)0.0367 (5)
H160.38340.35330.68520.044*
C170.8290 (2)0.8819 (5)0.70728 (10)0.0535 (7)
H17A0.83620.93880.74090.080*
H17B0.80780.98770.68250.080*
H17C0.92330.81760.70290.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04301 (14)0.04977 (17)0.03230 (13)0.01099 (10)0.01067 (9)0.00424 (9)
S10.0264 (2)0.0325 (3)0.0236 (2)0.00823 (19)0.00028 (17)0.00524 (18)
O10.0345 (7)0.0306 (8)0.0276 (7)0.0047 (6)0.0014 (6)0.0037 (6)
O20.0379 (7)0.0294 (8)0.0352 (8)0.0090 (6)0.0061 (6)0.0033 (6)
O30.0309 (7)0.0511 (11)0.0329 (8)0.0049 (7)0.0072 (6)0.0131 (7)
C10.0293 (9)0.0319 (11)0.0229 (9)0.0079 (8)0.0007 (7)0.0030 (7)
C20.0272 (9)0.0315 (11)0.0228 (9)0.0105 (8)0.0028 (7)0.0035 (7)
C30.0295 (9)0.0333 (12)0.0276 (9)0.0086 (8)0.0002 (7)0.0019 (8)
C40.0314 (9)0.0382 (12)0.0255 (9)0.0132 (8)0.0027 (7)0.0025 (8)
C50.0359 (10)0.0439 (13)0.0230 (9)0.0166 (9)0.0016 (8)0.0055 (8)
C60.0328 (10)0.0336 (12)0.0288 (10)0.0137 (8)0.0049 (8)0.0061 (8)
C70.0295 (9)0.0304 (11)0.0253 (9)0.0100 (8)0.0033 (7)0.0012 (8)
C80.0317 (9)0.0304 (11)0.0271 (9)0.0100 (8)0.0012 (7)0.0028 (8)
C90.0484 (12)0.0394 (13)0.0332 (11)0.0111 (10)0.0072 (9)0.0118 (9)
C100.0409 (11)0.0353 (13)0.0343 (11)0.0029 (9)0.0052 (9)0.0013 (9)
C110.0283 (9)0.0390 (11)0.0174 (8)0.0115 (8)0.0025 (7)0.0011 (7)
C120.0287 (9)0.0419 (13)0.0239 (9)0.0067 (8)0.0044 (7)0.0019 (8)
C130.0285 (10)0.0651 (16)0.0235 (9)0.0108 (10)0.0057 (8)0.0055 (10)
C140.0348 (11)0.0774 (19)0.0253 (10)0.0247 (12)0.0005 (8)0.0031 (11)
C150.0542 (13)0.0508 (15)0.0275 (10)0.0248 (12)0.0033 (10)0.0101 (10)
C160.0405 (11)0.0430 (13)0.0266 (9)0.0113 (9)0.0050 (8)0.0036 (9)
C170.0263 (10)0.086 (2)0.0482 (14)0.0016 (12)0.0042 (9)0.0118 (14)
Geometric parameters (Å, º) top
Br1—C41.903 (2)C9—H9A0.9600
Br1—O2i3.3350 (16)C9—H9B0.9600
S1—O21.4341 (17)C9—H9C0.9600
S1—O31.4400 (15)C10—H10A0.9600
S1—C11.735 (2)C10—H10B0.9600
S1—C111.7687 (19)C10—H10C0.9600
O1—C81.368 (2)C11—C121.381 (3)
O1—C71.379 (3)C11—C161.383 (3)
C1—C81.358 (3)C12—C131.398 (3)
C1—C21.441 (3)C12—H120.9300
C2—C71.387 (3)C13—C141.382 (4)
C2—C31.391 (3)C13—C171.510 (4)
C3—C41.381 (3)C14—C151.379 (4)
C3—H30.9300C14—H140.9300
C4—C51.394 (3)C15—C161.385 (3)
C5—C61.392 (3)C15—H150.9300
C5—H50.9300C16—H160.9300
C6—C71.385 (3)C17—H17A0.9600
C6—C91.495 (3)C17—H17B0.9600
C8—C101.481 (3)C17—H17C0.9600
C4—Br1—O2i168.67 (6)H9A—C9—H9B109.5
O2—S1—O3118.89 (9)C6—C9—H9C109.5
O2—S1—C1108.10 (9)H9A—C9—H9C109.5
O3—S1—C1108.30 (10)H9B—C9—H9C109.5
O2—S1—C11107.76 (10)C8—C10—H10A109.5
O3—S1—C11107.20 (9)C8—C10—H10B109.5
C1—S1—C11105.88 (9)H10A—C10—H10B109.5
C8—O1—C7106.91 (16)C8—C10—H10C109.5
C8—C1—C2107.93 (17)H10A—C10—H10C109.5
C8—C1—S1126.84 (15)H10B—C10—H10C109.5
C2—C1—S1125.22 (16)C12—C11—C16122.29 (19)
C7—C2—C3119.64 (18)C12—C11—S1117.95 (16)
C7—C2—C1104.47 (18)C16—C11—S1119.54 (17)
C3—C2—C1135.88 (19)C11—C12—C13119.5 (2)
C4—C3—C2115.9 (2)C11—C12—H12120.2
C4—C3—H3122.0C13—C12—H12120.2
C2—C3—H3122.0C14—C13—C12118.1 (2)
C3—C4—C5123.7 (2)C14—C13—C17122.1 (2)
C3—C4—Br1118.26 (17)C12—C13—C17119.8 (2)
C5—C4—Br1117.99 (15)C15—C14—C13121.8 (2)
C6—C5—C4120.94 (18)C15—C14—H14119.1
C6—C5—H5119.5C13—C14—H14119.1
C4—C5—H5119.5C14—C15—C16120.5 (2)
C7—C6—C5114.4 (2)C14—C15—H15119.8
C7—C6—C9122.0 (2)C16—C15—H15119.8
C5—C6—C9123.63 (19)C11—C16—C15117.8 (2)
O1—C7—C6124.08 (19)C11—C16—H16121.1
O1—C7—C2110.57 (16)C15—C16—H16121.1
C6—C7—C2125.3 (2)C13—C17—H17A109.5
C1—C8—O1110.12 (17)C13—C17—H17B109.5
C1—C8—C10135.10 (19)H17A—C17—H17B109.5
O1—C8—C10114.78 (19)C13—C17—H17C109.5
C6—C9—H9A109.5H17A—C17—H17C109.5
C6—C9—H9B109.5H17B—C17—H17C109.5
O2—S1—C1—C8149.32 (17)C3—C2—C7—O1179.96 (16)
O3—S1—C1—C819.3 (2)C1—C2—C7—O10.1 (2)
C11—S1—C1—C895.42 (18)C3—C2—C7—C62.0 (3)
O2—S1—C1—C232.05 (18)C1—C2—C7—C6177.80 (18)
O3—S1—C1—C2162.10 (16)C2—C1—C8—O10.2 (2)
C11—S1—C1—C283.20 (18)S1—C1—C8—O1178.57 (14)
C8—C1—C2—C70.2 (2)C2—C1—C8—C10179.5 (2)
S1—C1—C2—C7178.62 (14)S1—C1—C8—C101.7 (3)
C8—C1—C2—C3180.0 (2)C7—O1—C8—C10.2 (2)
S1—C1—C2—C31.2 (3)C7—O1—C8—C10179.60 (16)
C7—C2—C3—C41.2 (3)O2—S1—C11—C1212.15 (17)
C1—C2—C3—C4178.6 (2)O3—S1—C11—C12116.91 (15)
C2—C3—C4—C50.1 (3)C1—S1—C11—C12127.64 (16)
C2—C3—C4—Br1179.53 (13)O2—S1—C11—C16173.10 (15)
O2i—Br1—C4—C358.1 (4)O3—S1—C11—C1657.84 (18)
O2i—Br1—C4—C5121.5 (3)C1—S1—C11—C1657.62 (18)
C3—C4—C5—C60.4 (3)C16—C11—C12—C131.1 (3)
Br1—C4—C5—C6179.97 (15)S1—C11—C12—C13173.54 (15)
C4—C5—C6—C70.2 (3)C11—C12—C13—C141.2 (3)
C4—C5—C6—C9178.61 (19)C11—C12—C13—C17178.06 (19)
C8—O1—C7—C6177.97 (18)C12—C13—C14—C150.6 (3)
C8—O1—C7—C20.0 (2)C17—C13—C14—C15178.7 (2)
C5—C6—C7—O1179.12 (17)C13—C14—C15—C160.3 (3)
C9—C6—C7—O10.3 (3)C12—C11—C16—C150.2 (3)
C5—C6—C7—C21.5 (3)S1—C11—C16—C15174.34 (15)
C9—C6—C7—C2177.39 (19)C14—C15—C16—C110.5 (3)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2ii0.962.543.338 (3)141
C17—H17C···O3iii0.962.413.357 (3)170
Symmetry codes: (ii) x, y1, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.962.543.338 (3)140.9
C17—H17C···O3ii0.962.413.357 (3)169.8
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o3208.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2013). Acta Cryst. E69, o720.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o1279.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds